pragnakalp's picture
Update app.py
dbdb292 verified
raw
history blame
8.37 kB
import gradio as gr
import os, subprocess, torchaudio
import torch
from PIL import Image
import gradio as gr
import soundfile
from gtts import gTTS
import tempfile
from pydub.generators import Sine
from pydub import AudioSegment
import cv2
import imageio
import ffmpeg
from io import BytesIO
import requests
import sys
import mediapipe as mp
python_path = sys.executable
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
block = gr.Blocks()
def crop_src_image(src_img):
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
save_img = '/content/image_pre.png'
img = cv2.imread(src_img)
h, width, _ = img.shape
with mp_face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5) as face_detection:
results = face_detection.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
if results.detections:
detection = results.detections[0] # Use the first detected face
bboxC = detection.location_data.relative_bounding_box
x = int(bboxC.xmin * width)
y = int(bboxC.ymin * h)
w = int(bboxC.width * width)
h = int(bboxC.height * h)
# Ensure bbox dimensions are within image boundaries
x, y = max(0, x), max(0, y)
w, h = min(width - x, w), min(h - y, h)
img = img[y:y + h, x:x + w]
img = cv2.resize(img, (256, 256))
cv2.imwrite(save_img, img)
else:
# If no face is detected, resize the original image
img = cv2.resize(img, (256, 256))
cv2.imwrite(save_img, img)
return save_img
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
new_image.paste(image, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
new_image.paste(image, ((h - w) // 2, 0))
return new_image
def calculate(image_in, audio_in):
waveform, sample_rate = torchaudio.load(audio_in)
waveform = torch.mean(waveform, dim=0, keepdim=True)
torchaudio.save("/content/audio.wav", waveform, sample_rate, encoding="PCM_S", bits_per_sample=16)
image_in = image_in.replace("results/", "")
print("****"*100)
print(f" *#*#*# original image => {image_in} *#*#*# ")
if os.path.exists(image_in):
print(f"image exists => {image_in}")
image = Image.open(image_in)
else:
print("image not exists reading web image")
image_url = "http://labelme.csail.mit.edu/Release3.0/Images/users/DNguyen91/face/m_unsexy_gr.jpg"
response = requests.get(image_url)
image = Image.open(BytesIO(response.content))
print("****"*100)
image = pad_image(image)
image.save("image.png")
pocketsphinx_run = subprocess.run(['pocketsphinx', '-phone_align', 'yes', 'single', '/content/audio.wav'], check=True, capture_output=True)
jq_run = subprocess.run(['jq', '[.w[]|{word: (.t | ascii_upcase | sub("<S>"; "sil") | sub("<SIL>"; "sil") | sub("\\\(2\\\)"; "") | sub("\\\(3\\\)"; "") | sub("\\\(4\\\)"; "") | sub("\\\[SPEECH\\\]"; "SIL") | sub("\\\[NOISE\\\]"; "SIL")), phones: [.w[]|{ph: .t | sub("\\\+SPN\\\+"; "SIL") | sub("\\\+NSN\\\+"; "SIL"), bg: (.b*100)|floor, ed: (.b*100+.d*100)|floor}]}]'], input=pocketsphinx_run.stdout, capture_output=True)
with open("test.json", "w") as f:
f.write(jq_run.stdout.decode('utf-8').strip())
os.system(f"cd /content/one-shot-talking-face && {python_path} -B test_script.py --img_path /content/image.png --audio_path /content/audio.wav --phoneme_path /content/test.json --save_dir /content/train")
return "/content/train/image_audio.mp4"
def merge_frames():
path = '/content/video_results/restored_imgs'
if not os.path.exists(path):
os.makedirs(path)
image_folder = os.fsencode(path)
filenames = []
for file in os.listdir(image_folder):
filename = os.fsdecode(file)
if filename.endswith(('.jpg', '.png', '.gif')):
filenames.append(filename)
filenames.sort()
images = list(map(lambda filename: imageio.imread("/content/video_results/restored_imgs/" + filename), filenames))
imageio.mimsave('/content/video_output.mp4', images, fps=25.0)
return "/content/video_output.mp4"
def audio_video():
input_video = ffmpeg.input('/content/video_output.mp4')
input_audio = ffmpeg.input('/content/audio.wav')
os.system(f"rm -rf /content/final_output.mp4")
ffmpeg.concat(input_video, input_audio, v=1, a=1).output('/content/final_output.mp4').run()
return "/content/final_output.mp4"
def one_shot_talking(image_in, audio_in):
crop_img = crop_src_image(image_in)
if os.path.exists("/content/results/restored_imgs/image_pre.png"):
os.system(f"rm -rf /content/results/restored_imgs/image_pre.png")
if not os.path.exists("/content/results"):
os.makedirs("/content/results")
os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/image_pre.png -o /content/results --bg_upsampler realesrgan")
image_in_one_shot = '/content/results/image_pre.png'
calculate(image_in_one_shot, audio_in)
os.system(f"{python_path} /content/PyVideoFramesExtractor/extract.py --video=/content/train/image_audio.mp4")
os.system(f"rm -rf /content/video_results/")
os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/extracted_frames/image_audio_frames -o /content/video_results --bg_upsampler realesrgan")
merge_frames()
return audio_video()
def one_shot(image_in, input_text, gender):
if gender == "Female":
tts = gTTS(input_text)
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
tts.write_to_fp(f)
f.seek(0)
sound = AudioSegment.from_file(f.name, format="mp3")
os.system(f"rm -rf /content/audio.wav")
sound.export("/content/audio.wav", format="wav")
audio_in = "/content/audio.wav"
return one_shot_talking(image_in, audio_in)
elif gender == 'Male':
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"Voicemod/fastspeech2-en-male1",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator([model], cfg)
sample = TTSHubInterface.get_model_input(task, input_text)
sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"]
sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"]
sample["speaker"] = sample["speaker"]
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
os.system(f"rm -rf /content/audio_before.wav")
soundfile.write("/content/audio_before.wav", wav.cpu().clone().numpy(), rate)
os.system(f"rm -rf /content/audio.wav")
cmd = 'ffmpeg -i /content/audio_before.wav -filter:a "atempo=0.7" -vn /content/audio.wav'
os.system(cmd)
audio_in = "/content/audio.wav"
return one_shot_talking(image_in, audio_in)
def run():
with gr.Blocks(css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}") as demo:
gr.Markdown("<h1 style='text-align: center;'>One Shot Talking Face from Text</h1><br/><br/>")
with gr.Group():
with gr.Row():
image_in = gr.Image(show_label=True, type="filepath", label="Input Image")
input_text = gr.Textbox(show_label=True, label="Input Text")
gender = gr.Radio(["Female", "Male"], value="Female", label="Gender")
video_out = gr.Video(show_label=True, label="Output")
with gr.Row():
btn = gr.Button("Generate")
btn.click(one_shot, inputs=[image_in, input_text, gender], outputs=[video_out])
demo.queue()
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run()