levimohle commited on
Commit
c38f36d
1 Parent(s): d40a125

Deleted empty folders

Browse files
HTM-related-code/Parameters/paramMultiStep.pyc DELETED
Binary file (2.73 kB)
 
HTM-related-code/Parameters/paramMultiVar.pyc DELETED
Binary file (2.75 kB)
 
HTM-related-code/Parameters/paramV3.pyc DELETED
Binary file (2.57 kB)
 
HTM-related-code/nupic_anomaly_output.pyc DELETED
Binary file (10.1 kB)
 
HTM-related-code/nupic_output_Multi.pyc DELETED
Binary file (7.26 kB)
 
MQTT/nupic_output_MQTT.pyc DELETED
Binary file (9.96 kB)
 
lstm_energy.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": null,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -25,9 +25,115 @@
25
  },
26
  {
27
  "cell_type": "code",
28
- "execution_count": null,
29
  "metadata": {},
30
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  "source": [
32
  "# Prepar energy data set with extended features\n",
33
  "feature_list = ['date', 'hvac_N', 'hvac_S', 'air_temp_set_1', 'solar_radiation_set_1']\n",
@@ -36,7 +142,7 @@
36
  "extended_energy_data['date'] = pd.to_datetime(extended_energy_data['date'])\n",
37
  "extended_energy_data.set_index('date', inplace=True)\n",
38
  "\n",
39
- "extended_energy_data = extended_energy_data.resample('15T').mean()\n",
40
  "# extended_energy_data = extended_energy_data.interpolate(method='linear')\n",
41
  "\n",
42
  "extended_energy_data = extended_energy_data.reset_index(drop=False)\n",
@@ -45,7 +151,7 @@
45
  },
46
  {
47
  "cell_type": "code",
48
- "execution_count": null,
49
  "metadata": {},
50
  "outputs": [],
51
  "source": [
@@ -66,9 +172,20 @@
66
  },
67
  {
68
  "cell_type": "code",
69
- "execution_count": null,
70
  "metadata": {},
71
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
72
  "source": [
73
  "testdataset_df = df_filtered[(df_filtered.date.dt.date <date(2019, 2, 20))]\n",
74
  "\n",
@@ -84,7 +201,7 @@
84
  },
85
  {
86
  "cell_type": "code",
87
- "execution_count": null,
88
  "metadata": {},
89
  "outputs": [],
90
  "source": [
@@ -101,15 +218,52 @@
101
  },
102
  {
103
  "cell_type": "code",
104
- "execution_count": null,
105
  "metadata": {},
106
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
  "source": [
108
  "train,test = traindataset,testdataset\n",
109
- "steps_in_past = 24*4\n",
110
- "time_step = 1\n",
111
- "no_inputs = 5\n",
112
- "no_outputs = 5\n",
113
  "def create_dataset(dataset,time_step):\n",
114
  " x = [[] for _ in range(no_inputs)] \n",
115
  " Y = [[] for _ in range(no_outputs)]\n",
@@ -202,9 +356,19 @@
202
  },
203
  {
204
  "cell_type": "code",
205
- "execution_count": null,
206
  "metadata": {},
207
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
208
  "source": [
209
  "loss = model.evaluate(X_test, y_test)\n",
210
  "test_predict1 = model.predict(X_test)\n",
@@ -217,7 +381,7 @@
217
  },
218
  {
219
  "cell_type": "code",
220
- "execution_count": null,
221
  "metadata": {},
222
  "outputs": [],
223
  "source": [
@@ -229,8 +393,8 @@
229
  "# Loop over the value index\n",
230
  "for i, ax in enumerate(axes.flat):\n",
231
  " # Plot your data or perform any other operations\n",
232
- " ax.plot(y_test1[i,0:time_step], label='Original Testing Data', color='blue')\n",
233
- " ax.plot(test_predict2[i,0:time_step], label='Predicted Testing Data', color='red',alpha=0.8)\n",
234
  " # ax.set_title(f'Plot {i+1}')\n",
235
  " ax.set_title('Testing Data - Predicted vs Actual')\n",
