Spaces:
Build error
Build error
Upload 294 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- assets/assets_black_tshirt.png +0 -0
- assets/assets_broc_ref.jpg +0 -0
- assets/black_tshirt.png +0 -0
- assets/broc_ref.jpg +0 -0
- comfy/checkpoint_pickle.py +13 -0
- comfy/cldm/cldm.py +433 -0
- comfy/cldm/control_types.py +10 -0
- comfy/cldm/dit_embedder.py +120 -0
- comfy/cldm/mmdit.py +81 -0
- comfy/cli_args.py +190 -0
- comfy/clip_config_bigg.json +23 -0
- comfy/clip_model.py +218 -0
- comfy/clip_vision.py +129 -0
- comfy/clip_vision_config_g.json +18 -0
- comfy/clip_vision_config_h.json +18 -0
- comfy/clip_vision_config_vitl.json +18 -0
- comfy/clip_vision_config_vitl_336.json +18 -0
- comfy/clip_vision_siglip_384.json +13 -0
- comfy/comfy_types/README.md +43 -0
- comfy/comfy_types/__init__.py +45 -0
- comfy/comfy_types/examples/example_nodes.py +28 -0
- comfy/comfy_types/examples/input_options.png +0 -0
- comfy/comfy_types/examples/input_types.png +0 -0
- comfy/comfy_types/examples/required_hint.png +0 -0
- comfy/comfy_types/node_typing.py +274 -0
- comfy/conds.py +83 -0
- comfy/controlnet.py +862 -0
- comfy/diffusers_convert.py +288 -0
- comfy/diffusers_load.py +36 -0
- comfy/extra_samplers/uni_pc.py +873 -0
- comfy/float.py +67 -0
- comfy/gligen.py +344 -0
- comfy/hooks.py +785 -0
- comfy/k_diffusion/deis.py +120 -0
- comfy/k_diffusion/sampling.py +1338 -0
- comfy/k_diffusion/utils.py +313 -0
- comfy/latent_formats.py +409 -0
- comfy/ldm/audio/autoencoder.py +282 -0
- comfy/ldm/audio/dit.py +896 -0
- comfy/ldm/audio/embedders.py +108 -0
- comfy/ldm/aura/mmdit.py +498 -0
- comfy/ldm/cascade/common.py +154 -0
- comfy/ldm/cascade/controlnet.py +92 -0
- comfy/ldm/cascade/stage_a.py +255 -0
- comfy/ldm/cascade/stage_b.py +256 -0
- comfy/ldm/cascade/stage_c.py +273 -0
- comfy/ldm/cascade/stage_c_coder.py +95 -0
- comfy/ldm/common_dit.py +30 -0
- comfy/ldm/cosmos/blocks.py +808 -0
- comfy/ldm/cosmos/cosmos_tokenizer/layers3d.py +1041 -0
assets/assets_black_tshirt.png
ADDED
assets/assets_broc_ref.jpg
ADDED
assets/black_tshirt.png
ADDED
assets/broc_ref.jpg
ADDED
comfy/checkpoint_pickle.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
|
3 |
+
load = pickle.load
|
4 |
+
|
5 |
+
class Empty:
|
6 |
+
pass
|
7 |
+
|
8 |
+
class Unpickler(pickle.Unpickler):
|
9 |
+
def find_class(self, module, name):
|
10 |
+
#TODO: safe unpickle
|
11 |
+
if module.startswith("pytorch_lightning"):
|
12 |
+
return Empty
|
13 |
+
return super().find_class(module, name)
|
comfy/cldm/cldm.py
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#taken from: https://github.com/lllyasviel/ControlNet
|
2 |
+
#and modified
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from ..ldm.modules.diffusionmodules.util import (
|
8 |
+
timestep_embedding,
|
9 |
+
)
|
10 |
+
|
11 |
+
from ..ldm.modules.attention import SpatialTransformer
|
12 |
+
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
13 |
+
from ..ldm.util import exists
|
14 |
+
from .control_types import UNION_CONTROLNET_TYPES
|
15 |
+
from collections import OrderedDict
|
16 |
+
import comfy.ops
|
17 |
+
from comfy.ldm.modules.attention import optimized_attention
|
18 |
+
|
19 |
+
class OptimizedAttention(nn.Module):
|
20 |
+
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
21 |
+
super().__init__()
|
22 |
+
self.heads = nhead
|
23 |
+
self.c = c
|
24 |
+
|
25 |
+
self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
|
26 |
+
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = self.in_proj(x)
|
30 |
+
q, k, v = x.split(self.c, dim=2)
|
31 |
+
out = optimized_attention(q, k, v, self.heads)
|
32 |
+
return self.out_proj(out)
|
33 |
+
|
34 |
+
class QuickGELU(nn.Module):
|
35 |
+
def forward(self, x: torch.Tensor):
|
36 |
+
return x * torch.sigmoid(1.702 * x)
|
37 |
+
|
38 |
+
class ResBlockUnionControlnet(nn.Module):
|
39 |
+
def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
|
40 |
+
super().__init__()
|
41 |
+
self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
|
42 |
+
self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
43 |
+
self.mlp = nn.Sequential(
|
44 |
+
OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
|
45 |
+
("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
|
46 |
+
self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
47 |
+
|
48 |
+
def attention(self, x: torch.Tensor):
|
49 |
+
return self.attn(x)
|
50 |
+
|
51 |
+
def forward(self, x: torch.Tensor):
|
52 |
+
x = x + self.attention(self.ln_1(x))
|
53 |
+
x = x + self.mlp(self.ln_2(x))
|
54 |
+
return x
|
55 |
+
|
56 |
+
class ControlledUnetModel(UNetModel):
|
57 |
+
#implemented in the ldm unet
|
58 |
+
pass
|
59 |
+
|
60 |
+
class ControlNet(nn.Module):
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
image_size,
|
64 |
+
in_channels,
|
65 |
+
model_channels,
|
66 |
+
hint_channels,
|
67 |
+
num_res_blocks,
|
68 |
+
dropout=0,
|
69 |
+
channel_mult=(1, 2, 4, 8),
|
70 |
+
conv_resample=True,
|
71 |
+
dims=2,
|
72 |
+
num_classes=None,
|
73 |
+
use_checkpoint=False,
|
74 |
+
dtype=torch.float32,
|
75 |
+
num_heads=-1,
|
76 |
+
num_head_channels=-1,
|
77 |
+
num_heads_upsample=-1,
|
78 |
+
use_scale_shift_norm=False,
|
79 |
+
resblock_updown=False,
|
80 |
+
use_new_attention_order=False,
|
81 |
+
use_spatial_transformer=False, # custom transformer support
|
82 |
+
transformer_depth=1, # custom transformer support
|
83 |
+
context_dim=None, # custom transformer support
|
84 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
85 |
+
legacy=True,
|
86 |
+
disable_self_attentions=None,
|
87 |
+
num_attention_blocks=None,
|
88 |
+
disable_middle_self_attn=False,
|
89 |
+
use_linear_in_transformer=False,
|
90 |
+
adm_in_channels=None,
|
91 |
+
transformer_depth_middle=None,
|
92 |
+
transformer_depth_output=None,
|
93 |
+
attn_precision=None,
|
94 |
+
union_controlnet_num_control_type=None,
|
95 |
+
device=None,
|
96 |
+
operations=comfy.ops.disable_weight_init,
|
97 |
+
**kwargs,
|
98 |
+
):
|
99 |
+
super().__init__()
|
100 |
+
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
101 |
+
if use_spatial_transformer:
|
102 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
103 |
+
|
104 |
+
if context_dim is not None:
|
105 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
106 |
+
# from omegaconf.listconfig import ListConfig
|
107 |
+
# if type(context_dim) == ListConfig:
|
108 |
+
# context_dim = list(context_dim)
|
109 |
+
|
110 |
+
if num_heads_upsample == -1:
|
111 |
+
num_heads_upsample = num_heads
|
112 |
+
|
113 |
+
if num_heads == -1:
|
114 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
115 |
+
|
116 |
+
if num_head_channels == -1:
|
117 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
118 |
+
|
119 |
+
self.dims = dims
|
120 |
+
self.image_size = image_size
|
121 |
+
self.in_channels = in_channels
|
122 |
+
self.model_channels = model_channels
|
123 |
+
|
124 |
+
if isinstance(num_res_blocks, int):
|
125 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
126 |
+
else:
|
127 |
+
if len(num_res_blocks) != len(channel_mult):
|
128 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
129 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
130 |
+
self.num_res_blocks = num_res_blocks
|
131 |
+
|
132 |
+
if disable_self_attentions is not None:
|
133 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
134 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
135 |
+
if num_attention_blocks is not None:
|
136 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
137 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
138 |
+
|
139 |
+
transformer_depth = transformer_depth[:]
|
140 |
+
|
141 |
+
self.dropout = dropout
|
142 |
+
self.channel_mult = channel_mult
|
143 |
+
self.conv_resample = conv_resample
|
144 |
+
self.num_classes = num_classes
|
145 |
+
self.use_checkpoint = use_checkpoint
|
146 |
+
self.dtype = dtype
|
147 |
+
self.num_heads = num_heads
|
