Spaces:
Running
Running
File size: 5,811 Bytes
979bfc3 4d3f40f 979bfc3 5331238 979bfc3 bf8b09b 979bfc3 59ea452 b734492 979bfc3 3028bfb bf8b09b 3028bfb cd320c7 3028bfb cd320c7 979bfc3 5331238 bf8b09b 5331238 979bfc3 59ea452 979bfc3 59ea452 979bfc3 5331238 979bfc3 bf8b09b 979bfc3 bf8b09b 124ac36 979bfc3 5331238 bf8b09b 979bfc3 59ea452 979bfc3 124ac36 59ea452 cd320c7 979bfc3 bf8b09b e767741 8e90b2d 3028bfb cd320c7 59ea452 bf8b09b 59ea452 3028bfb cd320c7 5331238 cd320c7 4d3f40f cd320c7 bf8b09b 124ac36 cd320c7 4d3f40f 979bfc3 59ea452 979bfc3 5331238 979bfc3 bf8b09b 979bfc3 4d3f40f 979bfc3 bf8b09b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import asyncio
import logging
import torch
import gradio as gr
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field, root_validator
from typing import List, Dict, Optional
from functools import lru_cache
from threading import Lock
import uvicorn
class EmbeddingRequest(BaseModel):
# 强制锁定模型参数
model: str = Field(
default="jinaai/jina-embeddings-v3",
description="此参数仅用于API兼容,实际模型固定为jinaai/jina-embeddings-v3",
frozen=True # 禁止修改
)
# 支持三种输入字段
inputs: Optional[str] = Field(None, description="输入文本(兼容HuggingFace格式)")
input: Optional[str] = Field(None, description="输入文本(兼容OpenAI格式)")
prompt: Optional[str] = Field(None, description="输入文本(兼容Ollama格式)")
# 自动合并输入字段
@root_validator(pre=True)
def merge_input_fields(cls, values):
input_fields = ["inputs", "input", "prompt"]
for field in input_fields:
if values.get(field):
values["inputs"] = values[field]
break
else:
raise ValueError("必须提供 inputs/input/prompt 任一字段")
return values
class EmbeddingResponse(BaseModel):
status: str
embeddings: List[List[float]]
class EmbeddingService:
def __init__(self):
self._true_model_name = "jinaai/jina-embeddings-v3" # 硬编码模型名称
self.max_length = 512
self.device = torch.device("cpu")
self.model = None
self.tokenizer = None
self.lock = Lock()
self.setup_logging()
torch.set_num_threads(4) # CPU优化
def setup_logging(self):
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
async def initialize(self):
try:
from transformers import AutoTokenizer, AutoModel
self.tokenizer = AutoTokenizer.from_pretrained(
self._true_model_name,
trust_remote_code=True
)
self.model = AutoModel.from_pretrained(
self._true_model_name,
trust_remote_code=True
).to(self.device)
self.model.eval()
torch.set_grad_enabled(False)
self.logger.info(f"强制加载模型: {self._true_model_name}")
except Exception as e:
self.logger.error(f"模型初始化失败: {str(e)}")
raise
@lru_cache(maxsize=1000)
def get_embedding(self, text: str) -> List[float]:
with self.lock:
try:
inputs = self.tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=self.max_length,
padding=True
)
with torch.no_grad():
outputs = self.model(**inputs).last_hidden_state.mean(dim=1)
return outputs.numpy().tolist()[0]
except Exception as e:
self.logger.error(f"生成嵌入向量失败: {str(e)}")
raise
embedding_service = EmbeddingService()
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/embed", response_model=EmbeddingResponse)
@app.post("/api/embeddings", response_model=EmbeddingResponse)
@app.post("/api/embed", response_model=EmbeddingResponse)
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
@app.post("/generate_embeddings", response_model=EmbeddingResponse)
@app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
@app.post("/api/v1/chat/completions", response_model=EmbeddingResponse)
@app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
async def generate_embeddings(request: EmbeddingRequest):
try:
embedding = await asyncio.get_running_loop().run_in_executor(
None,
embedding_service.get_embedding,
request.inputs # 使用合并后的输入字段
)
return EmbeddingResponse(
status="success",
embeddings=[embedding]
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {
"status": "active",
"true_model": embedding_service._true_model_name,
"device": str(embedding_service.device)
}
def gradio_interface(text: str) -> Dict:
try:
embedding = embedding_service.get_embedding(text)
return {
"status": "success",
"embeddings": [embedding]
}
except Exception as e:
return {
"status": "error",
"message": str(e)
}
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Textbox(lines=3, label="输入文本"),
outputs=gr.JSON(label="嵌入向量结果"),
title="Jina Embeddings V3",
description="强制使用jinaai/jina-embeddings-v3模型(无视请求中的model参数)",
examples=[[
"Represent this sentence for searching relevant passages: "
"The sky is blue because of Rayleigh scattering"
]]
)
@app.on_event("startup")
async def startup_event():
await embedding_service.initialize()
if __name__ == "__main__":
asyncio.run(embedding_service.initialize())
gr.mount_gradio_app(app, iface, path="/ui")
uvicorn.run(app, host="0.0.0.0", port=7860, workers=1) |