Spaces:
Running
Running
sanbo
commited on
Commit
·
8e90b2d
1
Parent(s):
1c96ca8
update sth. at 2025-02-03 19:34:12
Browse files- app.py +1 -0
- app.py——ok_baks +146 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -86,6 +86,7 @@ app.add_middleware(
|
|
86 |
allow_headers=["*"],
|
87 |
)
|
88 |
|
|
|
89 |
@app.post("/generate_embeddings", response_model=EmbeddingResponse)
|
90 |
@app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
|
91 |
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
|
|
|
86 |
allow_headers=["*"],
|
87 |
)
|
88 |
|
89 |
+
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
|
90 |
@app.post("/generate_embeddings", response_model=EmbeddingResponse)
|
91 |
@app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
|
92 |
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
|
app.py——ok_baks
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import logging
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from fastapi import FastAPI, HTTPException
|
6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
7 |
+
from pydantic import BaseModel
|
8 |
+
from typing import List, Dict
|
9 |
+
from functools import lru_cache
|
10 |
+
import numpy as np
|
11 |
+
from threading import Lock
|
12 |
+
import uvicorn
|
13 |
+
|
14 |
+
class EmbeddingRequest(BaseModel):
|
15 |
+
input: str
|
16 |
+
model: str = "jinaai/jina-embeddings-v3"
|
17 |
+
|
18 |
+
class EmbeddingResponse(BaseModel):
|
19 |
+
status: str
|
20 |
+
embeddings: List[List[float]]
|
21 |
+
|
22 |
+
class EmbeddingService:
|
23 |
+
def __init__(self):
|
24 |
+
self.model_name = "jinaai/jina-embeddings-v3"
|
25 |
+
self.max_length = 512
|
26 |
+
self.device = torch.device("cpu")
|
27 |
+
self.model = None
|
28 |
+
self.tokenizer = None
|
29 |
+
self.lock = Lock()
|
30 |
+
self.setup_logging()
|
31 |
+
torch.set_num_threads(4) # CPU优化
|
32 |
+
|
33 |
+
def setup_logging(self):
|
34 |
+
logging.basicConfig(
|
35 |
+
level=logging.INFO,
|
36 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
37 |
+
)
|
38 |
+
self.logger = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
async def initialize(self):
|
41 |
+
try:
|
42 |
+
from transformers import AutoTokenizer, AutoModel
|
43 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
44 |
+
self.model_name,
|
45 |
+
trust_remote_code=True
|
46 |
+
)
|
47 |
+
self.model = AutoModel.from_pretrained(
|
48 |
+
self.model_name,
|
49 |
+
trust_remote_code=True
|
50 |
+
).to(self.device)
|
51 |
+
self.model.eval()
|
52 |
+
torch.set_grad_enabled(False)
|
53 |
+
self.logger.info(f"模型加载成功,使用设备: {self.device}")
|
54 |
+
except Exception as e:
|
55 |
+
self.logger.error(f"模型初始化失败: {str(e)}")
|
56 |
+
raise
|
57 |
+
|
58 |
+
@lru_cache(maxsize=1000)
|
59 |
+
def get_embedding(self, text: str) -> List[float]:
|
60 |
+
"""同步生成嵌入向量,带缓存"""
|
61 |
+
with self.lock:
|
62 |
+
try:
|
63 |
+
inputs = self.tokenizer(
|
64 |
+
text,
|
65 |
+
return_tensors="pt",
|
66 |
+
truncation=True,
|
67 |
+
max_length=self.max_length,
|
68 |
+
padding=True
|
69 |
+
)
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
outputs = self.model(**inputs).last_hidden_state.mean(dim=1)
|
73 |
+
return outputs.numpy().tolist()[0]
|
74 |
+
except Exception as e:
|
75 |
+
self.logger.error(f"生成嵌入向量失败: {str(e)}")
|
76 |
+
raise
|
77 |
+
|
78 |
+
embedding_service = EmbeddingService()
|
79 |
+
app = FastAPI()
|
80 |
+
|
81 |
+
app.add_middleware(
|
82 |
+
CORSMiddleware,
|
83 |
+
allow_origins=["*"],
|
84 |
+
allow_credentials=True,
|
85 |
+
allow_methods=["*"],
|
86 |
+
allow_headers=["*"],
|
87 |
+
)
|
88 |
+
|
89 |
+
@app.post("/generate_embeddings", response_model=EmbeddingResponse)
|
90 |
+
@app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
|
91 |
+
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
|
92 |
+
@app.post("/api/v1/chat/completions", response_model=EmbeddingResponse)
|
93 |
+
@app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
|
94 |
+
async def generate_embeddings(request: EmbeddingRequest):
|
95 |
+
try:
|
96 |
+
# 使用run_in_executor避免事件循环问题
|
97 |
+
embedding = await asyncio.get_running_loop().run_in_executor(
|
98 |
+
None,
|
99 |
+
embedding_service.get_embedding,
|
100 |
+
request.input
|
101 |
+
)
|
102 |
+
return EmbeddingResponse(
|
103 |
+
status="success",
|
104 |
+
embeddings=[embedding]
|
105 |
+
)
|
106 |
+
except Exception as e:
|
107 |
+
raise HTTPException(status_code=500, detail=str(e))
|
108 |
+
|
109 |
+
@app.get("/")
|
110 |
+
async def root():
|
111 |
+
return {
|
112 |
+
"status": "active",
|
113 |
+
"model": embedding_service.model_name,
|
114 |
+
"device": str(embedding_service.device)
|
115 |
+
}
|
116 |
+
|
117 |
+
def gradio_interface(text: str) -> Dict:
|
118 |
+
try:
|
119 |
+
embedding = embedding_service.get_embedding(text)
|
120 |
+
return {
|
121 |
+
"status": "success",
|
122 |
+
"embeddings": [embedding]
|
123 |
+
}
|
124 |
+
except Exception as e:
|
125 |
+
return {
|
126 |
+
"status": "error",
|
127 |
+
"message": str(e)
|
128 |
+
}
|
129 |
+
|
130 |
+
iface = gr.Interface(
|
131 |
+
fn=gradio_interface,
|
132 |
+
inputs=gr.Textbox(lines=3, label="输入文本"),
|
133 |
+
outputs=gr.JSON(label="嵌入向量结果"),
|
134 |
+
title="Jina Embeddings V3",
|
135 |
+
description="使用jina-embeddings-v3模型生成文本嵌入向量",
|
136 |
+
examples=[["这是一个测试句子。"]]
|
137 |
+
)
|
138 |
+
|
139 |
+
@app.on_event("startup")
|
140 |
+
async def startup_event():
|
141 |
+
await embedding_service.initialize()
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
asyncio.run(embedding_service.initialize())
|
145 |
+
gr.mount_gradio_app(app, iface, path="/ui")
|
146 |
+
uvicorn.run(app, host="0.0.0.0", port=7860, workers=1)
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ numpy
|
|
9 |
python-multipart
|
10 |
sentencepiece
|
11 |
safetensors
|
12 |
-
|
|
|
|
9 |
python-multipart
|
10 |
sentencepiece
|
11 |
safetensors
|
12 |
+
pydantic
|
13 |
+
click
|