148 |
+
self.num_head_channels = num_head_channels
|
149 |
+
self.num_heads_upsample = num_heads_upsample
|
150 |
+
self.predict_codebook_ids = n_embed is not None
|
151 |
+
|
152 |
+
time_embed_dim = model_channels * 4
|
153 |
+
self.time_embed = nn.Sequential(
|
154 |
+
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
155 |
+
nn.SiLU(),
|
156 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
157 |
+
)
|
158 |
+
|
159 |
+
if self.num_classes is not None:
|
160 |
+
if isinstance(self.num_classes, int):
|
161 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
162 |
+
elif self.num_classes == "continuous":
|
163 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
164 |
+
elif self.num_classes == "sequential":
|
165 |
+
assert adm_in_channels is not None
|
166 |
+
self.label_emb = nn.Sequential(
|
167 |
+
nn.Sequential(
|
168 |
+
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
169 |
+
nn.SiLU(),
|
170 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
171 |
+
)
|
172 |
+
)
|
173 |
+
else:
|
174 |
+
raise ValueError()
|
175 |
+
|
176 |
+
self.input_blocks = nn.ModuleList(
|
177 |
+
[
|
178 |
+
TimestepEmbedSequential(
|
179 |
+
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
180 |
+
)
|
181 |
+
]
|
182 |
+
)
|
183 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
|
184 |
+
|
185 |
+
self.input_hint_block = TimestepEmbedSequential(
|
186 |
+
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
|
187 |
+
nn.SiLU(),
|
188 |
+
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
|
189 |
+
nn.SiLU(),
|
190 |
+
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
191 |
+
nn.SiLU(),
|
192 |
+
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
|
193 |
+
nn.SiLU(),
|
194 |
+
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
195 |
+
nn.SiLU(),
|
196 |
+
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
|
197 |
+
nn.SiLU(),
|
198 |
+
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
199 |
+
nn.SiLU(),
|
200 |
+
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
201 |
+
)
|
202 |
+
|
203 |
+
self._feature_size = model_channels
|
204 |
+
input_block_chans = [model_channels]
|
205 |
+
ch = model_channels
|
206 |
+
ds = 1
|
207 |
+
for level, mult in enumerate(channel_mult):
|
208 |
+
for nr in range(self.num_res_blocks[level]):
|
209 |
+
layers = [
|
210 |
+
ResBlock(
|
211 |
+
ch,
|
212 |
+
time_embed_dim,
|
213 |
+
dropout,
|
214 |
+
out_channels=mult * model_channels,
|
215 |
+
dims=dims,
|
216 |
+
use_checkpoint=use_checkpoint,
|
217 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
218 |
+
dtype=self.dtype,
|
219 |
+
device=device,
|
220 |
+
operations=operations,
|
221 |
+
)
|
222 |
+
]
|
223 |
+
ch = mult * model_channels
|
224 |
+
num_transformers = transformer_depth.pop(0)
|
225 |
+
if num_transformers > 0:
|
226 |
+
if num_head_channels == -1:
|
227 |
+
dim_head = ch // num_heads
|
228 |
+
else:
|
229 |
+
num_heads = ch // num_head_channels
|
230 |
+
dim_head = num_head_channels
|
231 |
+
if legacy:
|
232 |
+
#num_heads = 1
|
233 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
234 |
+
if exists(disable_self_attentions):
|
235 |
+
disabled_sa = disable_self_attentions[level]
|
236 |
+
else:
|
237 |
+
disabled_sa = False
|
238 |
+
|
239 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
240 |
+
layers.append(
|
241 |
+
SpatialTransformer(
|
242 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
243 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
244 |
+
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
245 |
+
)
|
246 |
+
)
|
247 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
248 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
249 |
+
self._feature_size += ch
|
250 |
+
input_block_chans.append(ch)
|
251 |
+
if level != len(channel_mult) - 1:
|
252 |
+
out_ch = ch
|
253 |
+
self.input_blocks.append(
|
254 |
+
TimestepEmbedSequential(
|
255 |
+
ResBlock(
|
256 |
+
ch,
|
257 |
+
time_embed_dim,
|
258 |
+
dropout,
|
259 |
+
out_channels=out_ch,
|
260 |
+
dims=dims,
|
261 |
+
use_checkpoint=use_checkpoint,
|
262 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
263 |
+
down=True,
|
264 |
+
dtype=self.dtype,
|
265 |
+
device=device,
|
266 |
+
operations=operations
|
267 |
+
)
|
268 |
+
if resblock_updown
|
269 |
+
else Downsample(
|
270 |
+
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
271 |
+
)
|
272 |
+
)
|
273 |
+
)
|
274 |
+
ch = out_ch
|
275 |
+
input_block_chans.append(ch)
|
276 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
277 |
+
ds *= 2
|
278 |
+
self._feature_size += ch
|
279 |
+
|
280 |
+
if num_head_channels == -1:
|
281 |
+
dim_head = ch // num_heads
|
282 |
+
else:
|
283 |
+
num_heads = ch // num_head_channels
|
284 |
+
dim_head = num_head_channels
|
285 |
+
if legacy:
|
286 |
+
#num_heads = 1
|
287 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
288 |
+
mid_block = [
|
289 |
+
ResBlock(
|
290 |
+
ch,
|
291 |
+
time_embed_dim,
|
292 |
+
dropout,
|
293 |
+
dims=dims,
|
294 |
+
use_checkpoint=use_checkpoint,
|
295 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
296 |
+
dtype=self.dtype,
|
297 |
+
device=device,
|
298 |
+
operations=operations
|
299 |
+
)]
|
300 |
+
if transformer_depth_middle >= 0:
|
301 |
+
mid_block += [SpatialTransformer( # always uses a self-attn
|
302 |
+
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
303 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
304 |
+
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
305 |
+
),
|
306 |
+
ResBlock(
|
307 |
+
ch,
|
308 |
+
time_embed_dim,
|
309 |
+
dropout,
|
310 |
+
dims=dims,
|
311 |
+
use_checkpoint=use_checkpoint,
|
312 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
313 |
+
dtype=self.dtype,
|
314 |
+
device=device,
|
315 |
+
operations=operations
|
316 |
+
)]
|
317 |
+
self.middle_block = TimestepEmbedSequential(*mid_block)
|
318 |
+
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
|
319 |
+
self._feature_size += ch
|
320 |
+
|
321 |
+
if union_controlnet_num_control_type is not None:
|
322 |
+
self.num_control_type = union_controlnet_num_control_type
|
323 |
+
num_trans_channel = 320
|
324 |
+
num_trans_head = 8
|
325 |
+
num_trans_layer = 1
|
326 |
+
num_proj_channel = 320
|
327 |
+
# task_scale_factor = num_trans_channel ** 0.5
|
328 |
+
self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device))
|
329 |
+
|
330 |
+
self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)])
|
331 |
+
self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device)
|
332 |
+
#-----------------------------------------------------------------------------------------------------
|
333 |
+
|
334 |
+
control_add_embed_dim = 256
|
335 |
+
class ControlAddEmbedding(nn.Module):
|
336 |
+
def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None):
|
337 |
+
super().__init__()
|
338 |
+
self.num_control_type = num_control_type
|
339 |
+
self.in_dim = in_dim
|
340 |
+
self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
|
341 |
+
self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
|
342 |
+
def forward(self, control_type, dtype, device):
|
343 |
+
c_type = torch.zeros((self.num_control_type,), device=device)
|
344 |
+
c_type[control_type] = 1.0
|
345 |
+
c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
|
346 |
+
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
|
347 |
+
|
348 |
+
self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
|
349 |
+
else:
|
350 |
+
self.task_embedding = None
|
351 |
+
self.control_add_embedding = None
|
352 |
+
|
353 |
+
def union_controlnet_merge(self, hint, control_type, emb, context):
|
354 |
+
# Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
|
355 |
+
inputs = []
|
356 |
+
condition_list = []
|
357 |
+
|
358 |
+
for idx in range(min(1, len(control_type))):
|
359 |
+
controlnet_cond = self.input_hint_block(hint[idx], emb, context)
|
360 |
+
feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
