pragnakalp commited on
Commit
dbdb292
·
verified ·
1 Parent(s): 3084483

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +105 -172
app.py CHANGED
@@ -8,14 +8,13 @@ from gtts import gTTS
8
  import tempfile
9
  from pydub.generators import Sine
10
  from pydub import AudioSegment
11
- import dlib
12
  import cv2
13
  import imageio
14
- import os
15
  import ffmpeg
16
  from io import BytesIO
17
  import requests
18
  import sys
 
19
 
20
  python_path = sys.executable
21
 
@@ -24,56 +23,35 @@ from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
24
 
25
  block = gr.Blocks()
26
 
27
- def compute_aspect_preserved_bbox(bbox, increase_area, h, w):
28
- left, top, right, bot = bbox
29
- width = right - left
30
- height = bot - top
31
-
32
- width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
33
- height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
34
-
35
- left_t = int(left - width_increase * width)
36
- top_t = int(top - height_increase * height)
37
- right_t = int(right + width_increase * width)
38
- bot_t = int(bot + height_increase * height)
39
-
40
- left_oob = -min(0, left_t)
41
- right_oob = right - min(right_t, w)
42
- top_oob = -min(0, top_t)
43
- bot_oob = bot - min(bot_t, h)
44
-
45
- if max(left_oob, right_oob, top_oob, bot_oob) > 0:
46
- max_w = max(left_oob, right_oob)
47
- max_h = max(top_oob, bot_oob)
48
- if max_w > max_h:
49
- return left_t + max_w, top_t + max_w, right_t - max_w, bot_t - max_w
50
- else:
51
- return left_t + max_h, top_t + max_h, right_t - max_h, bot_t - max_h
52
-
53
- else:
54
- return (left_t, top_t, right_t, bot_t)
55
-
56
- def crop_src_image(src_img, detector=None):
57
- if detector is None:
58
- detector = dlib.get_frontal_face_detector()
59
- save_img='/content/image_pre.png'
60
  img = cv2.imread(src_img)
61
- faces = detector(img, 0)
62
  h, width, _ = img.shape
63
- if len(faces) > 0:
64
- bbox = [faces[0].left(), faces[0].top(),faces[0].right(), faces[0].bottom()]
65
- l = bbox[3]-bbox[1]
66
- bbox[1]= bbox[1]-l*0.1
67
- bbox[3]= bbox[3]-l*0.1
68
- bbox[1] = max(0,bbox[1])
69
- bbox[3] = min(h,bbox[3])
70
- bbox = compute_aspect_preserved_bbox(tuple(bbox), 0.5, img.shape[0], img.shape[1])
71
- img = img[bbox[1] :bbox[3] , bbox[0]:bbox[2]]
72
- img = cv2.resize(img, (256, 256))
73
- cv2.imwrite(save_img,img)
74
- else:
75
- img = cv2.resize(img,(256,256))
76
- cv2.imwrite(save_img, img)
 
 
 
 
 
 
 
 
77
  return save_img
78
 
79
  def pad_image(image):
@@ -106,153 +84,108 @@ def calculate(image_in, audio_in):
106
  image = Image.open(BytesIO(response.content))
107
  print("****"*100)
108
  image = pad_image(image)
109
- # os.system(f"rm -rf /content/image.png")
110
  image.save("image.png")
111
 
112
  pocketsphinx_run = subprocess.run(['pocketsphinx', '-phone_align', 'yes', 'single', '/content/audio.wav'], check=True, capture_output=True)
113
  jq_run = subprocess.run(['jq', '[.w[]|{word: (.t | ascii_upcase | sub("<S>"; "sil") | sub("<SIL>"; "sil") | sub("\\\(2\\\)"; "") | sub("\\\(3\\\)"; "") | sub("\\\(4\\\)"; "") | sub("\\\[SPEECH\\\]"; "SIL") | sub("\\\[NOISE\\\]"; "SIL")), phones: [.w[]|{ph: .t | sub("\\\+SPN\\\+"; "SIL") | sub("\\\+NSN\\\+"; "SIL"), bg: (.b*100)|floor, ed: (.b*100+.d*100)|floor}]}]'], input=pocketsphinx_run.stdout, capture_output=True)
114
  with open("test.json", "w") as f:
115
  f.write(jq_run.stdout.decode('utf-8').strip())
116
- # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
117
- # os.system(f"rm -rf /content/image_audio.mp4")
118
  os.system(f"cd /content/one-shot-talking-face && {python_path} -B test_script.py --img_path /content/image.png --audio_path /content/audio.wav --phoneme_path /content/test.json --save_dir /content/train")
119
  return "/content/train/image_audio.mp4"
120
 
