Spaces:
Sleeping
Sleeping
Added energy prediction LSTM
Browse files- lstm_energy.ipynb +384 -0
- lstm_energy_01.keras +0 -0
lstm_energy.ipynb
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 98,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd \n",
|
10 |
+
"from datetime import datetime \n",
|
11 |
+
"from datetime import date\n",
|
12 |
+
"import matplotlib.pyplot as plt\n",
|
13 |
+
"# import seaborn as sns\n",
|
14 |
+
"import numpy as np\n",
|
15 |
+
"import pandas as pd\n",
|
16 |
+
"from keras.models import Sequential\n",
|
17 |
+
"from keras.layers import LSTM, Dense\n",
|
18 |
+
"from sklearn.model_selection import train_test_split\n",
|
19 |
+
"from sklearn.preprocessing import MinMaxScaler,StandardScaler\n",
|
20 |
+
"from keras.callbacks import ModelCheckpoint\n",
|
21 |
+
"\n",
|
22 |
+
"dataPATH = r\"C:\\Users\\levim\\OneDrive\\Documents\\MastersAI_ES\\TeamProject-5ARIP10\\smart-buildings\\Data\"\n",
|
23 |
+
"all_data = pd.read_csv(dataPATH + r\"\\long_merge.csv\")"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 102,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"data": {
|
33 |
+
"text/html": [
|
34 |
+
"<div>\n",
|
35 |
+
"<style scoped>\n",
|
36 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
37 |
+
" vertical-align: middle;\n",
|
38 |
+
" }\n",
|
39 |
+
"\n",
|
40 |
+
" .dataframe tbody tr th {\n",
|
41 |
+
" vertical-align: top;\n",
|
42 |
+
" }\n",
|
43 |
+
"\n",
|
44 |
+
" .dataframe thead th {\n",
|
45 |
+
" text-align: right;\n",
|
46 |
+
" }\n",
|
47 |
+
"</style>\n",
|
48 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
49 |
+
" <thead>\n",
|
50 |
+
" <tr style=\"text-align: right;\">\n",
|
51 |
+
" <th></th>\n",
|
52 |
+
" <th>date</th>\n",
|
53 |
+
" <th>hvac_N</th>\n",
|
54 |
+
" <th>hvac_S</th>\n",
|
55 |
+
" <th>air_temp_set_1</th>\n",
|
56 |
+
" <th>solar_radiation_set_1</th>\n",
|
57 |
+
" </tr>\n",
|
58 |
+
" </thead>\n",
|
59 |
+
" <tbody>\n",
|
60 |
+
" <tr>\n",
|
61 |
+
" <th>0</th>\n",
|
62 |
+
" <td>2018-01-01 00:00:00</td>\n",
|
63 |
+
" <td>NaN</td>\n",
|
64 |
+
" <td>NaN</td>\n",
|
65 |
+
" <td>11.64</td>\n",
|
66 |
+
" <td>86.7</td>\n",
|
67 |
+
" </tr>\n",
|
68 |
+
" <tr>\n",
|
69 |
+
" <th>1</th>\n",
|
70 |
+
" <td>2018-01-01 00:01:00</td>\n",
|
71 |
+
" <td>NaN</td>\n",
|
72 |
+
" <td>NaN</td>\n",
|
73 |
+
" <td>11.64</td>\n",
|
74 |
+
" <td>86.7</td>\n",
|
75 |
+
" </tr>\n",
|
76 |
+
" <tr>\n",
|
77 |
+
" <th>2</th>\n",
|
78 |
+
" <td>2018-01-01 00:02:00</td>\n",
|
79 |
+
" <td>NaN</td>\n",
|
80 |
+
" <td>NaN</td>\n",
|
81 |
+
" <td>11.64</td>\n",
|
82 |
+
" <td>86.7</td>\n",
|
83 |
+
" </tr>\n",
|
84 |
+
" <tr>\n",
|
85 |
+
" <th>3</th>\n",
|
86 |
+
" <td>2018-01-01 00:03:00</td>\n",
|
87 |
+
" <td>NaN</td>\n",
|
88 |
+
" <td>NaN</td>\n",
|
89 |
+
" <td>11.64</td>\n",
|
90 |
+
" <td>86.7</td>\n",
|
91 |
+
" </tr>\n",
|
92 |
+
" <tr>\n",
|
93 |
+
" <th>4</th>\n",
|
94 |
+
" <td>2018-01-01 00:04:00</td>\n",
|
95 |
+
" <td>NaN</td>\n",
|
96 |
+
" <td>NaN</td>\n",
|
97 |
+
" <td>11.64</td>\n",
|
98 |
+
" <td>86.7</td>\n",
|
99 |
+
" </tr>\n",
|
100 |
+
" </tbody>\n",
|
101 |
+
"</table>\n",
|
102 |
+
"</div>"
|
103 |
+
],
|
104 |
+
"text/plain": [
|
105 |
+
" date hvac_N hvac_S air_temp_set_1 solar_radiation_set_1\n",
|
106 |
+
"0 2018-01-01 00:00:00 NaN NaN 11.64 86.7\n",
|
107 |
+
"1 2018-01-01 00:01:00 NaN NaN 11.64 86.7\n",
|
108 |
+
"2 2018-01-01 00:02:00 NaN NaN 11.64 86.7\n",
|
109 |
+
"3 2018-01-01 00:03:00 NaN NaN 11.64 86.7\n",
|
110 |
+