236
  " ax.set_xlabel('Time [hours]')\n",
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 8,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
25
  },
26
  {
27
  "cell_type": "code",
28
+ "execution_count": 16,
29
  "metadata": {},
30
+ "outputs": [
31
+ {
32
+ "name": "stderr",
33
+ "output_type": "stream",
34
+ "text": [
35
+ "C:\\Users\\levim\\AppData\\Local\\Temp\\ipykernel_12184\\1569659483.py:5: SettingWithCopyWarning: \n",
36
+ "A value is trying to be set on a copy of a slice from a DataFrame.\n",
37
+ "Try using .loc[row_indexer,col_indexer] = value instead\n",
38
+ "\n",
39
+ "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
40
+ " extended_energy_data['date'] = pd.to_datetime(extended_energy_data['date'])\n"
41
+ ]
42
+ },
43
+ {
44
+ "data": {
45
+ "text/html": [
46
+ "<div>\n",
47
+ "<style scoped>\n",
48
+ " .dataframe tbody tr th:only-of-type {\n",
49
+ " vertical-align: middle;\n",
50
+ " }\n",
51
+ "\n",
52
+ " .dataframe tbody tr th {\n",
53
+ " vertical-align: top;\n",
54
+ " }\n",
55
+ "\n",
56
+ " .dataframe thead th {\n",
57
+ " text-align: right;\n",
58
+ " }\n",
59
+ "</style>\n",
60
+ "<table border=\"1\" class=\"dataframe\">\n",
61
+ " <thead>\n",
62
+ " <tr style=\"text-align: right;\">\n",
63
+ " <th></th>\n",
64
+ " <th>date</th>\n",
65
+ " <th>hvac_N</th>\n",
66
+ " <th>hvac_S</th>\n",
67
+ " <th>air_temp_set_1</th>\n",
68
+ " <th>solar_radiation_set_1</th>\n",
69
+ " </tr>\n",
70
+ " </thead>\n",
71
+ " <tbody>\n",
72
+ " <tr>\n",
73
+ " <th>0</th>\n",
74
+ " <td>2018-01-01 00:00:00</td>\n",
75
+ " <td>NaN</td>\n",
76
+ " <td>NaN</td>\n",
77
+ " <td>11.5400</td>\n",
78
+ " <td>51.4075</td>\n",
79
+ " </tr>\n",
80
+ " <tr>\n",
81
+ " <th>1</th>\n",
82
+ " <td>2018-01-01 01:00:00</td>\n",
83
+ " <td>37.525001</td>\n",
84
+ " <td>19.395</td>\n",
85
+ " <td>10.8900</td>\n",
86
+ " <td>2.1250</td>\n",
87
+ " </tr>\n",
88
+ " <tr>\n",
89
+ " <th>2</th>\n",
90
+ " <td>2018-01-01 02:00:00</td>\n",
91
+ " <td>37.750001</td>\n",
92
+ " <td>22.775</td>\n",
93
+ " <td>10.7550</td>\n",
94
+ " <td>0.0000</td>\n",
95
+ " </tr>\n",
96
+ " <tr>\n",
97
+ " <th>3</th>\n",
98
+ " <td>2018-01-01 03:00:00</td>\n",
99
+ " <td>37.550001</td>\n",
100
+ " <td>18.920</td>\n",
101
+ " <td>10.4775</td>\n",
102
+ " <td>0.0000</td>\n",
103
+ " </tr>\n",
104
+ " <tr>\n",
105
+ " <th>4</th>\n",
106
+ " <td>2018-01-01 04:00:00</td>\n",
107
+ " <td>36.675001</td>\n",
108
+ " <td>21.600</td>\n",
109
+ " <td>9.9925</td>\n",
110
+ " <td>0.0000</td>\n",
111
+ " </tr>\n",
112
+ " </tbody>\n",
113
+ "</table>\n",
114
+ "</div>"
115
+ ],
116
+ "text/plain": [
117
+ " date hvac_N hvac_S air_temp_set_1 \\\n",
118
+ "0 2018-01-01 00:00:00 NaN NaN 11.5400 \n",
119
+ "1 2018-01-01 01:00:00 37.525001 19.395 10.8900 \n",
120
+ "2 2018-01-01 02:00:00 37.750001 22.775 10.7550 \n",
121
+ "3 2018-01-01 03:00:00 37.550001 18.920 10.4775 \n",
122
+ "4 2018-01-01 04:00:00 36.675001 21.600 9.9925 \n",
123
+ "\n",
124
+ " solar_radiation_set_1 \n",
125
+ "0 51.4075 \n",
126
+ "1 2.1250 \n",
127
+ "2 0.0000 \n",
128
+ "3 0.0000 \n",
129
+ "4 0.0000 "
130
+ ]
131
+ },
132
+ "execution_count": 16,
133
+ "metadata": {},
134
+ "output_type": "execute_result"
135
+ }
136
+ ],
137
  "source": [
138
  "# Prepar energy data set with extended features\n",
139
  "feature_list = ['date', 'hvac_N', 'hvac_S', 'air_temp_set_1', 'solar_radiation_set_1']\n",
 