|
361 |
+
if idx < len(control_type):
|
362 |
+
feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
|
363 |
+
|
364 |
+
inputs.append(feat_seq.unsqueeze(1))
|
365 |
+
condition_list.append(controlnet_cond)
|
366 |
+
|
367 |
+
x = torch.cat(inputs, dim=1)
|
368 |
+
x = self.transformer_layes(x)
|
369 |
+
controlnet_cond_fuser = None
|
370 |
+
for idx in range(len(control_type)):
|
371 |
+
alpha = self.spatial_ch_projs(x[:, idx])
|
372 |
+
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
|
373 |
+
o = condition_list[idx] + alpha
|
374 |
+
if controlnet_cond_fuser is None:
|
375 |
+
controlnet_cond_fuser = o
|
376 |
+
else:
|
377 |
+
controlnet_cond_fuser += o
|
378 |
+
return controlnet_cond_fuser
|
379 |
+
|
380 |
+
def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
|
381 |
+
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
|
382 |
+
|
383 |
+
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
384 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
385 |
+
emb = self.time_embed(t_emb)
|
386 |
+
|
387 |
+
guided_hint = None
|
388 |
+
if self.control_add_embedding is not None: #Union Controlnet
|
389 |
+
control_type = kwargs.get("control_type", [])
|
390 |
+
|
391 |
+
if any([c >= self.num_control_type for c in control_type]):
|
392 |
+
max_type = max(control_type)
|
393 |
+
max_type_name = {
|
394 |
+
v: k for k, v in UNION_CONTROLNET_TYPES.items()
|
395 |
+
}[max_type]
|
396 |
+
raise ValueError(
|
397 |
+
f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
|
398 |
+
f"({self.num_control_type}) supported.\n" +
|
399 |
+
"Please consider using the ProMax ControlNet Union model.\n" +
|
400 |
+
"https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
|
401 |
+
)
|
402 |
+
|
403 |
+
emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
|
404 |
+
if len(control_type) > 0:
|
405 |
+
if len(hint.shape) < 5:
|
406 |
+
hint = hint.unsqueeze(dim=0)
|
407 |
+
guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
|
408 |
+
|
409 |
+
if guided_hint is None:
|
410 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
411 |
+
|
412 |
+
out_output = []
|
413 |
+
out_middle = []
|
414 |
+
|
415 |
+
if self.num_classes is not None:
|
416 |
+
assert y.shape[0] == x.shape[0]
|
417 |
+
emb = emb + self.label_emb(y)
|
418 |
+
|
419 |
+
h = x
|
420 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
421 |
+
if guided_hint is not None:
|
422 |
+
h = module(h, emb, context)
|
423 |
+
h += guided_hint
|
424 |
+
guided_hint = None
|
425 |
+
else:
|
426 |
+
h = module(h, emb, context)
|
427 |
+
out_output.append(zero_conv(h, emb, context))
|
428 |
+
|
429 |
+
h = self.middle_block(h, emb, context)
|
430 |
+
out_middle.append(self.middle_block_out(h, emb, context))
|
431 |
+
|
432 |
+
return {"middle": out_middle, "output": out_output}
|
433 |
+
|
comfy/cldm/control_types.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
UNION_CONTROLNET_TYPES = {
|
2 |
+
"openpose": 0,
|
3 |
+
"depth": 1,
|
4 |
+
"hed/pidi/scribble/ted": 2,
|
5 |
+
"canny/lineart/anime_lineart/mlsd": 3,
|
6 |
+
"normal": 4,
|
7 |
+
"segment": 5,
|
8 |
+
"tile": 6,
|
9 |
+
"repaint": 7,
|
10 |
+
}
|
comfy/cldm/dit_embedder.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torch import Tensor
|
7 |
+
|
8 |
+
from comfy.ldm.modules.diffusionmodules.mmdit import DismantledBlock, PatchEmbed, VectorEmbedder, TimestepEmbedder, get_2d_sincos_pos_embed_torch
|
9 |
+
|
10 |
+
|
11 |
+
class ControlNetEmbedder(nn.Module):
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
img_size: int,
|
16 |
+
patch_size: int,
|
17 |
+
in_chans: int,
|
18 |
+
attention_head_dim: int,
|
19 |
+
num_attention_heads: int,
|
20 |
+
adm_in_channels: int,
|
21 |
+
num_layers: int,
|
22 |
+
main_model_double: int,
|
23 |
+
double_y_emb: bool,
|
24 |
+
device: torch.device,
|
25 |
+
dtype: torch.dtype,
|
26 |
+
pos_embed_max_size: Optional[int] = None,
|
27 |
+
operations = None,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.main_model_double = main_model_double
|
31 |
+
self.dtype = dtype
|
32 |
+
self.hidden_size = num_attention_heads * attention_head_dim
|
33 |
+
self.patch_size = patch_size
|
34 |
+
self.x_embedder = PatchEmbed(
|
35 |
+
img_size=img_size,
|
36 |
+
patch_size=patch_size,
|
37 |
+
in_chans=in_chans,
|
38 |
+
embed_dim=self.hidden_size,
|
39 |
+
strict_img_size=pos_embed_max_size is None,
|
40 |
+
device=device,
|
41 |
+
dtype=dtype,
|
42 |
+
operations=operations,
|
43 |
+
)
|
44 |
+
|
45 |
+
self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations)
|
46 |
+
|
47 |
+
self.double_y_emb = double_y_emb
|
48 |
+
if self.double_y_emb:
|
49 |
+
self.orig_y_embedder = VectorEmbedder(
|
50 |
+
adm_in_channels, self.hidden_size, dtype, device, operations=operations
|
51 |
+
)
|
52 |
+
self.y_embedder = VectorEmbedder(
|
53 |
+
self.hidden_size, self.hidden_size, dtype, device, operations=operations
|
54 |
+
)
|
55 |
+
else:
|
56 |
+
self.y_embedder = VectorEmbedder(
|
57 |
+
adm_in_channels, self.hidden_size, dtype, device, operations=operations
|
58 |
+
)
|
59 |
+
|
60 |
+
self.transformer_blocks = nn.ModuleList(
|
61 |
+
DismantledBlock(
|
62 |
+
hidden_size=self.hidden_size, num_heads=num_attention_heads, qkv_bias=True,
|
63 |
+
dtype=dtype, device=device, operations=operations
|
64 |
+
)
|
65 |
+
for _ in range(num_layers)
|
66 |
+
)
|
67 |
+
|
68 |
+
# self.use_y_embedder = pooled_projection_dim != self.time_text_embed.text_embedder.linear_1.in_features
|
69 |
+
# TODO double check this logic when 8b
|
70 |
+
self.use_y_embedder = True
|
71 |
+
|
72 |
+
self.controlnet_blocks = nn.ModuleList([])
|
73 |
+
for _ in range(len(self.transformer_blocks)):
|
74 |
+
controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
75 |
+
self.controlnet_blocks.append(controlnet_block)
|
76 |
+
|
77 |
+
self.pos_embed_input = PatchEmbed(
|
78 |
+
img_size=img_size,
|
79 |
+
patch_size=patch_size,
|
80 |
+
in_chans=in_chans,
|
81 |
+
embed_dim=self.hidden_size,
|
82 |
+
strict_img_size=False,
|
83 |
+
device=device,
|
84 |
+
dtype=dtype,
|
85 |
+
operations=operations,
|
86 |
+
)
|
87 |
+
|
88 |
+
def forward(
|
89 |
+
self,
|
90 |
+
x: torch.Tensor,
|
91 |
+
timesteps: torch.Tensor,
|
92 |
+
y: Optional[torch.Tensor] = None,
|
93 |
+
context: Optional[torch.Tensor] = None,
|
94 |
+
hint = None,
|
95 |
+
) -> Tuple[Tensor, List[Tensor]]:
|
96 |
+
x_shape = list(x.shape)
|
97 |
+
x = self.x_embedder(x)
|
98 |
+
if not self.double_y_emb:
|
99 |
+
h = (x_shape[-2] + 1) // self.patch_size
|
100 |
+
w = (x_shape[-1] + 1) // self.patch_size
|
101 |
+
x += get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=x.device)
|
102 |
+
c = self.t_embedder(timesteps, dtype=x.dtype)
|
103 |
+
if y is not None and self.y_embedder is not None:
|
104 |
+
if self.double_y_emb:
|
105 |
+
y = self.orig_y_embedder(y)
|
106 |
+
y = self.y_embedder(y)
|
107 |
+
c = c + y
|
108 |
+
|
109 |
+
x = x + self.pos_embed_input(hint)
|
110 |
+
|
111 |
+
block_out = ()
|
112 |
+
|
113 |
+
repeat = math.ceil(self.main_model_double / len(self.transformer_blocks))
|
114 |
+
for i in range(len(self.transformer_blocks)):
|
115 |
+
out = self.transformer_blocks[i](x, c)
|
116 |
+
if not self.double_y_emb:
|
117 |
+
x = out
|
118 |
+
block_out += (self.controlnet_blocks[i](out),) * repeat
|
119 |
+
|
120 |
+
return {"output": block_out}
|
comfy/cldm/mmdit.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Optional
|
3 |
+
import comfy.ldm.modules.diffusionmodules.mmdit
|
4 |
+
|
5 |
+
class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
num_blocks = None,
|
9 |
+
control_latent_channels = None,
|
10 |
+
dtype = None,
|
11 |
+
device = None,
|
12 |
+
operations = None,
|
13 |
+
**kwargs,
|
14 |
+
):
|
15 |
+
super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
|
16 |
+
# controlnet_blocks
|
17 |
+
self.controlnet_blocks = torch.nn.ModuleList([])
|
18 |
+
