File size: 8,367 Bytes
f901e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbdb292
f901e07
 
 
 
 
 
 
 
dbdb292
 
 
 
 
f901e07
 
dbdb292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f901e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea3b369
1ef6532
f901e07
 
 
 
 
dbdb292
f901e07
dbdb292
 
f901e07
dbdb292
 
f901e07
dbdb292
 
 
 
f901e07
dbdb292
 
 
 
f901e07
 
dbdb292
 
 
 
 
f901e07
dbdb292
 
f901e07
dbdb292
 
f901e07
dbdb292
 
f901e07
dbdb292
 
f901e07
dbdb292
 
 
 
 
 
 
 
f901e07
dbdb292
 
 
 
 
 
 
 
 
f901e07
dbdb292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f901e07
 
dbdb292
 
 
 
 
 
 
 
 
 
 
 
 
f901e07
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
import os, subprocess, torchaudio
import torch
from PIL import Image
import gradio as gr
import soundfile
from gtts import gTTS
import tempfile
from pydub.generators import Sine
from pydub import AudioSegment
import cv2
import imageio
import ffmpeg
from io import BytesIO
import requests
import sys
import mediapipe as mp

python_path = sys.executable

from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface

block = gr.Blocks()

def crop_src_image(src_img):
    mp_face_detection = mp.solutions.face_detection
    mp_drawing = mp.solutions.drawing_utils
    
    save_img = '/content/image_pre.png'
    img = cv2.imread(src_img)
    h, width, _ = img.shape
    
    with mp_face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5) as face_detection:
        results = face_detection.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
        if results.detections:
            detection = results.detections[0]  # Use the first detected face
            bboxC = detection.location_data.relative_bounding_box
            x = int(bboxC.xmin * width)
            y = int(bboxC.ymin * h)
            w = int(bboxC.width * width)
            h = int(bboxC.height * h)
            
            # Ensure bbox dimensions are within image boundaries
            x, y = max(0, x), max(0, y)
            w, h = min(width - x, w), min(h - y, h)
            
            img = img[y:y + h, x:x + w]
            img = cv2.resize(img, (256, 256))
            cv2.imwrite(save_img, img)
        else:
            # If no face is detected, resize the original image
            img = cv2.resize(img, (256, 256))
            cv2.imwrite(save_img, img)
    return save_img

def pad_image(image):
    w, h = image.size
    if w == h:
        return image
    elif w > h:
        new_image = Image.new(image.mode, (w, w), (0, 0, 0))
        new_image.paste(image, (0, (w - h) // 2))
        return new_image
    else:
        new_image = Image.new(image.mode, (h, h), (0, 0, 0))
        new_image.paste(image, ((h - w) // 2, 0))
        return new_image

def calculate(image_in, audio_in):
    waveform, sample_rate = torchaudio.load(audio_in)
    waveform = torch.mean(waveform, dim=0, keepdim=True)
    torchaudio.save("/content/audio.wav", waveform, sample_rate, encoding="PCM_S", bits_per_sample=16)
    image_in = image_in.replace("results/", "")
    print("****"*100)
    print(f" *#*#*# original image => {image_in}  *#*#*# ")
    if os.path.exists(image_in):
        print(f"image exists => {image_in}")
        image = Image.open(image_in)
    else:
        print("image not exists reading web image")
        image_url = "http://labelme.csail.mit.edu/Release3.0/Images/users/DNguyen91/face/m_unsexy_gr.jpg"
        response = requests.get(image_url)
        image = Image.open(BytesIO(response.content))
    print("****"*100)
    image = pad_image(image)
    image.save("image.png")

    pocketsphinx_run = subprocess.run(['pocketsphinx', '-phone_align', 'yes', 'single', '/content/audio.wav'], check=True, capture_output=True)
    jq_run = subprocess.run(['jq', '[.w[]|{word: (.t | ascii_upcase | sub("<S>"; "sil") | sub("<SIL>"; "sil") | sub("\\\(2\\\)"; "") | sub("\\\(3\\\)"; "") | sub("\\\(4\\\)"; "") | sub("\\\[SPEECH\\\]"; "SIL") | sub("\\\[NOISE\\\]"; "SIL")), phones: [.w[]|{ph: .t | sub("\\\+SPN\\\+"; "SIL") | sub("\\\+NSN\\\+"; "SIL"), bg: (.b*100)|floor, ed: (.b*100+.d*100)|floor}]}]'], input=pocketsphinx_run.stdout, capture_output=True)
    with open("test.json", "w") as f:
        f.write(jq_run.stdout.decode('utf-8').strip())
    os.system(f"cd /content/one-shot-talking-face && {python_path} -B test_script.py --img_path /content/image.png --audio_path /content/audio.wav --phoneme_path /content/test.json --save_dir /content/train")
    return "/content/train/image_audio.mp4"

