File size: 4,619 Bytes
979bfc3
 
4d3f40f
979bfc3
5331238
979bfc3
5331238
cd320c7
979bfc3
5331238
59ea452
b734492
979bfc3
3028bfb
 
 
 
cd320c7
 
3028bfb
cd320c7
979bfc3
5331238
 
 
 
979bfc3
 
59ea452
979bfc3
59ea452
979bfc3
 
 
 
 
 
 
 
 
 
5331238
979bfc3
5331238
979bfc3
 
 
5331238
124ac36
979bfc3
 
5331238
124ac36
979bfc3
 
 
 
 
59ea452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979bfc3
124ac36
59ea452
cd320c7
979bfc3
 
 
 
 
 
 
4d3f40f
8e90b2d
3028bfb
 
 
 
 
 
cd320c7
59ea452
 
 
 
 
 
3028bfb
cd320c7
5331238
cd320c7
 
 
4d3f40f
cd320c7
 
 
 
5331238
124ac36
cd320c7
4d3f40f
979bfc3
 
59ea452
979bfc3
 
5331238
979bfc3
 
 
 
 
 
 
 
 
 
 
 
 
5331238
979bfc3
 
 
 
 
 
4d3f40f
979bfc3
 
59ea452
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import asyncio
import logging
import torch
import gradio as gr
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Dict
from functools import lru_cache
import numpy as np
from threading import Lock
import uvicorn

class EmbeddingRequest(BaseModel):
    input: str
    model: str = "jinaai/jina-embeddings-v3"

class EmbeddingResponse(BaseModel):
    status: str
    embeddings: List[List[float]]

class EmbeddingService:
    def __init__(self):
        self.model_name = "jinaai/jina-embeddings-v3"
        self.max_length = 512
        self.device = torch.device("cpu")
        self.model = None
        self.tokenizer = None
        self.lock = Lock()
        self.setup_logging()
        torch.set_num_threads(4)  # CPU优化

    def setup_logging(self):
        logging.basicConfig(
            level=logging.INFO,
            format='%(asctime)s - %(levelname)s - %(message)s'
        )
        self.logger = logging.getLogger(__name__)

    async def initialize(self):
        try:
            from transformers import AutoTokenizer, AutoModel
            self.tokenizer = AutoTokenizer.from_pretrained(
                self.model_name,
                trust_remote_code=True
            )
            self.model = AutoModel.from_pretrained(
                self.model_name,
                trust_remote_code=True
            ).to(self.device)
            self.model.eval()
            torch.set_grad_enabled(False)
            self.logger.info(f"模型加载成功,使用设备: {self.device}")
        except Exception as e:
            self.logger.error(f"模型初始化失败: {str(e)}")
            raise

    @lru_cache(maxsize=1000)
    def get_embedding(self, text: str) -> List[float]:
        """同步生成嵌入向量,带缓存"""
        with self.lock:
            try:
                inputs = self.tokenizer(
                    text,
                    return_tensors="pt",
                    truncation=True,
                    max_length=self.max_length,
                    padding=True
                )

                with torch.no_grad():
                    outputs = self.model(**inputs).last_hidden_state.mean(dim=1)
                    return outputs.numpy().tolist()[0]
            except Exception as e:
                self.logger.error(f"生成嵌入向量失败: {str(e)}")
                raise

embedding_service = EmbeddingService()
app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.post("/v1/embeddings", response_model=EmbeddingResponse)
@app.post("/generate_embeddings", response_model=EmbeddingResponse)
@app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
@app.post("/api/v1/chat/completions", response_model=EmbeddingResponse)
@app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
async def generate_embeddings(request: EmbeddingRequest):
    try:
        # 使用run_in_executor避免事件循环问题
        embedding = await asyncio.get_running_loop().run_in_executor(
            None,
            embedding_service.get_embedding,
            request.input
        )
        return EmbeddingResponse(
            status="success",
            embeddings=[embedding]
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/")
async def root():
    return {
        "status": "active",
        "model": embedding_service.model_name,
        "device": str(embedding_service.device)
    }

def gradio_interface(text: str) -> Dict:
    try:
        embedding = embedding_service.get_embedding(text)
        return {
            "status": "success",
            "embeddings": [embedding]
        }
    except Exception as e:
        return {
            "status": "error",
            "message": str(e)
        }

iface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.Textbox(lines=3, label="输入文本"),
    outputs=gr.JSON(label="嵌入向量结果"),
    title="Jina Embeddings V3",
    description="使用jina-embeddings-v3模型生成文本嵌入向量",
    examples=[["这是一个测试句子。"]]
)

@app.on_event("startup")
async def startup_event():
    await embedding_service.initialize()

if __name__ == "__main__":
    asyncio.run(embedding_service.initialize())
    gr.mount_gradio_app(app, iface, path="/ui")
    uvicorn.run(app, host="0.0.0.0", port=7860, workers=1)