File size: 8,266 Bytes
4fe52ab
 
b7577da
7feda08
90fff6b
7fc55d1
 
858fdd3
 
9ea0d50
858fdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236bb4b
90fff6b
 
 
9ea0d50
 
 
 
6ba2176
 
 
fbc26ed
6ba2176
7feda08
858fdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fe52ab
59b2b8e
4fe52ab
e0913e2
0b6e157
 
 
 
 
 
858fdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b6e157
 
 
 
 
 
 
858fdd3
0b6e157
858fdd3
0b6e157
 
 
 
 
3e59fb4
0b6e157
 
858fdd3
 
 
 
 
 
 
 
 
 
 
0b6e157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
858fdd3
0b6e157
858fdd3
0b6e157
 
 
 
 
858fdd3
0b6e157
 
858fdd3
 
 
 
0b6e157
858fdd3
0b6e157
858fdd3
0b6e157
4fe52ab
858fdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b6e157
 
 
 
 
 
 
 
 
 
 
 
3e59fb4
0b6e157
 
 
858fdd3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from spellchecker import SpellChecker
import re
import string
import random

# Download necessary NLTK data
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
nltk.download('averaged_perceptron_tagger_eng')
nltk.download('wordnet')
nltk.download('omw-1.4')
nltk.download('punkt_tab')

# Initialize stopwords
stop_words = set(stopwords.words("english"))

# Words we don't want to replace
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Initialize the spell checker
spell = SpellChecker()

# Ensure the SpaCy model is installed
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

def plagiarism_removal(text):
    def plagiarism_remover(word):
        if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation:
            return word
        
        # Find synonyms
        synonyms = set()
        for syn in wordnet.synsets(word):
            for lemma in syn.lemmas():
                if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower():
                    synonyms.add(lemma.name())

        pos_tag_word = nltk.pos_tag([word])[0]

        if pos_tag_word[1] in exclude_tags:
            return word
        
        filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]

        if not filtered_synonyms:
            return word

        synonym_choice = random.choice(filtered_synonyms)

        if word.istitle():
            return synonym_choice.title()
        return synonym_choice

    para_split = word_tokenize(text)
    final_text = [plagiarism_remover(word) for word in para_split]
    
    corrected_text = []
    for i in range(len(final_text)):
        if final_text[i] in string.punctuation and i > 0:
            corrected_text[-1] += final_text[i]  
        else:
            corrected_text.append(final_text[i])

    return " ".join(corrected_text)

def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

def remove_redundant_words(text):
    doc = nlp(text)
    meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
    filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
    return ' '.join(filtered_text)

def fix_punctuation_spacing(text):
    words = text.split(' ')
    cleaned_words = []
    punctuation_marks = {',', '.', "'", '!', '?', ':'}

    for word in words:
        if cleaned_words and word and word[0] in punctuation_marks:
            cleaned_words[-1] += word
        else:
            cleaned_words.append(word)

    return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
                                    .replace(' !', '!').replace(' ?', '?').replace(' :', ':')

def fix_possessives(text):
    text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
    return text

def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

def force_first_letter_capital(text):
    sentences = re.split(r'(?<=\w[.!?])\s+', text)
    capitalized_sentences = []
    
    for sentence in sentences:
        if sentence:
            capitalized_sentence = sentence[0].capitalize() + sentence[1:]
            if not re.search(r'[.!?]$', capitalized_sentence):
                capitalized_sentence += '.'
            capitalized_sentences.append(capitalized_sentence)
    
    return " ".join(capitalized_sentences)

def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

def correct_article_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text in ['a', 'an']:
            next_token = token.nbor(1)
            if token.text == "a" and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
                corrected_text.append("a")
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

def ensure_subject_verb_agreement(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
            if token.tag_ == "NN" and token.head.tag_ != "VBZ":
                corrected_text.append(token.head.lemma_ + "s")
            elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
                corrected_text.append(token.head.lemma_)
        corrected_text.append(token.text)
    return ' '.join(corrected_text)

def correct_spelling(text):
    words = word_tokenize(text)
    corrected_words = []

    for word in words:
        corrected_word = spell.candidates(word)
        if corrected_word:
            corrected_words.append(spell.candidates(word).pop())  # Choose the first candidate as the correction
        else:
            corrected_words.append(word)  # If it's not misspelled, keep the original word

    return ' '.join(corrected_words)

def paraphrase_and_correct(text):
    paragraphs = text.split("\n\n")  # Split by paragraphs

    # Process each paragraph separately
    processed_paragraphs = []
    for paragraph in paragraphs:
        cleaned_text = remove_redundant_words(paragraph)
        plag_removed = plagiarism_removal(cleaned_text)
        paraphrased_text = capitalize_sentences_and_nouns(plag_removed)
        paraphrased_text = force_first_letter_capital(paraphrased_text)
        paraphrased_text = correct_article_errors(paraphrased_text)
        paraphrased_text = correct_tense_errors(paraphrased_text)
        paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
        paraphrased_text = fix_possessives(paraphrased_text)
        paraphrased_text = correct_spelling(paraphrased_text)  # Spelling correction
        paraphrased_text = fix_punctuation_spacing(paraphrased_text)
        processed_paragraphs.append(paraphrased_text)

    return "\n\n".join(processed_paragraphs)  # Reassemble the text with paragraphs

# Gradio app setup
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("🤖 Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
        score1 = gr.Textbox(lines=1, label='Prob')

        button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])

    with gr.Tab("Paraphrasing & Grammar Correction"):
        t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
        button2 = gr.Button("🔄 Paraphrase and Correct")
        result2 = gr.Textbox(lines=5, label='Corrected Text')

        button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)

demo.launch(share=True)