sanbo commited on
Commit
5331238
·
1 Parent(s): 979bfc3

update sth. at 2025-01-16 22:21:25

Browse files
Files changed (1) hide show
  1. app.py +47 -59
app.py CHANGED
@@ -1,28 +1,15 @@
1
  import asyncio
2
  import logging
3
- import time
4
  import torch
5
  import gradio as gr
6
- from fastapi import FastAPI, Request, HTTPException
7
  from fastapi.middleware.cors import CORSMiddleware
8
- from pydantic import BaseModel, BaseSettings
9
- from transformers import AutoTokenizer, AutoModel
10
  from typing import List, Dict
11
  from functools import lru_cache
12
- import numpy as np
13
  import uvicorn
14
-
15
- class Settings(BaseSettings):
16
- model_name: str = "jinaai/jina-embeddings-v3"
17
- max_length: int = 512
18
- batch_size: int = 32
19
- host: str = "0.0.0.0"
20
- port: int = 7860
21
- enable_gpu: bool = True
22
- queue_size: int = 100
23
-
24
- class Config:
25
- env_file = ".env"
26
 
27
  class EmbeddingRequest(BaseModel):
28
  input: str
@@ -33,13 +20,18 @@ class EmbeddingResponse(BaseModel):
33
  embeddings: List[List[float]]
34
 
35
  class EmbeddingService:
36
- def __init__(self, settings: Settings):
37
- self.settings = settings
38
- self.device = torch.device("cuda" if torch.cuda.is_available() and settings.enable_gpu else "cpu")
 
 
 
39
  self.model = None
40
  self.tokenizer = None
41
- self.request_queue = asyncio.Queue(maxsize=settings.queue_size)
42
  self.setup_logging()
 
 
 
43
 
44
  def setup_logging(self):
45
  logging.basicConfig(
@@ -50,54 +42,53 @@ class EmbeddingService:
50
 
51
  async def initialize(self):
52
  try:
 
53
  self.tokenizer = AutoTokenizer.from_pretrained(
54
- self.settings.model_name,
55
  trust_remote_code=True
56
  )
57
  self.model = AutoModel.from_pretrained(
58
- self.settings.model_name,
59
- trust_remote_code=True
 
60
  ).to(self.device)
 
61
  self.model.eval()
62
- self.logger.info(f"模型加载成功,使用设备: {self.device}")
 
63
  except Exception as e:
64
  self.logger.error(f"模型初始化失败: {str(e)}")
65
  raise
66
 
67
  @lru_cache(maxsize=1000)
68
- async def generate_embedding(self, text: str) -> np.ndarray:
69
  try:
70
  inputs = self.tokenizer(
71
  text,
72
  return_tensors="pt",
73
  truncation=True,
74
- max_length=self.settings.max_length
75
- ).to(self.device)
 
76
 
77
  with torch.no_grad():
78
  outputs = self.model(**inputs).last_hidden_state.mean(dim=1)
79
- return outputs.cpu().numpy()
80
  except Exception as e:
81
  self.logger.error(f"生成嵌入向量失败: {str(e)}")
82
  raise
83
 
84
- async def handle_request(self, text: str) -> np.ndarray:
85
- if not text.strip():
86
- raise ValueError("输入文本不能为空")
87
- return await self.generate_embedding(text)
88
-
89
- # 初始化服务
90
- settings = Settings()
91
- embedding_service = EmbeddingService(settings)
92
-
93
- # FastAPI应用
94
  app = FastAPI(
95
  title="Jina Embeddings API",
96
  description="Text embedding generation service using jina-embeddings-v3",
97
  version="1.0.0"
98
  )
99
 
100
- # CORS中间件
 
 
 
101
  app.add_middleware(
102
  CORSMiddleware,
103
  allow_origins=["*"],
@@ -106,7 +97,7 @@ app.add_middleware(
106
  allow_headers=["*"],
107
  )
108
 
109
- # FastAPI路由
110
  @app.post("/generate_embeddings", response_model=EmbeddingResponse)
111
  @app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
112
  @app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
@@ -114,13 +105,11 @@ app.add_middleware(
114
  @app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
115
  async def generate_embeddings(request: EmbeddingRequest):
116
  try:
117
- embedding = await embedding_service.handle_request(request.input)
118
  return EmbeddingResponse(
119
  status="success",
120
- embeddings=embedding.tolist()
121
  )
122
- except ValueError as e:
123
- raise HTTPException(status_code=400, detail=str(e))
124
  except Exception as e:
125
  raise HTTPException(status_code=500, detail=str(e))
126
 
@@ -128,18 +117,18 @@ async def generate_embeddings(request: EmbeddingRequest):
128
  async def root():
129
  return {
130
  "status": "active",
131
- "model": settings.model_name,
132
- "device": embedding_service.device,
133
- "usage": "Send POST request to /generate_embeddings or use UI interface"
134
  }
135
 
136
  # Gradio界面
137
  def gradio_interface(text: str) -> Dict:
138
  try:
139
- embedding = asyncio.run(embedding_service.handle_request(text))
140
  return {
141
  "status": "success",
142
- "embeddings": embedding.tolist()
143
  }
144
  except Exception as e:
145
  return {
@@ -153,10 +142,7 @@ iface = gr.Interface(
153
  outputs=gr.JSON(label="嵌入向量结果"),
154
  title="Jina Embeddings V3",
155
  description="使用jina-embeddings-v3模型生成文本嵌入向量",
156
- examples=[
157
- ["这是一个测试句子。"],
158
- ["人工智能正在改变世界。"]
159
- ]
160
  )
161
 
