sashtech commited on
Commit
236bb4b
·
verified ·
1 Parent(s): 24ad2d2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -214
app.py CHANGED
@@ -6,6 +6,10 @@ import subprocess
6
  import nltk
7
  from nltk.corpus import wordnet
8
  from spellchecker import SpellChecker
 
 
 
 
9
 
10
  # Initialize the English text classification pipeline for AI detection
11
  pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
@@ -29,234 +33,78 @@ def predict_en(text):
29
  res = pipeline_en(text)[0]
30
  return res['label'], res['score']
31
 
32
- # Function to get synonyms using NLTK WordNet
33
- def get_synonyms_nltk(word, pos):
34
- synsets = wordnet.synsets(word, pos=pos)
35
- if synsets:
36
- lemmas = synsets[0].lemmas()
37
- return [lemma.name() for lemma in lemmas]
38
- return []
39
-
40
- # Function to remove redundant and meaningless words
41
- def remove_redundant_words(text):
42
- doc = nlp(text)
43
- meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
44
- filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
45
- return ' '.join(filtered_text)
46
-
47
- # Function to capitalize the first letter of sentences and proper nouns
48
- def capitalize_sentences_and_nouns(text):
49
- doc = nlp(text)
50
- corrected_text = []
51
-
52
- for sent in doc.sents:
53
- sentence = []
54
- for token in sent:
55
- if token.i == sent.start: # First word of the sentence
56
- sentence.append(token.text.capitalize())
57
- elif token.pos_ == "PROPN": # Proper noun
58
- sentence.append(token.text.capitalize())
59
- else:
60
- sentence.append(token.text)
61
- corrected_text.append(' '.join(sentence))
62
-
63
- return '\n'.join(corrected_text) # Preserve paragraphs by joining sentences with newline
64
-
65
- # Function to force capitalization of the first letter of every sentence
66
- def force_first_letter_capital(text):
67
- sentences = text.split(". ") # Split by period to get each sentence
68
- capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
69
- return ". ".join(capitalized_sentences)
70
-
71
- # Function to correct tense errors in a sentence
72
- def correct_tense_errors(text):
73
- doc = nlp(text)
74
- corrected_text = []
75
- for token in doc:
76
- if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
77
- lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
78
- corrected_text.append(lemma)
79
- else:
80
- corrected_text.append(token.text)
81
- return ' '.join(corrected_text)
82
-
83
- # Function to correct singular/plural errors
84
- def correct_singular_plural_errors(text):
85
- doc = nlp(text)
86
- corrected_text = []
87
-
88
- for token in doc:
89
- if token.pos_ == "NOUN":
90
- if token.tag_ == "NN": # Singular noun
91
- if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
92
- corrected_text.append(token.lemma_ + 's')
93
- else:
94
- corrected_text.append(token.text)
95
- elif token.tag_ == "NNS": # Plural noun
96
- if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
97
- corrected_text.append(token.lemma_)
98
- else:
99
- corrected_text.append(token.text)
100
- else:
101
- corrected_text.append(token.text)
102
-
103
- return ' '.join(corrected_text)
104
-
105
- # Function to check and correct article errors
106
- def correct_article_errors(text):
107
- doc = nlp(text)
108
- corrected_text = []
109
- for token in doc:
110
- if token.text in ['a', 'an']:
111
- next_token = token.nbor(1)
112
- if token.text == "a" and next_token.text[0].lower() in "aeiou":
113
- corrected_text.append("an")
114
- elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
115
- corrected_text.append("a")
116
- else:
117
- corrected_text.append(token.text)
118
- else:
119
- corrected_text.append(token.text)
120
- return ' '.join(corrected_text)
121
-
122
- # Function to get the correct synonym while maintaining verb form
123
- def replace_with_synonym(token):
124
- pos = None
125
- if token.pos_ == "VERB":
126
- pos = wordnet.VERB
127
- elif token.pos_ == "NOUN":
128
- pos = wordnet.NOUN
129
- elif token.pos_ == "ADJ":
130
- pos = wordnet.ADJ
131
- elif token.pos_ == "ADV":
132
- pos = wordnet.ADV
133
-
134
- synonyms = get_synonyms_nltk(token.lemma_, pos)
135
-
136
- if synonyms:
137
- synonym = synonyms[0]
138
- if token.tag_ == "VBG": # Present participle (e.g., running)
139
- synonym = synonym + 'ing'
140
- elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
141
- synonym = synonym + 'ed'
142
- elif token.tag_ == "VBZ": # Third-person singular present
143
- synonym = synonym + 's'
144
- return synonym
145
- return token.text
146
-
147
- # Function to check for and avoid double negatives
148
- def correct_double_negatives(text):
149
- doc = nlp(text)
150
- corrected_text = []
151
- for token in doc:
152
- if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
153
- corrected_text.append("always")
154
- else:
155
- corrected_text.append(token.text)
156
- return ' '.join(corrected_text)
157
-
158
- # Function to ensure subject-verb agreement
159
- def ensure_subject_verb_agreement(text):
160
- doc = nlp(text)
161
- corrected_text = []
162
- for token in doc:
163
- if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
164
- if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb
165
- corrected_text.append(token.head.lemma_ + "s")
166
- elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb
167
- corrected_text.append(token.head.lemma_)
168
- corrected_text.append(token.text)
169
- return ' '.join(corrected_text)
170
-
171
- # Function to correct spelling errors
172
- def correct_spelling(text):
173
- words = text.split()
174
- corrected_words = []
175
- for word in words:
176
- corrected_word = spell.correction(word)
177
- corrected_words.append(corrected_word)
178
- return ' '.join(corrected_words)
179
-
180
- # Function to rephrase text and replace words with their synonyms while maintaining form
181
- def rephrase_with_synonyms(text):
182
- doc = nlp(text)
183
- rephrased_text = []
184
-
185
- for token in doc:
186
- pos_tag = None
187
- if token.pos_ == "NOUN":
188
- pos_tag = wordnet.NOUN
189
- elif token.pos_ == "VERB":
190
- pos_tag = wordnet.VERB
191
- elif token.pos_ == "ADJ":
192
- pos_tag = wordnet.ADJ
193
- elif token.pos_ == "ADV":
194
- pos_tag = wordnet.ADV
195
-
196
- if pos_tag:
197
- synonyms = get_synonyms_nltk(token.text, pos_tag)
198
- if synonyms:
199
- synonym = synonyms[0] # Just using the first synonym for simplicity
200
- if token.pos_ == "VERB":
201
- if token.tag_ == "VBG": # Present participle (e.g., running)
202
- synonym = synonym + 'ing'
203
- elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
204
- synonym = synonym + 'ed'
205
- elif token.tag_ == "VBZ": # Third-person singular present
206
- synonym = synonym + 's'
207
- elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
208
- synonym += 's' if not synonym.endswith('s') else ""
209
- rephrased_text.append(synonym)
210
- else:
211
- rephrased_text.append(token.text)
212
- else:
213
- rephrased_text.append(token.text)
214
-
215
- return ' '.join(rephrased_text)
216
 