142
  "extended_energy_data['date'] = pd.to_datetime(extended_energy_data['date'])\n",
143
  "extended_energy_data.set_index('date', inplace=True)\n",
144
  "\n",
145
+ "extended_energy_data = extended_energy_data.resample('60T').mean()\n",
146
  "# extended_energy_data = extended_energy_data.interpolate(method='linear')\n",
147
  "\n",
148
  "extended_energy_data = extended_energy_data.reset_index(drop=False)\n",
 
151
  },
152
  {
153
  "cell_type": "code",
154
+ "execution_count": 17,
155
  "metadata": {},
156
  "outputs": [],
157
  "source": [
 
172
  },
173
  {
174
  "cell_type": "code",
175
+ "execution_count": 18,
176
  "metadata": {},
177
+ "outputs": [
178
+ {
179
+ "data": {
180
+ "text/plain": [
181
+ "[]"
182
+ ]
183
+ },
184
+ "execution_count": 18,
185
+ "metadata": {},
186
+ "output_type": "execute_result"
187
+ }
188
+ ],
189
  "source": [
190
  "testdataset_df = df_filtered[(df_filtered.date.dt.date <date(2019, 2, 20))]\n",
191
  "\n",
 
201
  },
202
  {
203
  "cell_type": "code",
204
+ "execution_count": 19,
205
  "metadata": {},
206
  "outputs": [],
207
  "source": [
 
218
  },
219
  {
220
  "cell_type": "code",
221
+ "execution_count": 20,
222
  "metadata": {},
223
+ "outputs": [
224
+ {
225
+ "name": "stdout",
226
+ "output_type": "stream",
227
+ "text": [
228
+ "Epoch 1/5\n",
229
+ "56/56 [==============================] - ETA: 0s - loss: 0.0359\n",
230
+ "Epoch 1: val_loss improved from inf to 0.02863, saving model to lstm_energy_01.keras\n",
231
+ "56/56 [==============================] - 14s 157ms/step - loss: 0.0359 - val_loss: 0.0286\n",
232
+ "Epoch 2/5\n",
233
+ "56/56 [==============================] - ETA: 0s - loss: 0.0185\n",
234
+ "Epoch 2: val_loss improved from 0.02863 to 0.02514, saving model to lstm_energy_01.keras\n",
235
+ "56/56 [==============================] - 8s 138ms/step - loss: 0.0185 - val_loss: 0.0251\n",
236
+ "Epoch 3/5\n",
237
+ "56/56 [==============================] - ETA: 0s - loss: 0.0170\n",
238
+ "Epoch 3: val_loss improved from 0.02514 to 0.02490, saving model to lstm_energy_01.keras\n",
239
+ "56/56 [==============================] - 8s 142ms/step - loss: 0.0170 - val_loss: 0.0249\n",
240
+ "Epoch 4/5\n",
241
+ "56/56 [==============================] - ETA: 0s - loss: 0.0159\n",
242
+ "Epoch 4: val_loss did not improve from 0.02490\n",
243
+ "56/56 [==============================] - 8s 141ms/step - loss: 0.0159 - val_loss: 0.0278\n",
244
+ "Epoch 5/5\n",
245
+ "56/56 [==============================] - ETA: 0s - loss: 0.0148\n",
246
+ "Epoch 5: val_loss did not improve from 0.02490\n",
247
+ "56/56 [==============================] - 9s 158ms/step - loss: 0.0148 - val_loss: 0.0255\n"
248
+ ]
249
+ },
250
+ {
251
+ "data": {
252
+ "text/plain": [
253
+ "<keras.callbacks.History at 0x1e461cb04f0>"
254
+ ]
255
+ },
256
+ "execution_count": 20,
257
+ "metadata": {},
258
+ "output_type": "execute_result"
259
+ }
260
+ ],
261
  "source": [
262
  "train,test = traindataset,testdataset\n",
263
+ "steps_in_past = 3 \n",
264
+ "time_step = 24\n",
265
+ "no_inputs = 5\n",
266
+ "no_outputs = 2\n",
267
  "def create_dataset(dataset,time_step):\n",
268
  " x = [[] for _ in range(no_inputs)] \n",
269
  " Y = [[] for _ in range(no_outputs)]\n",
 
356
  },
357
  {
358
  "cell_type": "code",
359
+ "execution_count": 21,
360
  "metadata": {},
361
+ "outputs": [
362
+ {
363
+ "name": "stdout",
364
+ "output_type": "stream",
365
+ "text": [
366
+ "18/18 [==============================] - 2s 32ms/step - loss: 0.0255\n",
367
+ "18/18 [==============================] - 2s 32ms/step\n",
368
+ "Loss: 0.02554473653435707\n"
369
+ ]
370
+ }
371
+ ],
372
  "source": [
373
  "loss = model.evaluate(X_test, y_test)\n",
374
  "test_predict1 = model.predict(X_test)\n",
 
381
  },
382
  {
383
  "cell_type": "code",
384
+ "execution_count": 22,
385
  "metadata": {},
386
  "outputs": [],
387
  "source": [
 
393
  "# Loop over the value index\n",
394
  "for i, ax in enumerate(axes.flat):\n",
395
  " # Plot your data or perform any other operations\n",
396
+ " ax.plot(y_test[i,0:time_step], label='Original Testing Data', color='blue')\n",
397
+ " ax.plot(test_predict1[i,0:time_step], label='Predicted Testing Data', color='red',alpha=0.8)\n",
398
  " # ax.set_title(f'Plot {i+1}')\n",
399
  " ax.set_title('Testing Data - Predicted vs Actual')\n",
400
  " ax.set_xlabel('Time [hours]')\n",
lstm_energy_01.keras ADDED
Binary file (568 kB). View file