File size: 6,998 Bytes
7f412e3 fc1b391 8ecf076 fc1b391 7f412e3 8b17745 7f412e3 a423985 7f412e3 a423985 7f412e3 a423985 7f412e3 fc1b391 44a8369 0464368 7f412e3 a423985 7f412e3 a423985 7f412e3 0464368 fc1b391 a423985 fc1b391 7f412e3 a423985 7f412e3 a423985 7f412e3 fc1b391 a423985 fc1b391 8ecf076 bdcaa9a 8ecf076 fc1b391 8ecf076 a423985 fc1b391 8ecf076 a423985 fc1b391 8ecf076 a423985 fc1b391 0d815c8 8ecf076 a423985 fc1b391 0d815c8 8ecf076 7e85e00 8ecf076 7f412e3 8ecf076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import torch
from transformers import TextIteratorStreamer, AutoProcessor, LlavaForConditionalGeneration
from diffusers import DiffusionPipeline
import gradio as gr
import numpy as np
import accelerate
import spaces
from PIL import Image
import threading
from openai import OpenAI
import os
import asyncio
from typing import Any
API_KEY = os.getenv('OPEN_AI_API_KEYS')
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Chimera πͺ</h1>
<p>This contains a Stable Diffusor from <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0"><b>stabilityai/stable-diffusion-xl-base-1.0</b></a> and a Multimodal from <a href="https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers"><b>xtuner/llava-llama-3-8b-v1_1-transformers</b></a></p>
</div>
'''
# Llava Installed
llava_model = LlavaForConditionalGeneration.from_pretrained(
"xtuner/llava-llama-3-8b-v1_1-transformers",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
llava_model.to("cuda:0")
processor = AutoProcessor.from_pretrained("xtuner/llava-llama-3-8b-v1_1-transformers")
llava_model.generation_config.eos_token_id = 128009
# Stable Diffusor Installed
base = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
base.to('cuda')
refiner = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
text_encoder_2=base.text_encoder_2,
vae=base.vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
refiner.to('cuda')
def multimodal_and_generation(message, history):
print(f"Message:\n{message}\nType:\n{type(message)}")
image_path = None
if message["files"]:
if isinstance(message["files"][-1], dict):
image_path = message["files"][-1]["path"]
else:
image_path = message["files"][-1]
else:
for hist in history:
if isinstance(hist[0], tuple):
image_path = hist[0][0]
if image_path is None:
input_prompt = message["text"]
client = OpenAI(api_key=API_KEY)
stream = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant called 'chimera'."},
{"role": "user", "content": input_prompt}
],
stream=True,
)
return stream
else:
prompt = f"user\n\n<image>\n{message['text']}assistant\n\n"
image = Image.open(image_path)
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
streamer = TextIteratorStreamer(processor.tokenizer, **{"skip_special_tokens": False, "skip_prompt": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
thread = threading.Thread(target=llava_model.generate, kwargs=generation_kwargs)
thread.start()
return streamer
def diffusing(prompt):
image = base(
prompt=prompt,
num_inference_steps=40,
denoising_end=0.8,
output_type="latent",
).images
image = refiner(
prompt=prompt,
num_inference_steps=40,
denoising_start=0.8,
image=image
).images[0]
return image
def check_cuda_availability():
if torch.cuda.is_available():
result = f"GPU: {torch.cuda.get_device_name(0)}"
return result
else:
return "No CUDA device found."
mode = ""
# @spaces.GPU(duration=120)
# async def bot_comms(message, history):
# global mode
# if message == "check cuda":
# result = check_cuda_availability()
# yield result
# return
# if message == "imagery":
# mode = message
# yield "Imagery On! Type your prompt to make the image πΌοΈ"
# return
# if message == "chatting":
# mode = message
# yield "Imagery Off. Ask me any questions. βοΈ"
# return
# if mode == "imagery":
# print("On imagery\n\n")
# image = diffusing(
# prompt=message,
# )
# yield image
# return
# if mode == "chatting" or mode == "":
# print("On chatting or no mode.\n\n")
# stream = multimodal_and_generation(
# message=message,
# history=history,
# )
# gpt_outputs = []
# async for chunk in stream:
# if chunk.choices[0].delta.content is not None:
# text = chunk.choices[0].delta.content
# gpt_outputs.append(text)
# yield "".join(gpt_outputs)
@spaces.GPU(duration=120)
async def bot_comms_async(message, history):
global mode
if message == "check cuda":
result = check_cuda_availability()
return [result]
if message == "imagery":
mode = message
return ["Imagery On! Type your prompt to make the image πΌοΈ"]
if message == "chatting":
mode = message
return ["Imagery Off. Ask me any questions. βοΈ"]
if mode == "imagery":
print("On imagery\n\n")
image = diffusing(prompt=message)
return [image]
if mode == "chatting" or mode == "":
print("On chatting or no mode.\n\n")
stream = multimodal_and_generation(message=message, history=history)
gpt_outputs = []
async for chunk in stream:
if chunk.choices[0].delta.content is not None:
text = chunk.choices[0].delta.content
gpt_outputs.append(text)
return ["".join(gpt_outputs)]
def bot_comms(message: str, history: Any):
return asyncio.run(bot_comms_async(message, history))
# Define your Gradio UI as usual
import gradio as gr
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
with gr.Row():
submit = gr.Button("Submit")
def user(message, history):
return "", history + [[message, None]]
def bot_response(message, history):
response = bot_comms(message, history)
return history + [[message, response]]
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot_response, [msg, chatbot], [msg, chatbot]
)
submit.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot_response, [msg, chatbot], [msg, chatbot]
)
if __name__ == "__main__":
demo.launch(share=True)
# chatbot = gr.Chatbot(height=600, label="Chimera AI")
# chat_input = gr.MultimodalTextbox(interactive=True, file_types=["images"], placeholder="Enter your question or upload an image.", show_label=False)
# with gr.Blocks(fill_height=True) as demo:
# gr.Markdown(DESCRIPTION)
# gr.ChatInterface(
# fn=bot_comms,
# chatbot=chatbot,
# fill_height=True,
# multimodal=True,
# textbox=chat_input,
# )
# if __name__ == "__main__":
# demo.launch()
|