added async
Browse files
app.py
CHANGED
|
@@ -18,18 +18,17 @@ DESCRIPTION = '''
|
|
| 18 |
<p>This contains a Stable Diffusor from <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0"><b>stabilityai/stable-diffusion-xl-base-1.0</b></a> and a Multimodal from <a href="https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers"><b>xtuner/llava-llama-3-8b-v1_1-transformers</b></a></p>
|
| 19 |
</div>
|
| 20 |
'''
|
|
|
|
| 21 |
# Llava Installed
|
| 22 |
llava_model = LlavaForConditionalGeneration.from_pretrained(
|
| 23 |
"xtuner/llava-llama-3-8b-v1_1-transformers",
|
| 24 |
torch_dtype=torch.float16,
|
| 25 |
low_cpu_mem_usage=True,
|
| 26 |
-
|
| 27 |
|
| 28 |
llava_model.to("cuda:0")
|
| 29 |
-
|
| 30 |
processor = AutoProcessor.from_pretrained("xtuner/llava-llama-3-8b-v1_1-transformers")
|
| 31 |
-
|
| 32 |
-
llava_model.generation_config.eos_token_id=128009
|
| 33 |
|
| 34 |
# Stable Diffusor Installed
|
| 35 |
base = DiffusionPipeline.from_pretrained(
|
|
@@ -50,67 +49,44 @@ refiner = DiffusionPipeline.from_pretrained(
|
|
| 50 |
)
|
| 51 |
refiner.to('cuda')
|
| 52 |
|
| 53 |
-
# All Installed. Let's instance them in the function
|
| 54 |
def multimodal_and_generation(message, history):
|
| 55 |
-
"""
|
| 56 |
-
Receives input from gradio from the prompt but also
|
| 57 |
-
if any images were passed that i also placed for formatting
|
| 58 |
-
for PIL and with the prompt both are passed to proper generation,
|
| 59 |
-
depending on the request from prompt, that prompt output will return here.
|
| 60 |
-
"""
|
| 61 |
print(f"Message:\n{message}\nType:\n{type(message)}")
|
| 62 |
image_path = None
|
| 63 |
if message["files"]:
|
| 64 |
-
if
|
| 65 |
image_path = message["files"][-1]["path"]
|
| 66 |
else:
|
| 67 |
image_path = message["files"][-1]
|
| 68 |
else:
|
| 69 |
-
# If no image was uploaded than look for past ones
|
| 70 |
for hist in history:
|
| 71 |
-
if
|
| 72 |
-
image_path = hist[0][0]
|
| 73 |
|
| 74 |
if image_path is None:
|
| 75 |
input_prompt = message["text"]
|
| 76 |
-
# base_prompt = '''gpt response: {input_prompt}'''
|
| 77 |
-
# prompt_formatted = base_prompt.format(input_prompt=input_prompt)
|
| 78 |
-
# GPT Generation
|
| 79 |
client = OpenAI(api_key=API_KEY)
|
| 80 |
stream = client.chat.completions.create(
|
| 81 |
model="gpt-3.5-turbo",
|
| 82 |
-
messages=[
|
| 83 |
-
|
|
|
|
|
|
|
| 84 |
stream=True,
|
| 85 |
)
|
| 86 |
return stream
|
| 87 |
-
|
| 88 |
else:
|
| 89 |
-
prompt = f"
|
| 90 |
-
# Time to instance the llava
|
| 91 |
image = Image.open(image_path)
|
| 92 |
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
|
| 93 |
-
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
|
| 94 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
|
| 95 |
|
| 96 |
thread = threading.Thread(target=llava_model.generate, kwargs=generation_kwargs)
|
| 97 |
thread.start()
|
| 98 |
|
| 99 |
-
# buffer = ""
|
| 100 |
-
# for new_text in streamer:
|
| 101 |
-
# # find <|eot_id|> and remove it from the new_text
|
| 102 |
-
# if "<|eot_id|>" in new_text:
|
| 103 |
-
# new_text = new_text.split("<|eot_id|>")[0]
|
| 104 |
-
# buffer += new_text
|
| 105 |
-
# generated_text_no_prompt = buffer
|
| 106 |
-
# yield generated_text_no_prompt
|
| 107 |
return streamer
|
| 108 |
-
|
| 109 |
def diffusing(prompt):
|
| 110 |
-
"""
|
| 111 |
-
Uses stable diffusion on the prompt and
|
| 112 |
-
returns the image.
