Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,25 @@
|
|
1 |
# Import dependencies
|
2 |
import gradio as gr
|
3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import torch
|
5 |
import nltk
|
6 |
from nltk.corpus import wordnet
|
7 |
-
import
|
|
|
|
|
|
|
8 |
|
9 |
# Download NLTK data (if not already downloaded)
|
10 |
nltk.download('punkt')
|
11 |
nltk.download('stopwords')
|
12 |
nltk.download('wordnet') # Download WordNet
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Check for GPU and set the device accordingly
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
|
@@ -18,10 +27,6 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
18 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
19 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
|
20 |
|
21 |
-
# Load Parrot Paraphraser model and tokenizer for humanizing text
|
22 |
-
paraphrase_tokenizer = T5Tokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5")
|
23 |
-
paraphrase_model = T5ForConditionalGeneration.from_pretrained("prithivida/parrot_paraphraser_on_T5").to(device)
|
24 |
-
|
25 |
# AI detection function using DistilBERT
|
26 |
def detect_ai_generated(text):
|
27 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
@@ -31,43 +36,52 @@ def detect_ai_generated(text):
|
|
31 |
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
|
32 |
return f"AI-Generated Content Probability: {ai_probability:.2f}%"
|
33 |
|
34 |
-
#
|
35 |
-
def
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
num_beams=4,
|
42 |
-
early_stopping=True,
|
43 |
-
length_penalty=1.0,
|
44 |
-
no_repeat_ngram_size=3,
|
45 |
-
)
|
46 |
-
paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True)
|
47 |
-
return f"Humanized Text:\n{paraphrased_text}"
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
)
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
["AI Detection", "Humanization"]
|
70 |
-
)
|
71 |
|
72 |
# Launch the Gradio app
|
73 |
interface.launch(debug=False)
|
|
|
1 |
# Import dependencies
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import torch
|
5 |
import nltk
|
6 |
from nltk.corpus import wordnet
|
7 |
+
import spacy
|
8 |
+
from gensim.models import KeyedVectors
|
9 |
+
from gensim import downloader as api
|
10 |
+
from nltk.tokenize import word_tokenize
|
11 |
|
12 |
# Download NLTK data (if not already downloaded)
|
13 |
nltk.download('punkt')
|
14 |
nltk.download('stopwords')
|
15 |
nltk.download('wordnet') # Download WordNet
|
16 |
|
17 |
+
# Load spaCy model
|
18 |
+
nlp = spacy.load("en_core_web_sm")
|
19 |
+
|
20 |
+
# Load a smaller Word2Vec model from Gensim's pre-trained models
|
21 |
+
word_vectors = api.load("glove-wiki-gigaword-50")
|
22 |
+
|
23 |
# Check for GPU and set the device accordingly
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
|
|
|
27 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
28 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
|
29 |
|
|
|
|
|
|
|
|
|
30 |
# AI detection function using DistilBERT
|
31 |
def detect_ai_generated(text):
|
32 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
|
|
36 |
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
|
37 |
return f"AI-Generated Content Probability: {ai_probability:.2f}%"
|
38 |
|
39 |
+
# Function to get synonyms using Gensim Word2Vec
|
40 |
+
def get_synonyms_gensim(word):
|
41 |
+
try:
|
42 |
+
synonyms = word_vectors.most_similar(positive=[word], topn=5)
|
43 |
+
return [synonym[0] for synonym in synonyms]
|
44 |
+
except KeyError:
|
45 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Paraphrasing function using Gensim for synonym replacement
|
48 |
+
def paraphrase_with_gensim(text):
|
49 |
+
words = word_tokenize(text)
|
50 |
+
paraphrased_words = []
|
51 |
+
for word in words:
|
52 |
+
synonyms = get_synonyms_gensim(word.lower())
|
53 |
+
if synonyms:
|
54 |
+
paraphrased_words.append(synonyms[0])
|
55 |
+
else:
|
56 |
+
paraphrased_words.append(word)
|
57 |
+
return ' '.join(paraphrased_words)
|
58 |
+
|
59 |
+
# Paraphrasing function using spaCy for synonym replacement
|
60 |
+
def paraphrase_with_spacy(text):
|
61 |
+
doc = nlp(text)
|
62 |
+
paraphrased_words = []
|
63 |
+
for token in doc:
|
64 |
+
synonyms = get_synonyms_gensim(token.text.lower())
|
65 |
+
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}: # Only replace certain types of words
|
66 |
+
paraphrased_words.append(synonyms[0])
|
67 |
+
else:
|
68 |
+
paraphrased_words.append(token.text)
|
69 |
+
return ' '.join(paraphrased_words)
|
70 |
|
71 |
+
# Gradio interface definition
|
72 |
+
with gr.Blocks() as interface:
|
73 |
+
with gr.Row():
|
74 |
+
with gr.Column():
|
75 |
+
text_input = gr.Textbox(lines=5, label="Input Text")
|
76 |
+
detect_button = gr.Button("AI Detection")
|
77 |
+
paraphrase_gensim_button = gr.Button("Paraphrase with Gensim")
|
78 |
+
paraphrase_spacy_button = gr.Button("Paraphrase with spaCy")
|
79 |
+
with gr.Column():
|
80 |
+
output_text = gr.Textbox(label="Output")
|
81 |
|
82 |
+
detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text)
|
83 |
+
paraphrase_gensim_button.click(paraphrase_with_gensim, inputs=text_input, outputs=output_text)
|
84 |
+
paraphrase_spacy_button.click(paraphrase_with_spacy, inputs=text_input, outputs=output_text)
|
|
|
|
|
85 |
|
86 |
# Launch the Gradio app
|
87 |
interface.launch(debug=False)
|