Spaces:
Build error
Build error
File size: 8,367 Bytes
f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 ea3b369 1ef6532 f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 dbdb292 f901e07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import os, subprocess, torchaudio
import torch
from PIL import Image
import gradio as gr
import soundfile
from gtts import gTTS
import tempfile
from pydub.generators import Sine
from pydub import AudioSegment
import cv2
import imageio
import ffmpeg
from io import BytesIO
import requests
import sys
import mediapipe as mp
python_path = sys.executable
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
block = gr.Blocks()
def crop_src_image(src_img):
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
save_img = '/content/image_pre.png'
img = cv2.imread(src_img)
h, width, _ = img.shape
with mp_face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5) as face_detection:
results = face_detection.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
if results.detections:
detection = results.detections[0] # Use the first detected face
bboxC = detection.location_data.relative_bounding_box
x = int(bboxC.xmin * width)
y = int(bboxC.ymin * h)
w = int(bboxC.width * width)
h = int(bboxC.height * h)
# Ensure bbox dimensions are within image boundaries
x, y = max(0, x), max(0, y)
w, h = min(width - x, w), min(h - y, h)
img = img[y:y + h, x:x + w]
img = cv2.resize(img, (256, 256))
cv2.imwrite(save_img, img)
else:
# If no face is detected, resize the original image
img = cv2.resize(img, (256, 256))
cv2.imwrite(save_img, img)
return save_img
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
new_image.paste(image, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
new_image.paste(image, ((h - w) // 2, 0))
return new_image
def calculate(image_in, audio_in):
waveform, sample_rate = torchaudio.load(audio_in)
waveform = torch.mean(waveform, dim=0, keepdim=True)
torchaudio.save("/content/audio.wav", waveform, sample_rate, encoding="PCM_S", bits_per_sample=16)
image_in = image_in.replace("results/", "")
print("****"*100)
print(f" *#*#*# original image => {image_in} *#*#*# ")
if os.path.exists(image_in):
print(f"image exists => {image_in}")
image = Image.open(image_in)
else:
print("image not exists reading web image")
image_url = "http://labelme.csail.mit.edu/Release3.0/Images/users/DNguyen91/face/m_unsexy_gr.jpg"
response = requests.get(image_url)
image = Image.open(BytesIO(response.content))
print("****"*100)
image = pad_image(image)
image.save("image.png")
pocketsphinx_run = subprocess.run(['pocketsphinx', '-phone_align', 'yes', 'single', '/content/audio.wav'], check=True, capture_output=True)
jq_run = subprocess.run(['jq', '[.w[]|{word: (.t | ascii_upcase | sub("<S>"; "sil") | sub("<SIL>"; "sil") | sub("\\\(2\\\)"; "") | sub("\\\(3\\\)"; "") | sub("\\\(4\\\)"; "") | sub("\\\[SPEECH\\\]"; "SIL") | sub("\\\[NOISE\\\]"; "SIL")), phones: [.w[]|{ph: .t | sub("\\\+SPN\\\+"; "SIL") | sub("\\\+NSN\\\+"; "SIL"), bg: (.b*100)|floor, ed: (.b*100+.d*100)|floor}]}]'], input=pocketsphinx_run.stdout, capture_output=True)
with open("test.json", "w") as f:
f.write(jq_run.stdout.decode('utf-8').strip())
os.system(f"cd /content/one-shot-talking-face && {python_path} -B test_script.py --img_path /content/image.png --audio_path /content/audio.wav --phoneme_path /content/test.json --save_dir /content/train")
return "/content/train/image_audio.mp4"
def merge_frames():
path = '/content/video_results/restored_imgs'
if not os.path.exists(path):
os.makedirs(path)
image_folder = os.fsencode(path)
filenames = []
for file in os.listdir(image_folder):
filename = os.fsdecode(file)
if filename.endswith(('.jpg', '.png', '.gif')):
filenames.append(filename)
filenames.sort()
images = list(map(lambda filename: imageio.imread("/content/video_results/restored_imgs/" + filename), filenames))
imageio.mimsave('/content/video_output.mp4', images, fps=25.0)
return "/content/video_output.mp4"
def audio_video():
input_video = ffmpeg.input('/content/video_output.mp4')
input_audio = ffmpeg.input('/content/audio.wav')
os.system(f"rm -rf /content/final_output.mp4")
ffmpeg.concat(input_video, input_audio, v=1, a=1).output('/content/final_output.mp4').run()
return "/content/final_output.mp4"
def one_shot_talking(image_in, audio_in):
crop_img = crop_src_image(image_in)
if os.path.exists("/content/results/restored_imgs/image_pre.png"):
os.system(f"rm -rf /content/results/restored_imgs/image_pre.png")
if not os.path.exists("/content/results"):
os.makedirs("/content/results")
os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/image_pre.png -o /content/results --bg_upsampler realesrgan")
image_in_one_shot = '/content/results/image_pre.png'
calculate(image_in_one_shot, audio_in)
os.system(f"{python_path} /content/PyVideoFramesExtractor/extract.py --video=/content/train/image_audio.mp4")
os.system(f"rm -rf /content/video_results/")
os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/extracted_frames/image_audio_frames -o /content/video_results --bg_upsampler realesrgan")
merge_frames()
return audio_video()
def one_shot(image_in, input_text, gender):
if gender == "Female":
tts = gTTS(input_text)
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
tts.write_to_fp(f)
f.seek(0)
sound = AudioSegment.from_file(f.name, format="mp3")
os.system(f"rm -rf /content/audio.wav")
sound.export("/content/audio.wav", format="wav")
audio_in = "/content/audio.wav"
return one_shot_talking(image_in, audio_in)
elif gender == 'Male':
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"Voicemod/fastspeech2-en-male1",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator([model], cfg)
sample = TTSHubInterface.get_model_input(task, input_text)
sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"]
sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"]
sample["speaker"] = sample["speaker"]
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
os.system(f"rm -rf /content/audio_before.wav")
soundfile.write("/content/audio_before.wav", wav.cpu().clone().numpy(), rate)
os.system(f"rm -rf /content/audio.wav")
cmd = 'ffmpeg -i /content/audio_before.wav -filter:a "atempo=0.7" -vn /content/audio.wav'
os.system(cmd)
audio_in = "/content/audio.wav"
return one_shot_talking(image_in, audio_in)
def run():
with gr.Blocks(css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}") as demo:
gr.Markdown("<h1 style='text-align: center;'>One Shot Talking Face from Text</h1><br/><br/>")
with gr.Group():
with gr.Row():
image_in = gr.Image(show_label=True, type="filepath", label="Input Image")
input_text = gr.Textbox(show_label=True, label="Input Text")
gender = gr.Radio(["Female", "Male"], value="Female", label="Gender")
video_out = gr.Video(show_label=True, label="Output")
with gr.Row():
btn = gr.Button("Generate")
btn.click(one_shot, inputs=[image_in, input_text, gender], outputs=[video_out])
demo.queue()
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run() |