pdf-doc-chat / ingest.py
sahilnishad's picture
Create ingest.py
6bc6e49 verified
import os
import torch
from constants import CHROMA_SETTINGS
from langchain.document_loaders import PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
checkpoint = "MBZUAI/LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.float32)
persist_directory = "db"
def main():
for root, dirs, files in os.walk("docs"):
for file in files:
if file.endswith(".pdf"):
print(f"Ingesting file: {file}")
loader = PDFMinerLoader(os.path.join(root, file))
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
texts = text_splitter.split_documents(documents)
def embedding_function(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(model.device)
with torch.no_grad():
embeddings = model.encoder(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
return embeddings
db = Chroma.from_documents(texts, embedding_function=embedding_function, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
db.persist()
db = None
if __name__ == "__main__":
main()