for _ in range(len(self.joint_blocks)):
|
19 |
+
self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
|
20 |
+
|
21 |
+
if control_latent_channels is None:
|
22 |
+
control_latent_channels = self.in_channels
|
23 |
+
|
24 |
+
self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
|
25 |
+
None,
|
26 |
+
self.patch_size,
|
27 |
+
control_latent_channels,
|
28 |
+
self.hidden_size,
|
29 |
+
bias=True,
|
30 |
+
strict_img_size=False,
|
31 |
+
dtype=dtype,
|
32 |
+
device=device,
|
33 |
+
operations=operations
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(
|
37 |
+
self,
|
38 |
+
x: torch.Tensor,
|
39 |
+
timesteps: torch.Tensor,
|
40 |
+
y: Optional[torch.Tensor] = None,
|
41 |
+
context: Optional[torch.Tensor] = None,
|
42 |
+
hint = None,
|
43 |
+
) -> torch.Tensor:
|
44 |
+
|
45 |
+
#weird sd3 controlnet specific stuff
|
46 |
+
y = torch.zeros_like(y)
|
47 |
+
|
48 |
+
if self.context_processor is not None:
|
49 |
+
context = self.context_processor(context)
|
50 |
+
|
51 |
+
hw = x.shape[-2:]
|
52 |
+
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
|
53 |
+
x += self.pos_embed_input(hint)
|
54 |
+
|
55 |
+
c = self.t_embedder(timesteps, dtype=x.dtype)
|
56 |
+
if y is not None and self.y_embedder is not None:
|
57 |
+
y = self.y_embedder(y)
|
58 |
+
c = c + y
|
59 |
+
|
60 |
+
if context is not None:
|
61 |
+
context = self.context_embedder(context)
|
62 |
+
|
63 |
+
output = []
|
64 |
+
|
65 |
+
blocks = len(self.joint_blocks)
|
66 |
+
for i in range(blocks):
|
67 |
+
context, x = self.joint_blocks[i](
|
68 |
+
context,
|
69 |
+
x,
|
70 |
+
c=c,
|
71 |
+
use_checkpoint=self.use_checkpoint,
|
72 |
+
)
|
73 |
+
|
74 |
+
out = self.controlnet_blocks[i](x)
|
75 |
+
count = self.depth // blocks
|
76 |
+
if i == blocks - 1:
|
77 |
+
count -= 1
|
78 |
+
for j in range(count):
|
79 |
+
output.append(out)
|
80 |
+
|
81 |
+
return {"output": output}
|
comfy/cli_args.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import enum
|
3 |
+
import os
|
4 |
+
from typing import Optional
|
5 |
+
import comfy.options
|
6 |
+
|
7 |
+
|
8 |
+
class EnumAction(argparse.Action):
|
9 |
+
"""
|
10 |
+
Argparse action for handling Enums
|
11 |
+
"""
|
12 |
+
def __init__(self, **kwargs):
|
13 |
+
# Pop off the type value
|
14 |
+
enum_type = kwargs.pop("type", None)
|
15 |
+
|
16 |
+
# Ensure an Enum subclass is provided
|
17 |
+
if enum_type is None:
|
18 |
+
raise ValueError("type must be assigned an Enum when using EnumAction")
|
19 |
+
if not issubclass(enum_type, enum.Enum):
|
20 |
+
raise TypeError("type must be an Enum when using EnumAction")
|
21 |
+
|
22 |
+
# Generate choices from the Enum
|
23 |
+
choices = tuple(e.value for e in enum_type)
|
24 |
+
kwargs.setdefault("choices", choices)
|
25 |
+
kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
|
26 |
+
|
27 |
+
super(EnumAction, self).__init__(**kwargs)
|
28 |
+
|
29 |
+
self._enum = enum_type
|
30 |
+
|
31 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
32 |
+
# Convert value back into an Enum
|
33 |
+
value = self._enum(values)
|
34 |
+
setattr(namespace, self.dest, value)
|
35 |
+
|
36 |
+
|
37 |
+
parser = argparse.ArgumentParser()
|
38 |
+
|
39 |
+
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
|
40 |
+
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
41 |
+
parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
|
42 |
+
parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
|
43 |
+
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
|
44 |
+
parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
|
45 |
+
|
46 |
+
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
|
47 |
+
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
|
48 |
+
parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).")
|
49 |
+
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.")
|
50 |
+
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
|
51 |
+
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
52 |
+
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
53 |
+
cm_group = parser.add_mutually_exclusive_group()
|
54 |
+
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
|
55 |
+
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
|
56 |
+
|
57 |
+
|
58 |
+
fp_group = parser.add_mutually_exclusive_group()
|
59 |
+
fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
|
60 |
+
fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
|
61 |
+
|
62 |
+
fpunet_group = parser.add_mutually_exclusive_group()
|
63 |
+
fpunet_group.add_argument("--fp32-unet", action="store_true", help="Run the diffusion model in fp32.")
|
64 |
+
fpunet_group.add_argument("--fp64-unet", action="store_true", help="Run the diffusion model in fp64.")
|
65 |
+
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diffusion model in bf16.")
|
66 |
+
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
|
67 |
+
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
68 |
+
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
69 |
+
|
70 |
+
fpvae_group = parser.add_mutually_exclusive_group()
|
71 |
+
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
|
72 |
+
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
|
73 |
+
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
|
74 |
+
|
75 |
+
parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
|
76 |
+
|
77 |
+
fpte_group = parser.add_mutually_exclusive_group()
|
78 |
+
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
|
79 |
+
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
|
80 |
+
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
|
81 |
+
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
|
82 |
+
|
83 |
+
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
|
84 |
+
|
85 |
+
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
86 |
+
|
87 |
+
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
|
88 |
+
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
|
89 |
+
|
90 |
+
class LatentPreviewMethod(enum.Enum):
|
91 |
+
NoPreviews = "none"
|
92 |
+
Auto = "auto"
|
93 |
+
Latent2RGB = "latent2rgb"
|
94 |
+
TAESD = "taesd"
|
95 |
+
|
96 |
+
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
97 |
+
|
98 |
+
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
|
99 |
+
|
100 |
+
cache_group = parser.add_mutually_exclusive_group()
|
101 |
+
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
102 |
+
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
103 |
+
|
104 |
+
attn_group = parser.add_mutually_exclusive_group()
|
105 |
+
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
106 |
+
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
107 |
+
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
108 |
+
attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
|
109 |
+
|
110 |
+
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
111 |
+
|
112 |
+
upcast = parser.add_mutually_exclusive_group()
|
113 |
+
upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
|
114 |
+
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
|
115 |
+
|
116 |
+
|
117 |
+
vram_group = parser.add_mutually_exclusive_group()
|
118 |
+
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
|
119 |
+
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
|
120 |
+
vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
|
121 |
+
vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
|
122 |
+
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
|
123 |
+
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
124 |
+
|
125 |
+
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
|
126 |
+
|
127 |
+
|
128 |
+
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
129 |
+
|
130 |
+
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
131 |
+
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
|
132 |
+
parser.add_argument("--fast", action="store_true", help="Enable some untested and potentially quality deteriorating optimizations.")