def merge_frames():
    path = '/content/video_results/restored_imgs'
    
    if not os.path.exists(path):
        os.makedirs(path)
        
    image_folder = os.fsencode(path)
    filenames = []

    for file in os.listdir(image_folder):
        filename = os.fsdecode(file)
        if filename.endswith(('.jpg', '.png', '.gif')):
            filenames.append(filename)

    filenames.sort()
    images = list(map(lambda filename: imageio.imread("/content/video_results/restored_imgs/" + filename), filenames))
    imageio.mimsave('/content/video_output.mp4', images, fps=25.0)
    return "/content/video_output.mp4"

def audio_video():
    input_video = ffmpeg.input('/content/video_output.mp4')
    input_audio = ffmpeg.input('/content/audio.wav')
    os.system(f"rm -rf /content/final_output.mp4")
    ffmpeg.concat(input_video, input_audio, v=1, a=1).output('/content/final_output.mp4').run()
    return "/content/final_output.mp4"

def one_shot_talking(image_in, audio_in):
    crop_img = crop_src_image(image_in)

    if os.path.exists("/content/results/restored_imgs/image_pre.png"):
        os.system(f"rm -rf /content/results/restored_imgs/image_pre.png")
  
    if not os.path.exists("/content/results"):
        os.makedirs("/content/results")
  
    os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/image_pre.png -o /content/results --bg_upsampler realesrgan")
    image_in_one_shot = '/content/results/image_pre.png'
  
    calculate(image_in_one_shot, audio_in)
    os.system(f"{python_path} /content/PyVideoFramesExtractor/extract.py --video=/content/train/image_audio.mp4")
    os.system(f"rm -rf /content/video_results/")
    os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/extracted_frames/image_audio_frames -o /content/video_results --bg_upsampler realesrgan")
    merge_frames()
    return audio_video()

def one_shot(image_in, input_text, gender):
    if gender == "Female":
        tts = gTTS(input_text)
        with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
            tts.write_to_fp(f)
            f.seek(0)
            sound = AudioSegment.from_file(f.name, format="mp3")
            os.system(f"rm -rf /content/audio.wav")
            sound.export("/content/audio.wav", format="wav")
            audio_in = "/content/audio.wav"
        return one_shot_talking(image_in, audio_in)
    elif gender == 'Male':
        models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
            "Voicemod/fastspeech2-en-male1",
            arg_overrides={"vocoder": "hifigan", "fp16": False}
        )
        model = models[0]
        TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
        generator = task.build_generator([model], cfg)

        sample = TTSHubInterface.get_model_input(task, input_text)
        sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"]
        sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"]
        sample["speaker"] = sample["speaker"]

        wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
        os.system(f"rm -rf /content/audio_before.wav")
        soundfile.write("/content/audio_before.wav", wav.cpu().clone().numpy(), rate)
        os.system(f"rm -rf /content/audio.wav")
        cmd = 'ffmpeg -i /content/audio_before.wav -filter:a "atempo=0.7" -vn /content/audio.wav'
        os.system(cmd)
        audio_in = "/content/audio.wav"
        return one_shot_talking(image_in, audio_in)

def run():
    with gr.Blocks(css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}") as demo:
        gr.Markdown("<h1 style='text-align: center;'>One Shot Talking Face from Text</h1><br/><br/>")
        with gr.Group():
            with gr.Row():
                image_in = gr.Image(show_label=True, type="filepath", label="Input Image")
                input_text = gr.Textbox(show_label=True, label="Input Text")
                gender = gr.Radio(["Female", "Male"], value="Female", label="Gender")
                video_out = gr.Video(show_label=True, label="Output")
            with gr.Row():
                btn = gr.Button("Generate")   
        btn.click(one_shot, inputs=[image_in, input_text, gender], outputs=[video_out])
        demo.queue()
        demo.launch(server_name="0.0.0.0", server_port=7860)

if __name__ == "__main__":
    run()