Spaces:
Sleeping
Sleeping
Create ingest.py
Browse files
ingest.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from constants import CHROMA_SETTINGS
|
4 |
+
from langchain.document_loaders import PDFMinerLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
8 |
+
|
9 |
+
checkpoint = "MBZUAI/LaMini-T5-738M"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.float32)
|
12 |
+
|
13 |
+
persist_directory = "db"
|
14 |
+
|
15 |
+
def main():
|
16 |
+
for root, dirs, files in os.walk("docs"):
|
17 |
+
for file in files:
|
18 |
+
if file.endswith(".pdf"):
|
19 |
+
print(f"Ingesting file: {file}")
|
20 |
+
loader = PDFMinerLoader(os.path.join(root, file))
|
21 |
+
documents = loader.load()
|
22 |
+
|
23 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
24 |
+
texts = text_splitter.split_documents(documents)
|
25 |
+
|
26 |
+
def embedding_function(text):
|
27 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(model.device)
|
28 |
+
with torch.no_grad():
|
29 |
+
embeddings = model.encoder(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
|
30 |
+
return embeddings
|
31 |
+
|
32 |
+
db = Chroma.from_documents(texts, embedding_function=embedding_function, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
33 |
+
db.persist()
|
34 |
+
db = None
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
main()
|