File size: 10,658 Bytes
be40477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Based on:
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
import torch
import torch.nn as nn

from .blocks import (
    t2i_modulate,
    CaptionEmbedder,
    AttentionKVCompress,
    MultiHeadCrossAttention,
    T2IFinalLayer,
    SizeEmbedder,
)
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch


def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32):
    grid_h, grid_w = torch.meshgrid(
        torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation,
        torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation,
        indexing='ij'
    )
    emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype)
    emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype)
    emb = torch.cat([emb_w, emb_h], dim=1)  # (H*W, D)
    return emb

class PixArtMSBlock(nn.Module):
    """

    A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning.

    """
    def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None,

                 sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs):
        super().__init__()
        self.hidden_size = hidden_size
        self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.attn = AttentionKVCompress(
            hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
            qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs
        )
        self.cross_attn = MultiHeadCrossAttention(
            hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs
        )
        self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        # to be compatible with lower version pytorch
        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.mlp = Mlp(
            in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu,
            dtype=dtype, device=device, operations=operations
        )
        self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)

    def forward(self, x, y, t, mask=None, HW=None, **kwargs):
        B, N, C = x.shape

        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1)
        x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW))
        x = x + self.cross_attn(x, y, mask)
        x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))

        return x


### Core PixArt Model ###
class PixArtMS(nn.Module):
    """

    Diffusion model with a Transformer backbone.

    """
    def __init__(

            self,

            input_size=32,

            patch_size=2,

            in_channels=4,

            hidden_size=1152,

            depth=28,

            num_heads=16,

            mlp_ratio=4.0,

            class_dropout_prob=0.1,

            learn_sigma=True,

            pred_sigma=True,

            drop_path: float = 0.,

            caption_channels=4096,

            pe_interpolation=None,

            pe_precision=None,

            config=None,

            model_max_length=120,

            micro_condition=True,

            qk_norm=False,

            kv_compress_config=None,

            dtype=None,

            device=None,

            operations=None,

            **kwargs,

    ):
        nn.Module.__init__(self)
        self.dtype = dtype
        self.pred_sigma = pred_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if pred_sigma else in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.pe_interpolation = pe_interpolation
        self.pe_precision = pe_precision
        self.hidden_size = hidden_size
        self.depth = depth

        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.t_block = nn.Sequential(
            nn.SiLU(),
            operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device)
        )
        self.x_embedder = PatchEmbed(
            patch_size=patch_size,
            in_chans=in_channels,
            embed_dim=hidden_size,
            bias=True,
            dtype=dtype,
            device=device,
            operations=operations
        )
        self.t_embedder = TimestepEmbedder(
            hidden_size, dtype=dtype, device=device, operations=operations,
        )
        self.y_embedder = CaptionEmbedder(
            in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob,
            act_layer=approx_gelu, token_num=model_max_length,
            dtype=dtype, device=device, operations=operations,
        )

        self.micro_conditioning = micro_condition
        if self.micro_conditioning:
            self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
            self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)

        # For fixed sin-cos embedding:
        # num_patches = (input_size // patch_size) * (input_size // patch_size)
        # self.base_size = input_size // self.patch_size
        # self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))

        drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)]  # stochastic depth decay rule
        if kv_compress_config is None:
            kv_compress_config = {
                'sampling': None,
                'scale_factor': 1,
                'kv_compress_layer': [],
            }
        self.blocks = nn.ModuleList([
            PixArtMSBlock(
                hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
                sampling=kv_compress_config['sampling'],
                sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1,
                qk_norm=qk_norm,
                dtype=dtype,
                device=device,
                operations=operations,
            )
            for i in range(depth)
        ])
        self.final_layer = T2IFinalLayer(
            hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
        )

    def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs):
        """

        Original forward pass of PixArt.

        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)

        t: (N,) tensor of diffusion timesteps

        y: (N, 1, 120, C) conditioning

        ar: (N, 1): aspect ratio

        cs: (N ,2) size conditioning for height/width

        """
        B, C, H, W = x.shape
        c_res = (H + W) // 2
        pe_interpolation = self.pe_interpolation
        if pe_interpolation is None or self.pe_precision is not None:
            # calculate pe_interpolation on-the-fly
            pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0)

        pos_embed = get_2d_sincos_pos_embed_torch(
            self.hidden_size,
            h=(H // self.patch_size),
            w=(W // self.patch_size),
            pe_interpolation=pe_interpolation,
            base_size=((round(c_res / 64) * 64) // self.patch_size),
            device=x.device,
            dtype=x.dtype,
        ).unsqueeze(0)

        x = self.x_embedder(x) + pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        t = self.t_embedder(timestep, x.dtype)  # (N, D)

        if self.micro_conditioning and (c_size is not None and c_ar is not None):
            bs = x.shape[0]
            c_size = self.csize_embedder(c_size, bs)  # (N, D)
            c_ar = self.ar_embedder(c_ar, bs)  # (N, D)
            t = t + torch.cat([c_size, c_ar], dim=1)

        t0 = self.t_block(t)
        y = self.y_embedder(y, self.training)  # (N, D)

        if mask is not None:
            if mask.shape[0] != y.shape[0]:
                mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
            mask = mask.squeeze(1).squeeze(1)
            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
            y_lens = mask.sum(dim=1).tolist()
        else:
            y_lens = None
            y = y.squeeze(1).view(1, -1, x.shape[-1])
        for block in self.blocks:
            x = block(x, y, t0, y_lens, (H, W), **kwargs)  # (N, T, D)

        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)
        x = self.unpatchify(x, H, W)  # (N, out_channels, H, W)

        return x

    def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs):
        B, C, H, W = x.shape

        # Fallback for missing microconds
        if self.micro_conditioning:
            if c_size is None:
                c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1)

            if c_ar is None:
                c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1)

        ## Still accepts the input w/o that dim but returns garbage
        if len(context.shape) == 3:
            context = context.unsqueeze(1)

        ## run original forward pass
        out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar)

        ## only return EPS
        if self.pred_sigma:
            return out[:, :self.in_channels]
        return out

    def unpatchify(self, x, h, w):
        """

        x: (N, T, patch_size**2 * C)

        imgs: (N, H, W, C)

        """
        c = self.out_channels
        p = self.x_embedder.patch_size[0]
        h = h // self.patch_size
        w = w // self.patch_size
        assert h * w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
        return imgs