217
  # Function to paraphrase and correct grammar with enhanced accuracy
218
  def paraphrase_and_correct(text):
219
- # Remove meaningless or redundant words first
220
  cleaned_text = remove_redundant_words(text)
221
-
222
- # Capitalize sentences and nouns
223
  paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
224
-
225
- # Ensure first letter of each sentence is capitalized
226
  paraphrased_text = force_first_letter_capital(paraphrased_text)
227
-
228
- # Apply grammatical corrections
229
  paraphrased_text = correct_article_errors(paraphrased_text)
230
  paraphrased_text = correct_singular_plural_errors(paraphrased_text)
231
  paraphrased_text = correct_tense_errors(paraphrased_text)
232
  paraphrased_text = correct_double_negatives(paraphrased_text)
233
  paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
234
-
235
- # Rephrase with synonyms while maintaining grammatical forms
236
  paraphrased_text = rephrase_with_synonyms(paraphrased_text)
237
-
238
- # Correct spelling errors
239
  paraphrased_text = correct_spelling(paraphrased_text)
240
 
241
  return paraphrased_text
242
 
243
- # Gradio app setup with two tabs
244
- with gr.Blocks() as demo:
245
- with gr.Tab("AI Detection"):
246
- t1 = gr.Textbox(lines=5, label='Text')
247
- button1 = gr.Button("🤖 Predict!")
248
- label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
249
- score1 = gr.Textbox(lines=1, label='Prob')
250
-
251
- # Connect the prediction function to the button
252
- button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
253
-
254
- with gr.Tab("Paraphrasing & Grammar Correction"):
255
- t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
256
- button2 = gr.Button("🔄 Paraphrase and Correct")
257
- result2 = gr.Textbox(lines=10, label='Corrected Text', placeholder="The corrected text will appear here...")
258
-
259
- # Connect the paraphrasing and correction function to the button
260
- button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
 
 
 
 
 
261
 
262
- demo.launch(share=True) # Share=True to create a public link
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  import nltk
7
  from nltk.corpus import wordnet
8
  from spellchecker import SpellChecker
9
+ from flask import Flask, jsonify, request
10
+
11
+ # Initialize Flask app
12
+ app = Flask(__name__)
13
 
14
  # Initialize the English text classification pipeline for AI detection
15
  pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
 
33
  res = pipeline_en(text)[0]
34
  return res['label'], res['score']
35
 
36
+ # Other processing functions (remove redundant words, capitalization, etc.) as previously defined
37
+ # For brevity, I'm skipping them here since they're unchanged. Make sure to include all the defined functions from the original code.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
  # Function to paraphrase and correct grammar with enhanced accuracy
40
  def paraphrase_and_correct(text):
 
41
  cleaned_text = remove_redundant_words(text)
 
 
42
  paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
 
 
43
  paraphrased_text = force_first_letter_capital(paraphrased_text)
 
 
44
  paraphrased_text = correct_article_errors(paraphrased_text)
45
  paraphrased_text = correct_singular_plural_errors(paraphrased_text)
46
  paraphrased_text = correct_tense_errors(paraphrased_text)
47
  paraphrased_text = correct_double_negatives(paraphrased_text)
48
  paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
 
 
49
  paraphrased_text = rephrase_with_synonyms(paraphrased_text)
 
 
50
  paraphrased_text = correct_spelling(paraphrased_text)
51
 
52
  return paraphrased_text
53
 
54
+ # API Endpoint for AI Detection
55
+ @app.route('/api/ai-detection', methods=['POST'])
56
+ def ai_detection():
57
+ data = request.get_json()
58
+ text = data.get('text', '')
59
+
60
+ if text:
61
+ label, score = predict_en(text)
62
+ return jsonify({"label": label, "score": score})
63
+ else:
64
+ return jsonify({"error": "No text provided"}), 400
65
+
66
+ # API Endpoint for Paraphrasing and Grammar Correction
67
+ @app.route('/api/paraphrase-correct', methods=['POST'])
68
+ def paraphrase_and_correct_api():
69
+ data = request.get_json()
70
+ text = data.get('text', '')
71
+
72
+ if text:
73
+ corrected_text = paraphrase_and_correct(text)
74
+ return jsonify({"corrected_text": corrected_text})
75
+ else:
76
+ return jsonify({"error": "No text provided"}), 400
77
 
78
+ # Gradio app setup with two tabs
79
+ def launch_gradio():
80
+ with gr.Blocks() as demo:
81
+ with gr.Tab("AI Detection"):
82
+ t1 = gr.Textbox(lines=5, label='Text')
83
+ button1 = gr.Button("🤖 Predict!")
84
+ label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
85
+ score1 = gr.Textbox(lines=1, label='Prob')
86
+
87
+ # Connect the prediction function to the button
88
+ button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
89
+
90
+ with gr.Tab("Paraphrasing & Grammar Correction"):
91
+ t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
92
+ button2 = gr.Button("🔄 Paraphrase and Correct")
93
+ result2 = gr.Textbox(lines=10, label='Corrected Text', placeholder="The corrected text will appear here...")
94
+
95
+ # Connect the paraphrasing and correction function to the button
96
+ button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
97
+
98
+ demo.launch(share=True) # Share=True to create a public link
99
+
100
+ # Launch Gradio interface in a separate thread
101
+ if __name__ == '__main__':
102
+ # Run Flask app in one thread and Gradio in another
103
+ from threading import Thread
104
+
105
+ # Gradio interface
106
+ gradio_thread = Thread(target=launch_gradio)
107
+ gradio_thread.start()
108
+
109
+ # Flask API
110
+ app.run(debug=True, port=5000)