|
133 |
+
|
134 |
+
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
135 |
+
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
136 |
+
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
|
137 |
+
|
138 |
+
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
139 |
+
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
|
140 |
+
|
141 |
+
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
142 |
+
|
143 |
+
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
|
144 |
+
parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).")
|
145 |
+
|
146 |
+
# The default built-in provider hosted under web/
|
147 |
+
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
|
148 |
+
|
149 |
+
parser.add_argument(
|
150 |
+
"--front-end-version",
|
151 |
+
type=str,
|
152 |
+
default=DEFAULT_VERSION_STRING,
|
153 |
+
help="""
|
154 |
+
Specifies the version of the frontend to be used. This command needs internet connectivity to query and
|
155 |
+
download available frontend implementations from GitHub releases.
|
156 |
+
|
157 |
+
The version string should be in the format of:
|
158 |
+
[repoOwner]/[repoName]@[version]
|
159 |
+
where version is one of: "latest" or a valid version number (e.g. "1.0.0")
|
160 |
+
""",
|
161 |
+
)
|
162 |
+
|
163 |
+
def is_valid_directory(path: Optional[str]) -> Optional[str]:
|
164 |
+
"""Validate if the given path is a directory."""
|
165 |
+
if path is None:
|
166 |
+
return None
|
167 |
+
|
168 |
+
if not os.path.isdir(path):
|
169 |
+
raise argparse.ArgumentTypeError(f"{path} is not a valid directory.")
|
170 |
+
return path
|
171 |
+
|
172 |
+
parser.add_argument(
|
173 |
+
"--front-end-root",
|
174 |
+
type=is_valid_directory,
|
175 |
+
default=None,
|
176 |
+
help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
|
177 |
+
)
|
178 |
+
|
179 |
+
parser.add_argument("--user-directory", type=is_valid_directory, default=None, help="Set the ComfyUI user directory with an absolute path.")
|
180 |
+
|
181 |
+
if comfy.options.args_parsing:
|
182 |
+
args = parser.parse_args()
|
183 |
+
else:
|
184 |
+
args = parser.parse_args([])
|
185 |
+
|
186 |
+
if args.windows_standalone_build:
|
187 |
+
args.auto_launch = True
|
188 |
+
|
189 |
+
if args.disable_auto_launch:
|
190 |
+
args.auto_launch = False
|
comfy/clip_config_bigg.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPTextModel"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"eos_token_id": 49407,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_size": 1280,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 5120,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 77,
|
16 |
+
"model_type": "clip_text_model",
|
17 |
+
"num_attention_heads": 20,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"projection_dim": 1280,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"vocab_size": 49408
|
23 |
+
}
|
comfy/clip_model.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from comfy.ldm.modules.attention import optimized_attention_for_device
|
3 |
+
import comfy.ops
|
4 |
+
|
5 |
+
class CLIPAttention(torch.nn.Module):
|
6 |
+
def __init__(self, embed_dim, heads, dtype, device, operations):
|
7 |
+
super().__init__()
|
8 |
+
|
9 |
+
self.heads = heads
|
10 |
+
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
11 |
+
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
12 |
+
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
13 |
+
|
14 |
+
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
15 |
+
|
16 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
17 |
+
q = self.q_proj(x)
|
18 |
+
k = self.k_proj(x)
|
19 |
+
v = self.v_proj(x)
|
20 |
+
|
21 |
+
out = optimized_attention(q, k, v, self.heads, mask)
|
22 |
+
return self.out_proj(out)
|
23 |
+
|
24 |
+
ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
25 |
+
"gelu": torch.nn.functional.gelu,
|
26 |
+
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
|
27 |
+
}
|
28 |
+
|
29 |
+
class CLIPMLP(torch.nn.Module):
|
30 |
+
def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
|
31 |
+
super().__init__()
|
32 |
+
self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
|
33 |
+
self.activation = ACTIVATIONS[activation]
|
34 |
+
self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
x = self.fc1(x)
|
38 |
+
x = self.activation(x)
|
39 |
+
x = self.fc2(x)
|
40 |
+
return x
|
41 |
+
|
42 |
+
class CLIPLayer(torch.nn.Module):
|
43 |
+
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
44 |
+
super().__init__()
|
45 |
+
self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
46 |
+
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
|
47 |
+
self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
48 |
+
self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
|
49 |
+
|
50 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
51 |
+
x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
|
52 |
+
x += self.mlp(self.layer_norm2(x))
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
class CLIPEncoder(torch.nn.Module):
|
57 |
+
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
58 |
+
super().__init__()
|
59 |
+
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
|
60 |
+
|
61 |
+
def forward(self, x, mask=None, intermediate_output=None):
|
62 |
+
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
63 |
+
|
64 |
+
if intermediate_output is not None:
|
65 |
+
if intermediate_output < 0:
|
66 |
+
intermediate_output = len(self.layers) + intermediate_output
|
67 |
+
|
68 |
+
intermediate = None
|
69 |
+
for i, l in enumerate(self.layers):
|
70 |
+
x = l(x, mask, optimized_attention)
|
71 |
+
if i == intermediate_output:
|
72 |
+
intermediate = x.clone()
|
73 |
+
return x, intermediate
|
74 |
+
|
75 |
+
class CLIPEmbeddings(torch.nn.Module):
|
76 |
+
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
|
77 |
+
super().__init__()
|
78 |
+
self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
79 |
+
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
80 |
+
|
81 |
+
def forward(self, input_tokens, dtype=torch.float32):
|
82 |
+
return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
|
83 |
+
|
84 |
+
|
85 |
+
class CLIPTextModel_(torch.nn.Module):
|
86 |
+
def __init__(self, config_dict, dtype, device, operations):
|
87 |
+
num_layers = config_dict["num_hidden_layers"]
|
88 |
+
embed_dim = config_dict["hidden_size"]
|
89 |
+
heads = config_dict["num_attention_heads"]
|
90 |
+
intermediate_size = config_dict["intermediate_size"]
|
91 |
+
intermediate_activation = config_dict["hidden_act"]
|
92 |
+
num_positions = config_dict["max_position_embeddings"]
|
93 |
+
self.eos_token_id = config_dict["eos_token_id"]
|
94 |
+
|
95 |
+
super().__init__()
|
96 |
+
self.embeddings = CLIPEmbeddings(embed_dim, num_positions=num_positions, dtype=dtype, device=device, operations=operations)
|
97 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
98 |
+
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
99 |
+
|
100 |
+
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
|
101 |
+
x = self.embeddings(input_tokens, dtype=dtype)
|
102 |
+
mask = None
|
103 |
+
if attention_mask is not None:
|
104 |
+
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
105 |
+
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
|
106 |
+
|
107 |
+
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
|
108 |
+
if mask is not None:
|
109 |
+
mask += causal_mask
|
110 |
+
else:
|
111 |
+
mask = causal_mask
|
112 |
+
|
113 |
+
x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
|
114 |
+
x = self.final_layer_norm(x)
|
115 |
+
if i is not None and final_layer_norm_intermediate:
|
116 |
+
i = self.final_layer_norm(i)
|
117 |
+
|
118 |
+
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
|
119 |
+
return x, i, pooled_output
|
120 |
+
|
121 |
+
class CLIPTextModel(torch.nn.Module):
|
122 |
+
def __init__(self, config_dict, dtype, device, operations):
|
123 |
+
super().__init__()
|
124 |
+
self.num_layers = config_dict["num_hidden_layers"]
|
125 |
+
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
|
126 |
+
embed_dim = config_dict["hidden_size"]
|
127 |
+
self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
128 |
+
self.dtype = dtype
|
129 |
+
|
130 |
+
def get_input_embeddings(self):
|
131 |
+
return self.text_model.embeddings.token_embedding
|
132 |
+
|
133 |
+
def set_input_embeddings(self, embeddings):
|
134 |
+
self.text_model.embeddings.token_embedding = embeddings
|
135 |
+
|
136 |
+
def forward(self, *args, **kwargs):
|
137 |
+
x = self.text_model(*args, **kwargs)
|
138 |
+
out = self.text_projection(x[2])
|
139 |
+
return (x[0], x[1], out, x[2])
|
140 |
+
|
141 |
+
|
142 |
+
class CLIPVisionEmbeddings(torch.nn.Module):
|
143 |
+
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None):
|
144 |
+
super().__init__()
|
145 |
+
|
146 |
+
num_patches = (image_size // patch_size) ** 2
|
147 |
+
if model_type == "siglip_vision_model":
|
148 |
+
self.class_embedding = None
|
149 |
+
patch_bias = True
|
150 |
+
else:
|
151 |
+
num_patches = num_patches + 1
|
152 |
+
self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
|
153 |
+
patch_bias = False
|
154 |
+
|
155 |
+
self.patch_embedding = operations.Conv2d(
|
156 |
+
in_channels=num_channels,
|
157 |
+
out_channels=embed_dim,
|
158 |
+
kernel_size=patch_size,
|
159 |
+
stride=patch_size,
|
160 |
+
bias=patch_bias,
|
161 |
+
dtype=dtype,
|
162 |
+
device=device
|
163 |
+
)
|
164 |
+
|
165 |
+
self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device)
|
166 |
+
|
167 |
+
def forward(self, pixel_values):
|
168 |
+
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
|
169 |
+
if self.class_embedding is not None:
