sahilnishad commited on
Commit
6bc6e49
·
verified ·
1 Parent(s): 9130917

Create ingest.py

Browse files
Files changed (1) hide show
  1. ingest.py +37 -0
ingest.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from constants import CHROMA_SETTINGS
4
+ from langchain.document_loaders import PDFMinerLoader
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain.vectorstores import Chroma
7
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
8
+
9
+ checkpoint = "MBZUAI/LaMini-T5-738M"
10
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
11
+ model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.float32)
12
+
13
+ persist_directory = "db"
14
+
15
+ def main():
16
+ for root, dirs, files in os.walk("docs"):
17
+ for file in files:
18
+ if file.endswith(".pdf"):
19
+ print(f"Ingesting file: {file}")
20
+ loader = PDFMinerLoader(os.path.join(root, file))
21
+ documents = loader.load()
22
+
23
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
24
+ texts = text_splitter.split_documents(documents)
25
+
26
+ def embedding_function(text):
27
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(model.device)
28
+ with torch.no_grad():
29
+ embeddings = model.encoder(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
30
+ return embeddings
31
+
32
+ db = Chroma.from_documents(texts, embedding_function=embedding_function, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
33
+ db.persist()
34
+ db = None
35
+
36
+ if __name__ == "__main__":
37
+ main()