121
  def merge_frames():
122
-
123
-
124
- path = '/content/video_results/restored_imgs'
125
 
126
- if not os.path.exists(path):
127
- os.makedirs(path)
128
 
129
- image_folder = os.fsencode(path)
130
- print(image_folder)
131
- filenames = []
132
 
133
- for file in os.listdir(image_folder):
134
- filename = os.fsdecode(file)
135
- if filename.endswith( ('.jpg', '.png', '.gif') ):
136
- filenames.append(filename)
137
 
138
- filenames.sort() # this iteration technique has no built in order, so sort the frames
139
- print(filenames)
140
- images = list(map(lambda filename: imageio.imread("/content/video_results/restored_imgs/"+filename), filenames))
141
- # os.system(f"rm -rf /content/video_output.mp4")
142
- imageio.mimsave('/content/video_output.mp4', images, fps=25.0) # modify the frame duration as needed
143
- return "/content/video_output.mp4"
144
 
145
  def audio_video():
 
 
 
 
 
146
 
147
- input_video = ffmpeg.input('/content/video_output.mp4')
 
148
 
149
- input_audio = ffmpeg.input('/content/audio.wav')
150
- os.system(f"rm -rf /content/final_output.mp4")
151
- ffmpeg.concat(input_video, input_audio, v=1, a=1).output('/content/final_output.mp4').run()
152
 
153
- return "/content/final_output.mp4"
154
-
155
- def one_shot_talking(image_in,audio_in):
156
-
157
-
158
- # Pre-processing of image
159
- crop_img=crop_src_image(image_in)
160
-
161
- if os.path.exists("/content/results/restored_imgs/image_pre.png"):
162
- os.system(f"rm -rf /content/results/restored_imgs/image_pre.png")
163
-
164
- if not os.path.exists( "/content/results" ):
165
- os.makedirs("/content/results")
166
 
167
- #Improve quality of input image
168
- os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/image_pre.png -o /content/results --bg_upsampler realesrgan")
169
- # time.sleep(60)
170
 
171
- image_in_one_shot='/content/results/image_pre.png'
172
-
173
- #One Shot Talking Face algorithm
174
- calculate(image_in_one_shot,audio_in)
175
-
176
- #Video Quality Improvement
177
- os.system(f"rm -rf /content/extracted_frames/image_audio_frames")
178
- #1. Extract the frames from the video file using PyVideoFramesExtractor
179
- os.system(f"{python_path} /content/PyVideoFramesExtractor/extract.py --video=/content/train/image_audio.mp4")
180
-
181
- #2. Improve image quality using GFPGAN on each frames
182
- # os.system(f"rm -rf /content/extracted_frames/image_audio_frames")
183
- os.system(f"rm -rf /content/video_results/")
184
- os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/extracted_frames/image_audio_frames -o /content/video_results --bg_upsampler realesrgan")
185
-
186
- #3. Merge all the frames to a one video using imageio
187
- merge_frames()
188
- return audio_video()
189
-
190
-
191
- def one_shot(image_in,input_text,gender):
192
  if gender == "Female":
193
- tts = gTTS(input_text)
194
- with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
195
- tts.write_to_fp(f)
196
- f.seek(0)
197
- sound = AudioSegment.from_file(f.name, format="mp3")
198
- os.system(f"rm -rf /content/audio.wav")
199
- sound.export("/content/audio.wav", format="wav")
200
- audio_in="/content/audio.wav"
201
- return one_shot_talking(image_in,audio_in)
202
  elif gender == 'Male':
203
-
204
- models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
205
- "Voicemod/fastspeech2-en-male1",
206
- arg_overrides={"vocoder": "hifigan", "fp16": False}
207
- )
208
-
209
- model = models[0]
210
- TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
211
- generator = task.build_generator([model], cfg)
212
- # next(model.parameters()).device
 
 
 
 
 
 
 
 
 
 
 