|
170 |
+
embeds = torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1)
|
171 |
+
return embeds + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
|
172 |
+
|
173 |
+
|
174 |
+
class CLIPVision(torch.nn.Module):
|
175 |
+
def __init__(self, config_dict, dtype, device, operations):
|
176 |
+
super().__init__()
|
177 |
+
num_layers = config_dict["num_hidden_layers"]
|
178 |
+
embed_dim = config_dict["hidden_size"]
|
179 |
+
heads = config_dict["num_attention_heads"]
|
180 |
+
intermediate_size = config_dict["intermediate_size"]
|
181 |
+
intermediate_activation = config_dict["hidden_act"]
|
182 |
+
model_type = config_dict["model_type"]
|
183 |
+
|
184 |
+
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
|
185 |
+
if model_type == "siglip_vision_model":
|
186 |
+
self.pre_layrnorm = lambda a: a
|
187 |
+
self.output_layernorm = True
|
188 |
+
else:
|
189 |
+
self.pre_layrnorm = operations.LayerNorm(embed_dim)
|
190 |
+
self.output_layernorm = False
|
191 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
192 |
+
self.post_layernorm = operations.LayerNorm(embed_dim)
|
193 |
+
|
194 |
+
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
|
195 |
+
x = self.embeddings(pixel_values)
|
196 |
+
x = self.pre_layrnorm(x)
|
197 |
+
#TODO: attention_mask?
|
198 |
+
x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
|
199 |
+
if self.output_layernorm:
|
200 |
+
x = self.post_layernorm(x)
|
201 |
+
pooled_output = x
|
202 |
+
else:
|
203 |
+
pooled_output = self.post_layernorm(x[:, 0, :])
|
204 |
+
return x, i, pooled_output
|
205 |
+
|
206 |
+
class CLIPVisionModelProjection(torch.nn.Module):
|
207 |
+
def __init__(self, config_dict, dtype, device, operations):
|
208 |
+
super().__init__()
|
209 |
+
self.vision_model = CLIPVision(config_dict, dtype, device, operations)
|
210 |
+
if "projection_dim" in config_dict:
|
211 |
+
self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
|
212 |
+
else:
|
213 |
+
self.visual_projection = lambda a: a
|
214 |
+
|
215 |
+
def forward(self, *args, **kwargs):
|
216 |
+
x = self.vision_model(*args, **kwargs)
|
217 |
+
out = self.visual_projection(x[2])
|
218 |
+
return (x[0], x[1], out)
|
comfy/clip_vision.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
import logging
|
6 |
+
|
7 |
+
import comfy.ops
|
8 |
+
import comfy.model_patcher
|
9 |
+
import comfy.model_management
|
10 |
+
import comfy.utils
|
11 |
+
import comfy.clip_model
|
12 |
+
|
13 |
+
class Output:
|
14 |
+
def __getitem__(self, key):
|
15 |
+
return getattr(self, key)
|
16 |
+
def __setitem__(self, key, item):
|
17 |
+
setattr(self, key, item)
|
18 |
+
|
19 |
+
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
|
20 |
+
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
|
21 |
+
std = torch.tensor(std, device=image.device, dtype=image.dtype)
|
22 |
+
image = image.movedim(-1, 1)
|
23 |
+
if not (image.shape[2] == size and image.shape[3] == size):
|
24 |
+
if crop:
|
25 |
+
scale = (size / min(image.shape[2], image.shape[3]))
|
26 |
+
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
|
27 |
+
else:
|
28 |
+
scale_size = (size, size)
|
29 |
+
|
30 |
+
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
|
31 |
+
h = (image.shape[2] - size)//2
|
32 |
+
w = (image.shape[3] - size)//2
|
33 |
+
image = image[:,:,h:h+size,w:w+size]
|
34 |
+
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
35 |
+
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
36 |
+
|
37 |
+
class ClipVisionModel():
|
38 |
+
def __init__(self, json_config):
|
39 |
+
with open(json_config) as f:
|
40 |
+
config = json.load(f)
|
41 |
+
|
42 |
+
self.image_size = config.get("image_size", 224)
|
43 |
+
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
|
44 |
+
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
|
45 |
+
self.load_device = comfy.model_management.text_encoder_device()
|
46 |
+
offload_device = comfy.model_management.text_encoder_offload_device()
|
47 |
+
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
48 |
+
self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
49 |
+
self.model.eval()
|
50 |
+
|
51 |
+
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
52 |
+
|
53 |
+
def load_sd(self, sd):
|
54 |
+
return self.model.load_state_dict(sd, strict=False)
|
55 |
+
|
56 |
+
def get_sd(self):
|
57 |
+
return self.model.state_dict()
|
58 |
+
|
59 |
+
def encode_image(self, image, crop=True):
|
60 |
+
comfy.model_management.load_model_gpu(self.patcher)
|
61 |
+
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
|
62 |
+
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
63 |
+
|
64 |
+
outputs = Output()
|
65 |
+
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
|
66 |
+
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
|
67 |
+
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
|
68 |
+
return outputs
|
69 |
+
|
70 |
+
def convert_to_transformers(sd, prefix):
|
71 |
+
sd_k = sd.keys()
|
72 |
+
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
|
73 |
+
keys_to_replace = {
|
74 |
+
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
|
75 |
+
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
|
76 |
+
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
|
77 |
+
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
|
78 |
+
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
|
79 |
+
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
|
80 |
+
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
|
81 |
+
}
|
82 |
+
|
83 |
+
for x in keys_to_replace:
|
84 |
+
if x in sd_k:
|
85 |
+
sd[keys_to_replace[x]] = sd.pop(x)
|
86 |
+
|
87 |
+
if "{}proj".format(prefix) in sd_k:
|
88 |
+
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
|
89 |
+
|
90 |
+
sd = transformers_convert(sd, prefix, "vision_model.", 48)
|
91 |
+
else:
|
92 |
+
replace_prefix = {prefix: ""}
|
93 |
+
sd = state_dict_prefix_replace(sd, replace_prefix)
|
94 |
+
return sd
|
95 |
+
|
96 |
+
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
97 |
+
if convert_keys:
|
98 |
+
sd = convert_to_transformers(sd, prefix)
|
99 |
+
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
|
100 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
|
101 |
+
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
102 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
103 |
+
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
104 |
+
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
|
105 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
|
106 |
+
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
|
107 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
|
108 |
+
else:
|
109 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
110 |
+
else:
|
111 |
+
return None
|
112 |
+
|
113 |
+
clip = ClipVisionModel(json_config)
|
114 |
+
m, u = clip.load_sd(sd)
|
115 |
+
if len(m) > 0:
|
116 |
+
logging.warning("missing clip vision: {}".format(m))
|
117 |
+
u = set(u)
|
118 |
+
keys = list(sd.keys())
|
119 |
+
for k in keys:
|
120 |
+
if k not in u:
|
121 |
+
sd.pop(k)
|
122 |
+
return clip
|
123 |
+
|
124 |
+
def load(ckpt_path):
|
125 |
+
sd = load_torch_file(ckpt_path)
|
126 |
+
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
|
127 |
+
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
|
128 |
+
else:
|
129 |
+
return load_clipvision_from_sd(sd)
|
comfy/clip_vision_config_g.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_size": 1664,
|
6 |
+
"image_size": 224,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 8192,
|
10 |
+
"layer_norm_eps": 1e-05,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 48,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 1280,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|
comfy/clip_vision_config_h.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_size": 1280,
|
6 |
+
"image_size": 224,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 5120,
|
10 |
+
"layer_norm_eps": 1e-05,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 32,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 1024,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|
comfy/clip_vision_config_vitl.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "quick_gelu",
|
5 |
+
"hidden_size": 1024,
|
6 |
+
"image_size": 224,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 4096,
|
10 |
+
"layer_norm_eps": 1e-05,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 24,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 768,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|
comfy/clip_vision_config_vitl_336.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "quick_gelu",
|
5 |
+
"hidden_size": 1024,
|
6 |
+
"image_size": 336,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 4096,
|
10 |
+
"layer_norm_eps": 1e-5,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 24,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 768,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|
comfy/clip_vision_siglip_384.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"num_channels": 3,
|
3 |
+
"hidden_act": "gelu_pytorch_tanh",
|
4 |
+
"hidden_size": 1152,
|
5 |
+
"image_size": 384,
|
6 |
+
"intermediate_size": 4304,
|
7 |
+
"model_type": "siglip_vision_model",
|
8 |
+
"num_attention_heads": 16,
|
9 |
+
"num_hidden_layers": 27,
|
10 |
+
"patch_size": 14,
|
11 |
+
"image_mean": [0.5, 0.5, 0.5],
|
12 |
+
"image_std": [0.5, 0.5, 0.5]
|
13 |
+
}
|
comfy/comfy_types/README.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Comfy Typing
|
2 |
+
## Type hinting for ComfyUI Node development
|
3 |
+
|
4 |
+
This module provides type hinting and concrete convenience types for node developers.
