Spaces:
Running
Running
sanbo
commited on
Commit
·
5331238
1
Parent(s):
979bfc3
update sth. at 2025-01-16 22:21:25
Browse files
app.py
CHANGED
@@ -1,28 +1,15 @@
|
|
1 |
import asyncio
|
2 |
import logging
|
3 |
-
import time
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
-
from fastapi import FastAPI,
|
7 |
from fastapi.middleware.cors import CORSMiddleware
|
8 |
-
from pydantic import BaseModel
|
9 |
-
from transformers import AutoTokenizer, AutoModel
|
10 |
from typing import List, Dict
|
11 |
from functools import lru_cache
|
12 |
-
import numpy as np
|
13 |
import uvicorn
|
14 |
-
|
15 |
-
|
16 |
-
model_name: str = "jinaai/jina-embeddings-v3"
|
17 |
-
max_length: int = 512
|
18 |
-
batch_size: int = 32
|
19 |
-
host: str = "0.0.0.0"
|
20 |
-
port: int = 7860
|
21 |
-
enable_gpu: bool = True
|
22 |
-
queue_size: int = 100
|
23 |
-
|
24 |
-
class Config:
|
25 |
-
env_file = ".env"
|
26 |
|
27 |
class EmbeddingRequest(BaseModel):
|
28 |
input: str
|
@@ -33,13 +20,18 @@ class EmbeddingResponse(BaseModel):
|
|
33 |
embeddings: List[List[float]]
|
34 |
|
35 |
class EmbeddingService:
|
36 |
-
def __init__(self
|
37 |
-
self.
|
38 |
-
self.
|
|
|
|
|
|
|
39 |
self.model = None
|
40 |
self.tokenizer = None
|
41 |
-
self.request_queue = asyncio.Queue(maxsize=settings.queue_size)
|
42 |
self.setup_logging()
|
|
|
|
|
|
|
43 |
|
44 |
def setup_logging(self):
|
45 |
logging.basicConfig(
|
@@ -50,54 +42,53 @@ class EmbeddingService:
|
|
50 |
|
51 |
async def initialize(self):
|
52 |
try:
|
|
|
53 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
54 |
-
self.
|
55 |
trust_remote_code=True
|
56 |
)
|
57 |
self.model = AutoModel.from_pretrained(
|
58 |
-
self.
|
59 |
-
trust_remote_code=True
|
|
|
60 |
).to(self.device)
|
|
|
61 |
self.model.eval()
|
62 |
-
|
|
|
63 |
except Exception as e:
|
64 |
self.logger.error(f"模型初始化失败: {str(e)}")
|
65 |
raise
|
66 |
|
67 |
@lru_cache(maxsize=1000)
|
68 |
-
async def generate_embedding(self, text: str) ->
|
69 |
try:
|
70 |
inputs = self.tokenizer(
|
71 |
text,
|
72 |
return_tensors="pt",
|
73 |
truncation=True,
|
74 |
-
max_length=self.
|
75 |
-
|
|
|
76 |
|
77 |
with torch.no_grad():
|
78 |
outputs = self.model(**inputs).last_hidden_state.mean(dim=1)
|
79 |
-
return outputs.
|
80 |
except Exception as e:
|
81 |
self.logger.error(f"生成嵌入向量失败: {str(e)}")
|
82 |
raise
|
83 |
|
84 |
-
|
85 |
-
if not text.strip():
|
86 |
-
raise ValueError("输入文本不能为空")
|
87 |
-
return await self.generate_embedding(text)
|
88 |
-
|
89 |
-
# 初始化服务
|
90 |
-
settings = Settings()
|
91 |
-
embedding_service = EmbeddingService(settings)
|
92 |
-
|
93 |
-
# FastAPI应用
|
94 |
app = FastAPI(
|
95 |
title="Jina Embeddings API",
|
96 |
description="Text embedding generation service using jina-embeddings-v3",
|
97 |
version="1.0.0"
|
98 |
)
|
99 |
|
100 |
-
#
|
|
|
|
|
|
|
101 |
app.add_middleware(
|
102 |
CORSMiddleware,
|
103 |
allow_origins=["*"],
|
@@ -106,7 +97,7 @@ app.add_middleware(
|
|
106 |
allow_headers=["*"],
|
107 |
)
|
108 |
|
109 |
-
#
|
110 |
@app.post("/generate_embeddings", response_model=EmbeddingResponse)
|
111 |
@app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
|
112 |
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
|
@@ -114,13 +105,11 @@ app.add_middleware(
|
|
114 |
@app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
|
115 |
async def generate_embeddings(request: EmbeddingRequest):
|
116 |
try:
|
117 |
-
embedding = await embedding_service.