"4 2018-01-01 00:04:00 NaN NaN 11.64 86.7"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
"execution_count": 102,
|
114 |
+
"metadata": {},
|
115 |
+
"output_type": "execute_result"
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"source": [
|
119 |
+
"feature_list = ['date', 'hvac_N', 'hvac_S', 'air_temp_set_1', 'solar_radiation_set_1']\n",
|
120 |
+
"extended_energy_data = all_data[feature_list]\n",
|
121 |
+
"extended_energy_data.head()"
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"execution_count": null,
|
127 |
+
"metadata": {},
|
128 |
+
"outputs": [],
|
129 |
+
"source": [
|
130 |
+
"energy_data = pd.read_csv(dataPATH + r\"\\hvac_data_1h.csv\")\n",
|
131 |
+
"\n",
|
132 |
+
"# Convert the date column to datetime\n",
|
133 |
+
"energy_data['date'] = pd.to_datetime(energy_data['date'], format = \"%Y-%m-%d %H:%M:%S\")\n",
|
134 |
+
"\n",
|
135 |
+
"energy_data['day_of_week'] = energy_data['date'].dt.weekday\n",
|
136 |
+
"# Filter the data for the year 2019\n",
|
137 |
+
"df_filtered = energy_data[ (energy_data.date.dt.date >date(2019, 1, 20)) & (energy_data.date.dt.date< date(2019, 7, 26))]\n",
|
138 |
+
"\n",
|
139 |
+
"# Check for NA values in the DataFrame\n",
|
140 |
+
"if df_filtered.isna().any().any():\n",
|
141 |
+
" print(\"There are NA values in the DataFrame columns.\")"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"cell_type": "code",
|
146 |
+
"execution_count": null,
|
147 |
+
"metadata": {},
|
148 |
+
"outputs": [],
|
149 |
+
"source": [
|
150 |
+
"testdataset_df = df_filtered[(df_filtered.date.dt.date <date(2019, 2, 20))]\n",
|
151 |
+
"\n",
|
152 |
+
"traindataset_df = df_filtered[ (df_filtered.date.dt.date >date(2019, 2, 21))]\n",
|
153 |
+
"\n",
|
154 |
+
"testdataset = testdataset_df.drop(columns=[\"date\"]).values\n",
|
155 |
+
"\n",
|
156 |
+
"traindataset = traindataset_df.drop(columns=[\"date\"]).values\n",
|
157 |
+
"\n",
|
158 |
+
"columns_with_na = traindataset_df.columns[traindataset_df.isna().any()].tolist()\n",
|
159 |
+
"columns_with_na"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": null,
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"traindataset = traindataset.astype('float32')\n",
|
169 |
+
"testdataset = testdataset.astype('float32')\n",
|
170 |
+
"\n",
|
171 |
+
"mintest = np.min(testdataset)\n",
|
172 |
+
"maxtest = np.max(testdataset)\n",
|
173 |
+
"\n",
|
174 |
+
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
|
175 |
+
"traindataset = scaler.fit_transform(traindataset)\n",
|
176 |
+
"testdataset = scaler.transform(testdataset)"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"execution_count": 101,
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [
|
184 |
+
{
|
185 |
+
"name": "stdout",
|
186 |
+
"output_type": "stream",
|
187 |
+
"text": [
|
188 |
+
"Epoch 1/5\n",
|
189 |
+
"57/58 [============================>.] - ETA: 0s - loss: 0.0238\n",
|
190 |
+
"Epoch 1: val_loss improved from inf to 0.01717, saving model to lstm_energy_01.keras\n",
|
191 |
+
"58/58 [==============================] - 11s 62ms/step - loss: 0.0238 - val_loss: 0.0172\n",
|
192 |
+
"Epoch 2/5\n",
|
193 |
+
"56/58 [===========================>..] - ETA: 0s - loss: 0.0139\n",
|
194 |
+
"Epoch 2: val_loss improved from 0.01717 to 0.01117, saving model to lstm_energy_01.keras\n",
|
195 |
+
"58/58 [==============================] - 2s 42ms/step - loss: 0.0139 - val_loss: 0.0112\n",
|
196 |
+
"Epoch 3/5\n",
|
197 |
+
"57/58 [============================>.] - ETA: 0s - loss: 0.0116\n",
|
198 |