|
5 |
+
If cloned to the custom_nodes directory of ComfyUI, types can be imported using:
|
6 |
+
|
7 |
+
```python
|
8 |
+
from comfy.comfy_types import IO, ComfyNodeABC, CheckLazyMixin
|
9 |
+
|
10 |
+
class ExampleNode(ComfyNodeABC):
|
11 |
+
@classmethod
|
12 |
+
def INPUT_TYPES(s) -> InputTypeDict:
|
13 |
+
return {"required": {}}
|
14 |
+
```
|
15 |
+
|
16 |
+
Full example is in [examples/example_nodes.py](examples/example_nodes.py).
|
17 |
+
|
18 |
+
# Types
|
19 |
+
A few primary types are documented below. More complete information is available via the docstrings on each type.
|
20 |
+
|
21 |
+
## `IO`
|
22 |
+
|
23 |
+
A string enum of built-in and a few custom data types. Includes the following special types and their requisite plumbing:
|
24 |
+
|
25 |
+
- `ANY`: `"*"`
|
26 |
+
- `NUMBER`: `"FLOAT,INT"`
|
27 |
+
- `PRIMITIVE`: `"STRING,FLOAT,INT,BOOLEAN"`
|
28 |
+
|
29 |
+
## `ComfyNodeABC`
|
30 |
+
|
31 |
+
An abstract base class for nodes, offering type-hinting / autocomplete, and somewhat-alright docstrings.
|
32 |
+
|
33 |
+
### Type hinting for `INPUT_TYPES`
|
34 |
+
|
35 |
+
![INPUT_TYPES auto-completion in Visual Studio Code](examples/input_types.png)
|
36 |
+
|
37 |
+
### `INPUT_TYPES` return dict
|
38 |
+
|
39 |
+
![INPUT_TYPES return value type hinting in Visual Studio Code](examples/required_hint.png)
|
40 |
+
|
41 |
+
### Options for individual inputs
|
42 |
+
|
43 |
+
![INPUT_TYPES return value option auto-completion in Visual Studio Code](examples/input_options.png)
|
comfy/comfy_types/__init__.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Callable, Protocol, TypedDict, Optional, List
|
3 |
+
from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin
|
4 |
+
|
5 |
+
|
6 |
+
class UnetApplyFunction(Protocol):
|
7 |
+
"""Function signature protocol on comfy.model_base.BaseModel.apply_model"""
|
8 |
+
|
9 |
+
def __call__(self, x: torch.Tensor, t: torch.Tensor, **kwargs) -> torch.Tensor:
|
10 |
+
pass
|
11 |
+
|
12 |
+
|
13 |
+
class UnetApplyConds(TypedDict):
|
14 |
+
"""Optional conditions for unet apply function."""
|
15 |
+
|
16 |
+
c_concat: Optional[torch.Tensor]
|
17 |
+
c_crossattn: Optional[torch.Tensor]
|
18 |
+
control: Optional[torch.Tensor]
|
19 |
+
transformer_options: Optional[dict]
|
20 |
+
|
21 |
+
|
22 |
+
class UnetParams(TypedDict):
|
23 |
+
# Tensor of shape [B, C, H, W]
|
24 |
+
input: torch.Tensor
|
25 |
+
# Tensor of shape [B]
|
26 |
+
timestep: torch.Tensor
|
27 |
+
c: UnetApplyConds
|
28 |
+
# List of [0, 1], [0], [1], ...
|
29 |
+
# 0 means conditional, 1 means conditional unconditional
|
30 |
+
cond_or_uncond: List[int]
|
31 |
+
|
32 |
+
|
33 |
+
UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor]
|
34 |
+
|
35 |
+
|
36 |
+
__all__ = [
|
37 |
+
"UnetWrapperFunction",
|
38 |
+
UnetApplyConds.__name__,
|
39 |
+
UnetParams.__name__,
|
40 |
+
UnetApplyFunction.__name__,
|
41 |
+
IO.__name__,
|
42 |
+
InputTypeDict.__name__,
|
43 |
+
ComfyNodeABC.__name__,
|
44 |
+
CheckLazyMixin.__name__,
|
45 |
+
]
|
comfy/comfy_types/examples/example_nodes.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
|
2 |
+
from inspect import cleandoc
|
3 |
+
|
4 |
+
|
5 |
+
class ExampleNode(ComfyNodeABC):
|
6 |
+
"""An example node that just adds 1 to an input integer.
|
7 |
+
|
8 |
+
* Requires a modern IDE to provide any benefit (detail: an IDE configured with analysis paths etc).
|
9 |
+
* This node is intended as an example for developers only.
|
10 |
+
"""
|
11 |
+
|
12 |
+
DESCRIPTION = cleandoc(__doc__)
|
13 |
+
CATEGORY = "examples"
|
14 |
+
|
15 |
+
@classmethod
|
16 |
+
def INPUT_TYPES(s) -> InputTypeDict:
|
17 |
+
return {
|
18 |
+
"required": {
|
19 |
+
"input_int": (IO.INT, {"defaultInput": True}),
|
20 |
+
}
|
21 |
+
}
|
22 |
+
|
23 |
+
RETURN_TYPES = (IO.INT,)
|
24 |
+
RETURN_NAMES = ("input_plus_one",)
|
25 |
+
FUNCTION = "execute"
|
26 |
+
|
27 |
+
def execute(self, input_int: int):
|
28 |
+
return (input_int + 1,)
|
comfy/comfy_types/examples/input_options.png
ADDED
comfy/comfy_types/examples/input_types.png
ADDED
comfy/comfy_types/examples/required_hint.png
ADDED
comfy/comfy_types/node_typing.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Comfy-specific type hinting"""
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
from typing import Literal, TypedDict
|
5 |
+
from abc import ABC, abstractmethod
|
6 |
+
from enum import Enum
|
7 |
+
|
8 |
+
|
9 |
+
class StrEnum(str, Enum):
|
10 |
+
"""Base class for string enums. Python's StrEnum is not available until 3.11."""
|
11 |
+
|
12 |
+
def __str__(self) -> str:
|
13 |
+
return self.value
|
14 |
+
|
15 |
+
|
16 |
+
class IO(StrEnum):
|
17 |
+
"""Node input/output data types.