|
118 |
return EmbeddingResponse(
|
119 |
status="success",
|
120 |
-
embeddings=embedding
|
121 |
)
|
122 |
-
except ValueError as e:
|
123 |
-
raise HTTPException(status_code=400, detail=str(e))
|
124 |
except Exception as e:
|
125 |
raise HTTPException(status_code=500, detail=str(e))
|
126 |
|
@@ -128,18 +117,18 @@ async def generate_embeddings(request: EmbeddingRequest):
|
|
128 |
async def root():
|
129 |
return {
|
130 |
"status": "active",
|
131 |
-
"model":
|
132 |
-
"device": embedding_service.device,
|
133 |
-
"
|
134 |
}
|
135 |
|
136 |
# Gradio界面
|
137 |
def gradio_interface(text: str) -> Dict:
|
138 |
try:
|
139 |
-
embedding = asyncio.run(embedding_service.
|
140 |
return {
|
141 |
"status": "success",
|
142 |
-
"embeddings": embedding
|
143 |
}
|
144 |
except Exception as e:
|
145 |
return {
|
@@ -153,10 +142,7 @@ iface = gr.Interface(
|
|
153 |
outputs=gr.JSON(label="嵌入向量结果"),
|
154 |
title="Jina Embeddings V3",
|
155 |
description="使用jina-embeddings-v3模型生成文本嵌入向量",
|
156 |
-
examples=[
|
157 |
-
["这是一个测试句子。"],
|
158 |
-
["人工智能正在改变世界。"]
|
159 |
-
]
|
160 |
)
|
161 |
|
162 |
@app.on_event("startup")
|
@@ -164,15 +150,17 @@ async def startup_event():
|
|
164 |
await embedding_service.initialize()
|
165 |
|
166 |
if __name__ == "__main__":
|
167 |
-
#
|
168 |
asyncio.run(embedding_service.initialize())
|
169 |
|
170 |
-
#
|
171 |
gr.mount_gradio_app(app, iface, path="/ui")
|
172 |
|
|
|
173 |
uvicorn.run(
|
174 |
app,
|
175 |
-
host=
|
176 |
-
port=
|
177 |
-
workers=1
|
|
|
178 |
)
|
|
|
1 |
import asyncio
|
2 |
import logging
|
|
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
+
from fastapi import FastAPI, HTTPException
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
7 |
+
from pydantic import BaseModel
|
|
|
8 |
from typing import List, Dict
|
9 |
from functools import lru_cache
|
|
|
10 |
import uvicorn
|
11 |
+
import psutil
|
12 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
class EmbeddingRequest(BaseModel):
|
15 |
input: str
|
|
|
20 |
embeddings: List[List[float]]
|
21 |
|
22 |
class EmbeddingService:
|
23 |
+
def __init__(self):
|
24 |
+
self.model_name = "jinaai/jina-embeddings-v3"
|
25 |
+
self.max_length = 512
|
26 |
+
self.batch_size = 8
|
27 |
+
self.device = torch.device("cpu")
|
28 |
+
self.num_threads = min(psutil.cpu_count(), 4) # 限制CPU线程数
|
29 |
self.model = None
|
30 |
self.tokenizer = None
|
|
|
31 |
self.setup_logging()
|
32 |
+
|
33 |
+
# CPU优化配置
|
34 |
+
torch.set_num_threads(self.num_threads)
|
35 |
|
36 |
def setup_logging(self):
|
37 |
logging.basicConfig(
|
|
|
42 |
|
43 |
async def initialize(self):
|
44 |
try:
|
45 |
+
from transformers import AutoTokenizer, AutoModel
|
46 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
47 |
+
self.model_name,
|
48 |
trust_remote_code=True
|
49 |
)
|
50 |
self.model = AutoModel.from_pretrained(
|
51 |
+
self.model_name,
|
52 |
+
trust_remote_code=True,
|
53 |
+
torch_dtype=torch.float32 # CPU使用float32
|
54 |
).to(self.device)
|
55 |
+
|
56 |
self.model.eval()
|
57 |
+