|
| 113 |
-
"""
|
| 114 |
image = base(
|
| 115 |
prompt=prompt,
|
| 116 |
num_inference_steps=40,
|
|
@@ -135,62 +111,54 @@ def check_cuda_availability():
|
|
| 135 |
mode = ""
|
| 136 |
|
| 137 |
@spaces.GPU(duration=120)
|
| 138 |
-
def bot_comms(message,
|
| 139 |
-
history):
|
| 140 |
-
"""
|
| 141 |
-
Communication between gradio and the models.
|
| 142 |
-
"""
|
| 143 |
global mode
|
| 144 |
|
| 145 |
if message == "check cuda":
|
| 146 |
result = check_cuda_availability()
|
| 147 |
yield result
|
| 148 |
return
|
| 149 |
-
|
| 150 |
if message == "imagery":
|
| 151 |
mode = message
|
| 152 |
yield "Imagery On! Type your prompt to make the image πΌοΈ"
|
| 153 |
return
|
| 154 |
-
|
| 155 |
if message == "chatting":
|
| 156 |
mode = message
|
| 157 |
yield "Imagery Off. Ask me any questions. βοΈ"
|
| 158 |
return
|
| 159 |
-
|
| 160 |
if mode == "imagery":
|
| 161 |
print("On imagery\n\n")
|
| 162 |
image = diffusing(
|
| 163 |
-
|
| 164 |
-
history=history,
|
| 165 |
)
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
gpt_outputs = []
|
| 170 |
if mode == "chatting" or mode == "":
|
| 171 |
print("On chatting or no mode.\n\n")
|
| 172 |
stream = multimodal_and_generation(
|
| 173 |
message=message,
|
| 174 |
history=history,
|
| 175 |
)
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
for chunk in stream:
|
| 179 |
if chunk.choices[0].delta.content is not None:
|
| 180 |
text = chunk.choices[0].delta.content
|
| 181 |
gpt_outputs.append(text)
|
| 182 |
yield "".join(gpt_outputs)
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
# find <|eot_id|> and remove it from the text
|
| 186 |
-
if "<|eot_id|>" in text:
|
| 187 |
-
text = text.split("<|eot_id|>")[0]
|
| 188 |
-
buffer += text
|
| 189 |
-
generated_text = buffer
|
| 190 |
-
yield generated_text
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
chatbot=gr.Chatbot(height=600, label="Chimera AI")
|
| 194 |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["images"], placeholder="Enter your question or upload an image.", show_label=False)
|
| 195 |
with gr.Blocks(fill_height=True) as demo:
|
| 196 |
gr.Markdown(DESCRIPTION)
|
|
@@ -203,4 +171,4 @@ with gr.Blocks(fill_height=True) as demo:
|
|
| 203 |
)
|
| 204 |
|
| 205 |
if __name__ == "__main__":
|
| 206 |
-
demo.launch()
|
|
|
|
| 18 |
<p>This contains a Stable Diffusor from <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0"><b>stabilityai/stable-diffusion-xl-base-1.0</b></a> and a Multimodal from <a href="https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers"><b>xtuner/llava-llama-3-8b-v1_1-transformers</b></a></p>
|
| 19 |
</div>
|
| 20 |
'''
|
| 21 |
+
|
| 22 |
# Llava Installed
|
| 23 |
llava_model = LlavaForConditionalGeneration.from_pretrained(
|
| 24 |
"xtuner/llava-llama-3-8b-v1_1-transformers",
|
| 25 |
torch_dtype=torch.float16,
|
| 26 |
low_cpu_mem_usage=True,
|
| 27 |
+
)
|
| 28 |
|
| 29 |
llava_model.to("cuda:0")
|
|
|
|
| 30 |
processor = AutoProcessor.from_pretrained("xtuner/llava-llama-3-8b-v1_1-transformers")
|
| 31 |
+
llava_model.generation_config.eos_token_id = 128009
|
|
|
|
| 32 |
|
| 33 |
# Stable Diffusor Installed
|
| 34 |
base = DiffusionPipeline.from_pretrained(
|
|
|
|
| 49 |
)
|
| 50 |
refiner.to('cuda')
|
| 51 |
|
|
|
|
| 52 |
def multimodal_and_generation(message, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
print(f"Message:\n{message}\nType:\n{type(message)}")
|
| 54 |
image_path = None
|
| 55 |
