Spaces:
Build error
Build error
# Based on: | |
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license] | |
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license] | |
import torch | |
import torch.nn as nn | |
from .blocks import ( | |
t2i_modulate, | |
CaptionEmbedder, | |
AttentionKVCompress, | |
MultiHeadCrossAttention, | |
T2IFinalLayer, | |
SizeEmbedder, | |
) | |
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch | |
def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32): | |
grid_h, grid_w = torch.meshgrid( | |
torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation, | |
torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation, | |
indexing='ij' | |
) | |
emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype) | |
emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype) | |
emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D) | |
return emb | |
class PixArtMSBlock(nn.Module): | |
""" | |
A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning. | |
""" | |
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None, | |
sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.attn = AttentionKVCompress( | |
hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio, | |
qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs | |
) | |
self.cross_attn = MultiHeadCrossAttention( | |
hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs | |
) | |
self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
# to be compatible with lower version pytorch | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
self.mlp = Mlp( | |
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, | |
dtype=dtype, device=device, operations=operations | |
) | |
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5) | |
def forward(self, x, y, t, mask=None, HW=None, **kwargs): | |
B, N, C = x.shape | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1) | |
x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW)) | |
x = x + self.cross_attn(x, y, mask) | |
x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) | |
return x | |
### Core PixArt Model ### | |
class PixArtMS(nn.Module): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
class_dropout_prob=0.1, | |
learn_sigma=True, | |
pred_sigma=True, | |
drop_path: float = 0., | |
caption_channels=4096, | |
pe_interpolation=None, | |
pe_precision=None, | |
config=None, | |
model_max_length=120, | |
micro_condition=True, | |
qk_norm=False, | |
kv_compress_config=None, | |
dtype=None, | |
device=None, | |
operations=None, | |
**kwargs, | |
): | |
nn.Module.__init__(self) | |
self.dtype = dtype | |
self.pred_sigma = pred_sigma | |
self.in_channels = in_channels | |
self.out_channels = in_channels * 2 if pred_sigma else in_channels | |
self.patch_size = patch_size | |
self.num_heads = num_heads | |
self.pe_interpolation = pe_interpolation | |
self.pe_precision = pe_precision | |
self.hidden_size = hidden_size | |
self.depth = depth | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
self.t_block = nn.Sequential( | |
nn.SiLU(), | |
operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device) | |
) | |
self.x_embedder = PatchEmbed( | |
patch_size=patch_size, | |
in_chans=in_channels, | |
embed_dim=hidden_size, | |
bias=True, | |
dtype=dtype, | |
device=device, | |
operations=operations | |
) | |
self.t_embedder = TimestepEmbedder( | |
hidden_size, dtype=dtype, device=device, operations=operations, | |
) | |
self.y_embedder = CaptionEmbedder( | |
in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, | |
act_layer=approx_gelu, token_num=model_max_length, | |
dtype=dtype, device=device, operations=operations, | |
) | |
self.micro_conditioning = micro_condition | |
if self.micro_conditioning: | |
self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations) | |
self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations) | |
# For fixed sin-cos embedding: | |
# num_patches = (input_size // patch_size) * (input_size // patch_size) | |
# self.base_size = input_size // self.patch_size | |
# self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size)) | |
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule | |
if kv_compress_config is None: | |
kv_compress_config = { | |
'sampling': None, | |
'scale_factor': 1, | |
'kv_compress_layer': [], | |
} | |
self.blocks = nn.ModuleList([ | |
PixArtMSBlock( | |
hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i], | |
sampling=kv_compress_config['sampling'], | |
sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1, | |
qk_norm=qk_norm, | |
dtype=dtype, | |
device=device, | |
operations=operations, | |
) | |
for i in range(depth) | |
]) | |
self.final_layer = T2IFinalLayer( | |
hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations | |
) | |
def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs): | |
""" | |
Original forward pass of PixArt. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N, 1, 120, C) conditioning | |
ar: (N, 1): aspect ratio | |
cs: (N ,2) size conditioning for height/width | |
""" | |
B, C, H, W = x.shape | |
c_res = (H + W) // 2 | |
pe_interpolation = self.pe_interpolation | |
if pe_interpolation is None or self.pe_precision is not None: | |
# calculate pe_interpolation on-the-fly | |
pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0) | |
pos_embed = get_2d_sincos_pos_embed_torch( | |
self.hidden_size, | |
h=(H // self.patch_size), | |
w=(W // self.patch_size), | |
pe_interpolation=pe_interpolation, | |
base_size=((round(c_res / 64) * 64) // self.patch_size), | |
device=x.device, | |
dtype=x.dtype, | |
).unsqueeze(0) | |
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
t = self.t_embedder(timestep, x.dtype) # (N, D) | |
if self.micro_conditioning and (c_size is not None and c_ar is not None): | |
bs = x.shape[0] | |
c_size = self.csize_embedder(c_size, bs) # (N, D) | |
c_ar = self.ar_embedder(c_ar, bs) # (N, D) | |
t = t + torch.cat([c_size, c_ar], dim=1) | |
t0 = self.t_block(t) | |
y = self.y_embedder(y, self.training) # (N, D) | |
if mask is not None: | |
if mask.shape[0] != y.shape[0]: | |
mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | |
mask = mask.squeeze(1).squeeze(1) | |
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | |
y_lens = mask.sum(dim=1).tolist() | |
else: | |
y_lens = None | |
y = y.squeeze(1).view(1, -1, x.shape[-1]) | |
for block in self.blocks: | |
x = block(x, y, t0, y_lens, (H, W), **kwargs) # (N, T, D) | |
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
x = self.unpatchify(x, H, W) # (N, out_channels, H, W) | |
return x | |
def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs): | |
B, C, H, W = x.shape | |
# Fallback for missing microconds | |
if self.micro_conditioning: | |
if c_size is None: | |
c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1) | |
if c_ar is None: | |
c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1) | |
## Still accepts the input w/o that dim but returns garbage | |
if len(context.shape) == 3: | |
context = context.unsqueeze(1) | |
## run original forward pass | |
out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar) | |
## only return EPS | |
if self.pred_sigma: | |
return out[:, :self.in_channels] | |
return out | |
def unpatchify(self, x, h, w): | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.out_channels | |
p = self.x_embedder.patch_size[0] | |
h = h // self.patch_size | |
w = w // self.patch_size | |
assert h * w == x.shape[1] | |
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
x = torch.einsum('nhwpqc->nchpwq', x) | |
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) | |
return imgs | |