torch.set_grad_enabled(False)
|
58 |
+
self.logger.info(f"模型加载成功,CPU线程数: {self.num_threads}")
|
59 |
except Exception as e:
|
60 |
self.logger.error(f"模型初始化失败: {str(e)}")
|
61 |
raise
|
62 |
|
63 |
@lru_cache(maxsize=1000)
|
64 |
+
async def generate_embedding(self, text: str) -> List[float]:
|
65 |
try:
|
66 |
inputs = self.tokenizer(
|
67 |
text,
|
68 |
return_tensors="pt",
|
69 |
truncation=True,
|
70 |
+
max_length=self.max_length,
|
71 |
+
padding=True
|
72 |
+
)
|
73 |
|
74 |
with torch.no_grad():
|
75 |
outputs = self.model(**inputs).last_hidden_state.mean(dim=1)
|
76 |
+
return outputs.numpy().tolist()[0]
|
77 |
except Exception as e:
|
78 |
self.logger.error(f"生成嵌入向量失败: {str(e)}")
|
79 |
raise
|
80 |
|
81 |
+
# FastAPI应用初始化
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
app = FastAPI(
|
83 |
title="Jina Embeddings API",
|
84 |
description="Text embedding generation service using jina-embeddings-v3",
|
85 |
version="1.0.0"
|
86 |
)
|
87 |
|
88 |
+
# 初始化服务
|
89 |
+
embedding_service = EmbeddingService()
|
90 |
+
|
91 |
+
# CORS配置
|
92 |
app.add_middleware(
|
93 |
CORSMiddleware,
|
94 |
allow_origins=["*"],
|
|
|
97 |
allow_headers=["*"],
|
98 |
)
|
99 |
|
100 |
+
# API端点
|
101 |
@app.post("/generate_embeddings", response_model=EmbeddingResponse)
|
102 |
@app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
|
103 |
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
|
|
|
105 |
@app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
|
106 |
async def generate_embeddings(request: EmbeddingRequest):
|
107 |
try:
|
108 |
+
embedding = await embedding_service.generate_embedding(request.input)
|
109 |
return EmbeddingResponse(
|
110 |
status="success",
|
111 |
+
embeddings=[embedding]
|
112 |
)
|
|
|
|
|
113 |
except Exception as e:
|
114 |
raise HTTPException(status_code=500, detail=str(e))
|
115 |
|
|
|
117 |
async def root():
|
118 |
return {
|
119 |
"status": "active",
|
120 |
+
"model": embedding_service.model_name,
|
121 |
+
"device": str(embedding_service.device),
|
122 |
+
"cpu_threads": embedding_service.num_threads
|
123 |
}
|
124 |
|
125 |
# Gradio界面
|
126 |
def gradio_interface(text: str) -> Dict:
|
127 |
try:
|
128 |
+
embedding = asyncio.run(embedding_service.generate_embedding(text))
|
129 |
return {
|
130 |
"status": "success",
|
131 |
+
"embeddings": [embedding]
|
132 |
}
|
133 |
except Exception as e:
|
134 |
return {
|
|
|
142 |
outputs=gr.JSON(label="嵌入向量结果"),
|
143 |
title="Jina Embeddings V3",
|
144 |
description="使用jina-embeddings-v3模型生成文本嵌入向量",
|
145 |
+
examples=[["这是一个测试句子。"]]
|
|
|
|
|
|
|
146 |
)
|
147 |
|
148 |
@app.on_event("startup")
|
|
|
150 |
await embedding_service.initialize()
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
+
# 初始化服务
|
154 |
asyncio.run(embedding_service.initialize())
|
155 |
|
156 |
+
# 挂载Gradio应用
|
157 |
gr.mount_gradio_app(app, iface, path="/ui")
|
158 |
|
159 |
+
# 启动服务
|
160 |
uvicorn.run(
|
161 |
app,
|
162 |
+
host="0.0.0.0",
|
163 |
+
port=7860,
|
164 |
+
workers=1,
|
165 |
+
loop="asyncio"
|
166 |
)
|