+
"Epoch 3: val_loss improved from 0.01117 to 0.00990, saving model to lstm_energy_01.keras\n",
|
199 |
+
"58/58 [==============================] - 2s 36ms/step - loss: 0.0116 - val_loss: 0.0099\n",
|
200 |
+
"Epoch 4/5\n",
|
201 |
+
"57/58 [============================>.] - ETA: 0s - loss: 0.0084\n",
|
202 |
+
"Epoch 4: val_loss improved from 0.00990 to 0.00889, saving model to lstm_energy_01.keras\n",
|
203 |
+
"58/58 [==============================] - 2s 40ms/step - loss: 0.0084 - val_loss: 0.0089\n",
|
204 |
+
"Epoch 5/5\n",
|
205 |
+
"57/58 [============================>.] - ETA: 0s - loss: 0.0066\n",
|
206 |
+
"Epoch 5: val_loss did not improve from 0.00889\n",
|
207 |
+
"58/58 [==============================] - 2s 37ms/step - loss: 0.0066 - val_loss: 0.0103\n"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"data": {
|
212 |
+
"text/plain": [
|
213 |
+
"<keras.callbacks.History at 0x1f4931dc790>"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
"execution_count": 101,
|
217 |
+
"metadata": {},
|
218 |
+
"output_type": "execute_result"
|
219 |
+
}
|
220 |
+
],
|
221 |
+
"source": [
|
222 |
+
"train,test = traindataset,testdataset\n",
|
223 |
+
"days_in_past = 20\n",
|
224 |
+
"time_step = 1\n",
|
225 |
+
"def create_dataset(dataset,time_step):\n",
|
226 |
+
" x = [[] for _ in range(3)] \n",
|
227 |
+
" Y = [[] for _ in range(2)]\n",
|
228 |
+
" for i in range(time_step * days_in_past, len(dataset) - time_step * days_in_past): # -time_step is to ensure that the Y value has enough values\n",
|
229 |
+
" for j in range(3):\n",
|
230 |
+
" x[j].append(dataset[(i-time_step*days_in_past):i, j])\n",
|
231 |
+
" for j in range(2):\n",
|
232 |
+
" Y[j].append([dataset[x + i, j] for x in range(0,time_step)]) \n",
|
233 |
+
" x = [np.array(feature_list) for feature_list in x]\n",
|
234 |
+
" Y = [np.array(feature_list) for feature_list in Y] \n",
|
235 |
+
" Y = np.stack(Y,axis=1)\n",
|
236 |
+
" Y = np.reshape(Y, (Y.shape[0], time_step*2))\n",
|
237 |
+
" return np.stack(x,axis=2), Y\n",
|
238 |
+
"\n",
|
239 |
+
"\n",
|
240 |
+
"X_train, y_train = create_dataset(train, time_step)\n",
|
241 |
+
"X_test, y_test = create_dataset(test, time_step)\n",
|
242 |
+
"\n",
|
243 |
+
"\n",
|
244 |
+
"model = Sequential()\n",
|
245 |
+
"model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))\n",
|
246 |
+
"model.add(LSTM(units=50, return_sequences=True))\n",
|
247 |
+
"model.add(LSTM(units=30))\n",
|
248 |
+
"model.add(Dense(units=time_step*2))\n",
|
249 |
+
"\n",
|
250 |
+
"model.compile(optimizer='adam', loss='mean_squared_error')\n",
|
251 |
+
"\n",
|
252 |
+
"checkpoint_path = \"lstm_energy_01.keras\"\n",
|
253 |
+
"checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
|
254 |
+
"model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=64, verbose=1, callbacks=[checkpoint_callback])"
|
255 |
+
]
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"cell_type": "code",
|
259 |
+
"execution_count": null,
|
260 |
+
"metadata": {},
|
261 |
+
"outputs": [],
|
262 |
+
"source": []
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "code",
|
266 |
+
"execution_count": 95,
|
267 |
+
"metadata": {},
|
268 |
+
"outputs": [
|
269 |
+
{
|
270 |
+
"name": "stdout",
|
271 |
+
"output_type": "stream",
|
272 |
+
"text": [
|
273 |
+
"22/22 [==============================] - 0s 8ms/step - loss: 0.0126\n",
|
274 |
+
"22/22 [==============================] - 1s 7ms/step\n",
|
275 |
+
"Loss: 0.01257658563554287\n"
|
276 |
+
]
|
277 |
+
}
|
278 |
+
],
|