if message["files"]:
|
| 56 |
+
if isinstance(message["files"][-1], dict):
|
| 57 |
image_path = message["files"][-1]["path"]
|
| 58 |
else:
|
| 59 |
image_path = message["files"][-1]
|
| 60 |
else:
|
|
|
|
| 61 |
for hist in history:
|
| 62 |
+
if isinstance(hist[0], tuple):
|
| 63 |
+
image_path = hist[0][0]
|
| 64 |
|
| 65 |
if image_path is None:
|
| 66 |
input_prompt = message["text"]
|
|
|
|
|
|
|
|
|
|
| 67 |
client = OpenAI(api_key=API_KEY)
|
| 68 |
stream = client.chat.completions.create(
|
| 69 |
model="gpt-3.5-turbo",
|
| 70 |
+
messages=[
|
| 71 |
+
{"role": "system", "content": "You are a helpful assistant called 'chimera'."},
|
| 72 |
+
{"role": "user", "content": input_prompt}
|
| 73 |
+
],
|
| 74 |
stream=True,
|
| 75 |
)
|
| 76 |
return stream
|
|
|
|
| 77 |
else:
|
| 78 |
+
prompt = f"user\n\n<image>\n{message['text']}assistant\n\n"
|
|
|
|
| 79 |
image = Image.open(image_path)
|
| 80 |
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
|
| 81 |
+
streamer = TextIteratorStreamer(processor.tokenizer, **{"skip_special_tokens": False, "skip_prompt": True})
|
| 82 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
|
| 83 |
|
| 84 |
thread = threading.Thread(target=llava_model.generate, kwargs=generation_kwargs)
|
| 85 |
thread.start()
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
return streamer
|
| 88 |
+
|
| 89 |
def diffusing(prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
image = base(
|
| 91 |
prompt=prompt,
|
| 92 |
num_inference_steps=40,
|
|
|
|
| 111 |
mode = ""
|
| 112 |
|
| 113 |
@spaces.GPU(duration=120)
|
| 114 |
+
async def bot_comms(message, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
global mode
|
| 116 |
|
| 117 |
if message == "check cuda":
|
| 118 |
result = check_cuda_availability()
|
| 119 |
yield result
|
| 120 |
return
|
| 121 |
+
|
| 122 |
if message == "imagery":
|
| 123 |
mode = message
|
| 124 |
yield "Imagery On! Type your prompt to make the image πΌοΈ"
|
| 125 |
return
|
| 126 |
+
|
| 127 |
if message == "chatting":
|
| 128 |
mode = message
|
| 129 |
yield "Imagery Off. Ask me any questions. βοΈ"
|
| 130 |
return
|
| 131 |
+
|
| 132 |
if mode == "imagery":
|
| 133 |
print("On imagery\n\n")
|
| 134 |
image = diffusing(
|
| 135 |
+
prompt=message,
|
|
|
|
| 136 |
)
|
| 137 |
+
yield image
|
| 138 |
+
return
|
| 139 |
+
|
|
|
|
| 140 |
if mode == "chatting" or mode == "":
|
| 141 |
print("On chatting or no mode.\n\n")
|
| 142 |
stream = multimodal_and_generation(
|
| 143 |
message=message,
|
| 144 |
history=history,
|
| 145 |
)
|
| 146 |
+
if isinstance(stream, TextIteratorStreamer):
|
| 147 |
+
buffer = ""
|
| 148 |
+
for new_text in stream:
|
| 149 |
+
if "" in new_text:
|
| 150 |
+
new_text = new_text.split("")[0]
|
| 151 |
+
buffer += new_text
|
| 152 |
+
yield buffer
|
| 153 |
+
else:
|
| 154 |
+
gpt_outputs = []
|
| 155 |
for chunk in stream:
|
| 156 |
if chunk.choices[0].delta.content is not None:
|
| 157 |
text = chunk.choices[0].delta.content
|
| 158 |
gpt_outputs.append(text)
|
| 159 |
yield "".join(gpt_outputs)
|
| 160 |
+
|
| 161 |
+
chatbot = gr.Chatbot(height=600, label="Chimera AI")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["images"], placeholder="Enter your question or upload an image.", show_label=False)
|
| 163 |
with gr.Blocks(fill_height=True) as demo:
|
| 164 |
gr.Markdown(DESCRIPTION)
|
|
|
|
| 171 |
)
|
| 172 |
|
| 173 |
if __name__ == "__main__":
|
| 174 |
+
demo.launch()
|