162
  @app.on_event("startup")
@@ -164,15 +150,17 @@ async def startup_event():
164
  await embedding_service.initialize()
165
 
166
  if __name__ == "__main__":
167
- # 确保模型初始化
168
  asyncio.run(embedding_service.initialize())
169
 
170
- # 启动Gradio和FastAPI
171
  gr.mount_gradio_app(app, iface, path="/ui")
172
 
 
173
  uvicorn.run(
174
  app,
175
- host=settings.host,
176
- port=settings.port,
177
- workers=1 # GPU模式下建议使用单进程
 
178
  )
 
1
  import asyncio
2
  import logging
 
3
  import torch
4
  import gradio as gr
5
+ from fastapi import FastAPI, HTTPException
6
  from fastapi.middleware.cors import CORSMiddleware
7
+ from pydantic import BaseModel
 
8
  from typing import List, Dict
9
  from functools import lru_cache
 
10
  import uvicorn
11
+ import psutil
12
+ import numpy as np
 
 
 
 
 
 
 
 
 
 
13
 
14
  class EmbeddingRequest(BaseModel):
15
  input: str
 
20
  embeddings: List[List[float]]
21
 
22
  class EmbeddingService:
23
+ def __init__(self):
24
+ self.model_name = "jinaai/jina-embeddings-v3"
25
+ self.max_length = 512
26
+ self.batch_size = 8
27
+ self.device = torch.device("cpu")
28
+ self.num_threads = min(psutil.cpu_count(), 4) # 限制CPU线程数
29
  self.model = None
30
  self.tokenizer = None
 
31
  self.setup_logging()
32
+
33
+ # CPU优化配置
34
+ torch.set_num_threads(self.num_threads)
35
 
36
  def setup_logging(self):
37
  logging.basicConfig(
 
42
 
43
  async def initialize(self):
44
  try:
45
+ from transformers import AutoTokenizer, AutoModel
46
  self.tokenizer = AutoTokenizer.from_pretrained(
47
+ self.model_name,
48
  trust_remote_code=True
49
  )
50
  self.model = AutoModel.from_pretrained(
51
+ self.model_name,
52
+ trust_remote_code=True,
53
+ torch_dtype=torch.float32 # CPU使用float32
54
  ).to(self.device)
55
+
56
  self.model.eval()
57
+ torch.set_grad_enabled(False)
58
+ self.logger.info(f"模型加载成功,CPU线程数: {self.num_threads}")
59
  except Exception as e:
60
  self.logger.error(f"模型初始化失败: {str(e)}")
61
  raise
62
 
63
  @lru_cache(maxsize=1000)
64
+ async def generate_embedding(self, text: str) -> List[float]:
65
  try:
66
  inputs = self.tokenizer(
67
  text,
68
  return_tensors="pt",
69
  truncation=True,
70
+ max_length=self.max_length,
71
+ padding=True
72
+ )
73
 
74
  with torch.no_grad():
75
  outputs = self.model(**inputs).last_hidden_state.mean(dim=1)
76
+ return outputs.numpy().tolist()[0]
77
  except Exception as e:
78
  self.logger.error(f"生成嵌入向量失败: {str(e)}")
79
  raise
80
 
81
+ # FastAPI应用初始化
 
 
 
 
 
 
 
 
 
82
  app = FastAPI(
83
  title="Jina Embeddings API",
84
  description="Text embedding generation service using jina-embeddings-v3",
85
  version="1.0.0"
86
  )
87
 
88
+ # 初始化服务
89
+ embedding_service = EmbeddingService()
90
+
91
+ # CORS配置
92
  app.add_middleware(
93
  CORSMiddleware,
94
  allow_origins=["*"],
 
97
  allow_headers=["*"],
98
  )
99
 
100
+ # API端点
101
  @app.post("/generate_embeddings", response_model=EmbeddingResponse)
102
  @app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
103
  @app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
 
105
  @app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
106
  async def generate_embeddings(request: EmbeddingRequest):
107
  try:
108
+ embedding = await embedding_service.generate_embedding(request.input)
109
  return EmbeddingResponse(
110
  status="success",
111
+ embeddings=[embedding]
112
  )
 
 
113
  except Exception as e:
114
  raise HTTPException(status_code=500, detail=str(e))
115
 
 
117
  async def root():
118
  return {
119
  "status": "active",
120
+ "model": embedding_service.model_name,
121
+ "device": str(embedding_service.device),
122
+ "cpu_threads": embedding_service.num_threads
123
  }
124
 
125
  # Gradio界面
126
  def gradio_interface(text: str) -> Dict:
127
  try:
128
+ embedding = asyncio.run(embedding_service.generate_embedding(text))
129
  return {
130
  "status": "success",
131
+ "embeddings": [embedding]
132
  }
133
  except Exception as e:
134
  return {
 
142
  outputs=gr.JSON(label="嵌入向量结果"),
143
  title="Jina Embeddings V3",
144
  description="使用jina-embeddings-v3模型生成文本嵌入向量",
145
+ examples=[["这是一个测试句子。"]]
 
 
 
146
  )
147
 
148
  @app.on_event("startup")
 
150
  await embedding_service.initialize()
151
 
152
  if __name__ == "__main__":
153
+ # 初始化服务
154
  asyncio.run(embedding_service.initialize())
155
 
156
+ # 挂载Gradio应用
157
  gr.mount_gradio_app(app, iface, path="/ui")
158
 
159
+ # 启动服务
160
  uvicorn.run(
161
  app,
162
+ host="0.0.0.0",
163
+ port=7860,
164
+ workers=1,
165
+ loop="asyncio"
166
  )