213
 
214
- sample = TTSHubInterface.get_model_input(task, input_text)
215
- sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"]
216
- sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"]
217
- sample["speaker"] = sample["speaker"]
218
-
219
- wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
220
- # soundfile.write("/content/audio_before.wav", wav, rate)
221
- os.system(f"rm -rf /content/audio_before.wav")
222
- soundfile.write("/content/audio_before.wav", wav.cpu().clone().numpy(), rate)
223
- os.system(f"rm -rf /content/audio.wav")
224
- cmd='ffmpeg -i /content/audio_before.wav -filter:a "atempo=0.7" -vn /content/audio.wav'
225
- os.system(cmd)
226
- audio_in="/content/audio.wav"
227
-
228
- return one_shot_talking(image_in,audio_in)
229
-
230
-
231
  def run():
232
- with gr.Blocks(css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}") as demo:
233
- gr.Markdown("<h1 style='text-align: center;'>"+ "One Shot Talking Face from Text" + "</h1><br/><br/>")
234
- with gr.Group():
235
- # with gr.Box():
236
- with gr.Row():
237
- # with gr.Row().style(equal_height=True):
238
- image_in = gr.Image(show_label=True, type="filepath",label="Input Image")
239
- input_text = gr.Textbox(show_label=True,label="Input Text")
240
- gender = gr.Radio(["Female","Male"],value="Female",label="Gender")
241
- video_out = gr.Video(show_label=True,label="Output")
242
- with gr.Row():
243
- # with gr.Row().style(equal_height=True):
244
- btn = gr.Button("Generate")
245
- # gr.Markdown(
246
- # """
247
- # <p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at
248
- # <a href="mailto:[email protected]" target="_blank">[email protected]</a>
249
- # <p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>
250
-
251
- # """)
252
-
253
- btn.click(one_shot, inputs=[image_in,input_text,gender], outputs=[video_out])
254
- demo.queue()
255
- demo.launch(server_name="0.0.0.0", server_port=7860)
256
 
257
  if __name__ == "__main__":
258
  run()
 
8
  import tempfile
9
  from pydub.generators import Sine
10
  from pydub import AudioSegment
 
11
  import cv2
12
  import imageio
 
13
  import ffmpeg
14
  from io import BytesIO
15
  import requests
16
  import sys
17
+ import mediapipe as mp
18
 
19
  python_path = sys.executable
20
 
 
23
 
24
  block = gr.Blocks()
25
 
26
+ def crop_src_image(src_img):
27
+ mp_face_detection = mp.solutions.face_detection
28
+ mp_drawing = mp.solutions.drawing_utils
29
+
30
+ save_img = '/content/image_pre.png'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  img = cv2.imread(src_img)
 
32
  h, width, _ = img.shape
33
+
34
+ with mp_face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5) as face_detection:
35
+ results = face_detection.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
36
+ if results.detections:
37
+ detection = results.detections[0] # Use the first detected face
38
+ bboxC = detection.location_data.relative_bounding_box
39
+ x = int(bboxC.xmin * width)
40
+ y = int(bboxC.ymin * h)
41
+ w = int(bboxC.width * width)
42
+ h = int(bboxC.height * h)
43
+
44
+ # Ensure bbox dimensions are within image boundaries
45
+ x, y = max(0, x), max(0, y)
46
+ w, h = min(width - x, w), min(h - y, h)
47
+
48
+ img = img[y:y + h, x:x + w]
49
+ img = cv2.resize(img, (256, 256))
50
+ cv2.imwrite(save_img, img)
51
+ else:
52
+ # If no face is detected, resize the original image
53
+ img = cv2.resize(img, (256, 256))
54
+ cv2.imwrite(save_img, img)
55
  return save_img
56
 
57
  def pad_image(image):
 
84
  image = Image.open(BytesIO(response.content))
85
  print("****"*100)
86
  image = pad_image(image)
 
87
  image.save("image.png")
88
 
89
  pocketsphinx_run = subprocess.run(['pocketsphinx', '-phone_align', 'yes', 'single', '/content/audio.wav'], check=True, capture_output=True)
90
  jq_run = subprocess.run(['jq', '[.w[]|{word: (.t | ascii_upcase | sub("<S>"; "sil") | sub("<SIL>"; "sil") | sub("\\\(2\\\)"; "") | sub("\\\(3\\\)"; "") | sub("\\\(4\\\)"; "") | sub("\\\[SPEECH\\\]"; "SIL") | sub("\\\[NOISE\\\]"; "SIL")), phones: [.w[]|{ph: .t | sub("\\\+SPN\\\+"; "SIL") | sub("\\\+NSN\\\+"; "SIL"), bg: (.b*100)|floor, ed: (.b*100+.d*100)|floor}]}]'], input=pocketsphinx_run.stdout, capture_output=True)
91
  with open("test.json", "w") as f:
92
  f.write(jq_run.stdout.decode('utf-8').strip())
 
 
93
  os.system(f"cd /content/one-shot-talking-face && {python_path} -B test_script.py --img_path /content/image.png --audio_path /content/audio.wav --phoneme_path /content/test.json --save_dir /content/train")
94
  return "/content/train/image_audio.mp4"
95
 
96
  def merge_frames():
97
+ path = '/content/video_results/restored_imgs'
 