279 |
+
"source": [
|
280 |
+
"loss = model.evaluate(X_test, y_test)\n",
|
281 |
+
"test_predict1 = model.predict(X_test)\n",
|
282 |
+
"print(\"Loss: \", loss)\n",
|
283 |
+
"# Converting values back to the original scale\n",
|
284 |
+
"scalerBack = MinMaxScaler(feature_range=(mintest, maxtest))\n",
|
285 |
+
"test_predict2 = scalerBack.fit_transform(test_predict1)\n",
|
286 |
+
"y_test1 = scalerBack.fit_transform(y_test)\n"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": 96,
|
292 |
+
"metadata": {},
|
293 |
+
"outputs": [],
|
294 |
+
"source": [
|
295 |
+
"%matplotlib qt\n",
|
296 |
+
"\n",
|
297 |
+
"# Create a 3x3 grid of subplots\n",
|
298 |
+
"fig, axes = plt.subplots(3, 3, figsize=(10, 10))\n",
|
299 |
+
"\n",
|
300 |
+
"# Loop over the value index\n",
|
301 |
+
"for i, ax in enumerate(axes.flat):\n",
|
302 |
+
" # Plot your data or perform any other operations\n",
|
303 |
+
" ax.plot(y_test1[i,0:time_step], label='Original Testing Data', color='blue')\n",
|
304 |
+
" ax.plot(test_predict2[i,0:time_step], label='Predicted Testing Data', color='red',alpha=0.8)\n",
|
305 |
+
" # ax.set_title(f'Plot {i+1}')\n",
|
306 |
+
" ax.set_title('Testing Data - Predicted vs Actual')\n",
|
307 |
+
" ax.set_xlabel('Time [hours]')\n",
|
308 |
+
" ax.set_ylabel('Energy Consumption [kW]') \n",
|
309 |
+
" ax.legend()\n",
|
310 |
+
"\n",
|
311 |
+
"# Adjust the spacing between subplots\n",
|
312 |
+
"plt.tight_layout()\n",
|
313 |
+
"\n",
|
314 |
+
"# Show the plot\n",
|
315 |
+
"plt.show()"
|
316 |
+
]
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"cell_type": "code",
|
320 |
+
"execution_count": null,
|
321 |
+
"metadata": {},
|
322 |
+
"outputs": [],
|
323 |
+
"source": [
|
324 |
+
"%matplotlib qt\n",
|
325 |
+
"index = 100\n",
|
326 |
+
"\n",
|
327 |
+
"\n",
|
328 |
+
"plt.plot(y_test[index,0:24], label='Original Testing Data', color='blue')\n",
|
329 |
+
"plt.plot(test_predict1[index,0:24], label='Predicted Testing Data', color='red',alpha=0.8)\n",
|
330 |
+
"\n",
|
331 |
+
"\n",
|
332 |
+
"plt.title('Testing Data - Predicted vs Actual')\n",
|
333 |
+
"plt.xlabel('Time [hours]')\n",
|
334 |
+
"plt.ylabel('Energy [kW]')\n",
|
335 |
+
"plt.legend()\n",
|
336 |
+
"plt.show()"
|
337 |
+
]
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"cell_type": "code",
|
341 |
+
"execution_count": null,
|
342 |
+
"metadata": {},
|
343 |
+
"outputs": [],
|
344 |
+
"source": [
|
345 |
+
"y_test[1, 0:24]"
|
346 |
+
]
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"cell_type": "code",
|
350 |
+
"execution_count": null,
|
351 |
+
"metadata": {},
|
352 |
+
"outputs": [],
|
353 |
+
"source": []
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"cell_type": "code",
|
357 |
+
"execution_count": null,
|
358 |
+
"metadata": {},
|
359 |
+
"outputs": [],
|
360 |
+
"source": []
|
361 |
+
}
|
362 |
+
],
|
363 |
+
"metadata": {
|
364 |
+
"kernelspec": {
|
365 |
+
"display_name": "experiments",
|
366 |
+
"language": "python",
|
367 |
+
"name": "python3"
|
368 |
+
},
|
369 |
+
"language_info": {
|
370 |
+
"codemirror_mode": {
|
371 |
+
"name": "ipython",
|
372 |
+
"version": 3
|
373 |
+
},
|
374 |
+
"file_extension": ".py",
|
375 |
+
"mimetype": "text/x-python",
|
376 |
+
"name": "python",
|
377 |
+
"nbconvert_exporter": "python",
|
378 |
+
"pygments_lexer": "ipython3",
|
379 |
+
"version": "3.8.15"
|
380 |
+
}
|
381 |
+
},
|
382 |
+
"nbformat": 4,
|
383 |
+
"nbformat_minor": 2
|
384 |
+
}
|
lstm_energy_01.keras
ADDED
Binary file (545 kB). View file
|
|