File size: 1,570 Bytes
6bc6e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import torch
from constants import CHROMA_SETTINGS
from langchain.document_loaders import PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

checkpoint = "MBZUAI/LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.float32)

persist_directory = "db"

def main():
    for root, dirs, files in os.walk("docs"):
        for file in files:
            if file.endswith(".pdf"):
                print(f"Ingesting file: {file}")
                loader = PDFMinerLoader(os.path.join(root, file))
                documents = loader.load()
                
                text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
                texts = text_splitter.split_documents(documents)

                def embedding_function(text):
                    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(model.device)
                    with torch.no_grad():
                        embeddings = model.encoder(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
                    return embeddings

                db = Chroma.from_documents(texts, embedding_function=embedding_function, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
                db.persist()
                db = None

if __name__ == "__main__":
    main()