 
98
 
99
+ if not os.path.exists(path):
100
+ os.makedirs(path)
101
 
102
+ image_folder = os.fsencode(path)
103
+ filenames = []
 
104
 
105
+ for file in os.listdir(image_folder):
106
+ filename = os.fsdecode(file)
107
+ if filename.endswith(('.jpg', '.png', '.gif')):
108
+ filenames.append(filename)
109
 
110
+ filenames.sort()
111
+ images = list(map(lambda filename: imageio.imread("/content/video_results/restored_imgs/" + filename), filenames))
112
+ imageio.mimsave('/content/video_output.mp4', images, fps=25.0)
113
+ return "/content/video_output.mp4"
 
 
114
 
115
  def audio_video():
116
+ input_video = ffmpeg.input('/content/video_output.mp4')
117
+ input_audio = ffmpeg.input('/content/audio.wav')
118
+ os.system(f"rm -rf /content/final_output.mp4")
119
+ ffmpeg.concat(input_video, input_audio, v=1, a=1).output('/content/final_output.mp4').run()
120
+ return "/content/final_output.mp4"
121
 
122
+ def one_shot_talking(image_in, audio_in):
123
+ crop_img = crop_src_image(image_in)
124
 
125
+ if os.path.exists("/content/results/restored_imgs/image_pre.png"):
126
+ os.system(f"rm -rf /content/results/restored_imgs/image_pre.png")
 
127
 
128
+ if not os.path.exists("/content/results"):
129
+ os.makedirs("/content/results")
 
 
 
 
 
 
 
 
 
 
 
130
 
131
+ os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/image_pre.png -o /content/results --bg_upsampler realesrgan")
132
+ image_in_one_shot = '/content/results/image_pre.png'
 
133
 
134
+ calculate(image_in_one_shot, audio_in)
135
+ os.system(f"{python_path} /content/PyVideoFramesExtractor/extract.py --video=/content/train/image_audio.mp4")
136
+ os.system(f"rm -rf /content/video_results/")
137
+ os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/extracted_frames/image_audio_frames -o /content/video_results --bg_upsampler realesrgan")
138
+ merge_frames()
139
+ return audio_video()
140
+
141
+ def one_shot(image_in, input_text, gender):
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  if gender == "Female":
143
+ tts = gTTS(input_text)
144
+ with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
145
+ tts.write_to_fp(f)
146
+ f.seek(0)
147
+ sound = AudioSegment.from_file(f.name, format="mp3")
148
+ os.system(f"rm -rf /content/audio.wav")
149
+ sound.export("/content/audio.wav", format="wav")
150
+ audio_in = "/content/audio.wav"
151
+ return one_shot_talking(image_in, audio_in)
152
  elif gender == 'Male':
153
+ models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
154
+ "Voicemod/fastspeech2-en-male1",
155
+ arg_overrides={"vocoder": "hifigan", "fp16": False}
156
+ )
157
+ model = models[0]
158
+ TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
159
+ generator = task.build_generator([model], cfg)
160
+
161
+ sample = TTSHubInterface.get_model_input(task, input_text)
162
+ sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"]
163
+ sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"]
164
+ sample["speaker"] = sample["speaker"]
165
+
166
+ wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
167
+ os.system(f"rm -rf /content/audio_before.wav")
168
+ soundfile.write("/content/audio_before.wav", wav.cpu().clone().numpy(), rate)
169
+ os.system(f"rm -rf /content/audio.wav")
170
+ cmd = 'ffmpeg -i /content/audio_before.wav -filter:a "atempo=0.7" -vn /content/audio.wav'
171
+ os.system(cmd)
172
+ audio_in = "/content/audio.wav"
173
+ return one_shot_talking(image_in, audio_in)
174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
  def run():
176
+ with gr.Blocks(css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}") as demo:
177
+ gr.Markdown("<h1 style='text-align: center;'>One Shot Talking Face from Text</h1><br/><br/>")
178
+ with gr.Group():
179
+ with gr.Row():
180
+ image_in = gr.Image(show_label=True, type="filepath", label="Input Image")
181
+ input_text = gr.Textbox(show_label=True, label="Input Text")
182
+ gender = gr.Radio(["Female", "Male"], value="Female", label="Gender")
183
+ video_out = gr.Video(show_label=True, label="Output")
184
+ with gr.Row():
185
+ btn = gr.Button("Generate")
186
+ btn.click(one_shot, inputs=[image_in, input_text, gender], outputs=[video_out])
187
+ demo.queue()
188
+ demo.launch(server_name="0.0.0.0", server_port=7860)
 
 
 
 
 
 
 
 
 
 
 
189
 
190
  if __name__ == "__main__":
191
  run()