formatted the input prompt when it's passed to gpt and set it to none before ifs and else
Browse files
app.py
CHANGED
@@ -59,6 +59,7 @@ def multimodal_and_generation(message, history):
|
|
59 |
depending on the request from prompt, that prompt output will return here.
|
60 |
"""
|
61 |
print(f"Message:\n{message}\nType:\n{type(message)}")
|
|
|
62 |
if message["files"]:
|
63 |
if type(message["files"][-1]) == dict:
|
64 |
image_path = message["files"][-1]["path"]
|
@@ -70,20 +71,20 @@ def multimodal_and_generation(message, history):
|
|
70 |
if type(hist[0]) == tuple:
|
71 |
image_path = hist[0][0] # item inside items for history
|
72 |
|
73 |
-
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
74 |
-
|
75 |
if image_path is None:
|
|
|
76 |
# GPT Generation
|
77 |
client = OpenAI(api_key=API_KEY)
|
78 |
stream = client.chat.completions.create(
|
79 |
model="gpt-3.5-turbo",
|
80 |
messages=[{"role": "system", "content": "You are a helpful assistant called 'chimera'."},
|
81 |
-
{"role": "user", "content":
|
82 |
stream=True,
|
83 |
)
|
84 |
return stream
|
85 |
|
86 |
else:
|
|
|
87 |
# Time to instance the llava
|
88 |
image = Image.open(image_path)
|
89 |
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
|
|
|
59 |
depending on the request from prompt, that prompt output will return here.
|
60 |
"""
|
61 |
print(f"Message:\n{message}\nType:\n{type(message)}")
|
62 |
+
image_path = None
|
63 |
if message["files"]:
|
64 |
if type(message["files"][-1]) == dict:
|
65 |
image_path = message["files"][-1]["path"]
|
|
|
71 |
if type(hist[0]) == tuple:
|
72 |
image_path = hist[0][0] # item inside items for history
|
73 |
|
|
|
|
|
74 |
if image_path is None:
|
75 |
+
input_prompt = message["text"]
|
76 |
# GPT Generation
|
77 |
client = OpenAI(api_key=API_KEY)
|
78 |
stream = client.chat.completions.create(
|
79 |
model="gpt-3.5-turbo",
|
80 |
messages=[{"role": "system", "content": "You are a helpful assistant called 'chimera'."},
|
81 |
+
{"role": "user", "content": input_prompt}],
|
82 |
stream=True,
|
83 |
)
|
84 |
return stream
|
85 |
|
86 |
else:
|
87 |
+
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
88 |
# Time to instance the llava
|
89 |
image = Image.open(image_path)
|
90 |
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
|