|
18 |
+
|
19 |
+
Includes functionality for ``"*"`` (`ANY`) and ``"MULTI,TYPES"``.
|
20 |
+
"""
|
21 |
+
|
22 |
+
STRING = "STRING"
|
23 |
+
IMAGE = "IMAGE"
|
24 |
+
MASK = "MASK"
|
25 |
+
LATENT = "LATENT"
|
26 |
+
BOOLEAN = "BOOLEAN"
|
27 |
+
INT = "INT"
|
28 |
+
FLOAT = "FLOAT"
|
29 |
+
CONDITIONING = "CONDITIONING"
|
30 |
+
SAMPLER = "SAMPLER"
|
31 |
+
SIGMAS = "SIGMAS"
|
32 |
+
GUIDER = "GUIDER"
|
33 |
+
NOISE = "NOISE"
|
34 |
+
CLIP = "CLIP"
|
35 |
+
CONTROL_NET = "CONTROL_NET"
|
36 |
+
VAE = "VAE"
|
37 |
+
MODEL = "MODEL"
|
38 |
+
CLIP_VISION = "CLIP_VISION"
|
39 |
+
CLIP_VISION_OUTPUT = "CLIP_VISION_OUTPUT"
|
40 |
+
STYLE_MODEL = "STYLE_MODEL"
|
41 |
+
GLIGEN = "GLIGEN"
|
42 |
+
UPSCALE_MODEL = "UPSCALE_MODEL"
|
43 |
+
AUDIO = "AUDIO"
|
44 |
+
WEBCAM = "WEBCAM"
|
45 |
+
POINT = "POINT"
|
46 |
+
FACE_ANALYSIS = "FACE_ANALYSIS"
|
47 |
+
BBOX = "BBOX"
|
48 |
+
SEGS = "SEGS"
|
49 |
+
|
50 |
+
ANY = "*"
|
51 |
+
"""Always matches any type, but at a price.
|
52 |
+
|
53 |
+
Causes some functionality issues (e.g. reroutes, link types), and should be avoided whenever possible.
|
54 |
+
"""
|
55 |
+
NUMBER = "FLOAT,INT"
|
56 |
+
"""A float or an int - could be either"""
|
57 |
+
PRIMITIVE = "STRING,FLOAT,INT,BOOLEAN"
|
58 |
+
"""Could be any of: string, float, int, or bool"""
|
59 |
+
|
60 |
+
def __ne__(self, value: object) -> bool:
|
61 |
+
if self == "*" or value == "*":
|
62 |
+
return False
|
63 |
+
if not isinstance(value, str):
|
64 |
+
return True
|
65 |
+
a = frozenset(self.split(","))
|
66 |
+
b = frozenset(value.split(","))
|
67 |
+
return not (b.issubset(a) or a.issubset(b))
|
68 |
+
|
69 |
+
|
70 |
+
class InputTypeOptions(TypedDict):
|
71 |
+
"""Provides type hinting for the return type of the INPUT_TYPES node function.
|
72 |
+
|
73 |
+
Due to IDE limitations with unions, for now all options are available for all types (e.g. `label_on` is hinted even when the type is not `IO.BOOLEAN`).
|
74 |
+
|
75 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_datatypes
|
76 |
+
"""
|
77 |
+
|
78 |
+
default: bool | str | float | int | list | tuple
|
79 |
+
"""The default value of the widget"""
|
80 |
+
defaultInput: bool
|
81 |
+
"""Defaults to an input slot rather than a widget"""
|
82 |
+
forceInput: bool
|
83 |
+
"""`defaultInput` and also don't allow converting to a widget"""
|
84 |
+
lazy: bool
|
85 |
+
"""Declares that this input uses lazy evaluation"""
|
86 |
+
rawLink: bool
|
87 |
+
"""When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
|
88 |
+
tooltip: str
|
89 |
+
"""Tooltip for the input (or widget), shown on pointer hover"""
|
90 |
+
# class InputTypeNumber(InputTypeOptions):
|
91 |
+
# default: float | int
|
92 |
+
min: float
|
93 |
+
"""The minimum value of a number (``FLOAT`` | ``INT``)"""
|
94 |
+
max: float
|
95 |
+
"""The maximum value of a number (``FLOAT`` | ``INT``)"""
|
96 |
+
step: float
|
97 |
+
"""The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
|
98 |
+
round: float
|
99 |
+
"""Floats are rounded by this value (``FLOAT``)"""
|
100 |
+
# class InputTypeBoolean(InputTypeOptions):
|
101 |
+
# default: bool
|
102 |
+
label_on: str
|
103 |
+
"""The label to use in the UI when the bool is True (``BOOLEAN``)"""
|
104 |
+
label_on: str
|
105 |
+
"""The label to use in the UI when the bool is False (``BOOLEAN``)"""
|
106 |
+
# class InputTypeString(InputTypeOptions):
|
107 |
+
# default: str
|
108 |
+
multiline: bool
|
109 |
+
"""Use a multiline text box (``STRING``)"""
|
110 |
+
placeholder: str
|
111 |
+
"""Placeholder text to display in the UI when empty (``STRING``)"""
|
112 |
+
# Deprecated:
|
113 |
+
# defaultVal: str
|
114 |
+
dynamicPrompts: bool
|
115 |
+
"""Causes the front-end to evaluate dynamic prompts (``STRING``)"""
|
116 |
+
|
117 |
+
|
118 |
+
class HiddenInputTypeDict(TypedDict):
|
119 |
+
"""Provides type hinting for the hidden entry of node INPUT_TYPES."""
|
120 |
+
|
121 |
+
node_id: Literal["UNIQUE_ID"]
|
122 |
+
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
|
123 |
+
unique_id: Literal["UNIQUE_ID"]
|
124 |
+
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
|
125 |
+
prompt: Literal["PROMPT"]
|
126 |
+
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
|
127 |
+
extra_pnginfo: Literal["EXTRA_PNGINFO"]
|
128 |
+
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
|
129 |
+
dynprompt: Literal["DYNPROMPT"]
|
130 |
+
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
|
131 |
+
|
132 |
+
|
133 |
+
class InputTypeDict(TypedDict):
|
134 |
+
"""Provides type hinting for node INPUT_TYPES.
|
135 |
+
|
136 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_more_on_inputs
|
137 |
+
"""
|
138 |
+
|
139 |
+
required: dict[str, tuple[IO, InputTypeOptions]]
|
140 |
+
"""Describes all inputs that must be connected for the node to execute."""
|
141 |
+
optional: dict[str, tuple[IO, InputTypeOptions]]
|
142 |
+
"""Describes inputs which do not need to be connected."""
|
143 |
+
hidden: HiddenInputTypeDict
|
144 |
+
"""Offers advanced functionality and server-client communication.
|
145 |
+
|
146 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_more_on_inputs#hidden-inputs
|
147 |
+
"""
|
148 |
+
|
149 |
+
|
150 |
+
class ComfyNodeABC(ABC):
|
151 |
+
"""Abstract base class for Comfy nodes. Includes the names and expected types of attributes.
|
152 |
+
|
153 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview
|
154 |
+
"""
|
155 |
+
|
156 |
+
DESCRIPTION: str
|
157 |
+
"""Node description, shown as a tooltip when hovering over the node.
|
158 |
+
|
159 |
+
Usage::
|
160 |
+
|
161 |
+
# Explicitly define the description
|
162 |
+
DESCRIPTION = "Example description here."
|
163 |
+
|
164 |
+
# Use the docstring of the node class.
|
165 |
+
DESCRIPTION = cleandoc(__doc__)
|
166 |
+
"""
|
167 |
+
CATEGORY: str
|
168 |
+
"""The category of the node, as per the "Add Node" menu.
|
169 |
+
|
170 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#category
|
171 |
+
"""
|
172 |
+
EXPERIMENTAL: bool
|
173 |
+
"""Flags a node as experimental, informing users that it may change or not work as expected."""
|
174 |
+
DEPRECATED: bool
|
175 |
+
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
|
176 |
+
|
177 |
+
@classmethod
|
178 |
+
@abstractmethod
|
179 |
+
def INPUT_TYPES(s) -> InputTypeDict:
|
180 |
+
"""Defines node inputs.
|
181 |
+
|
182 |
+
* Must include the ``required`` key, which describes all inputs that must be connected for the node to execute.
|
183 |
+
* The ``optional`` key can be added to describe inputs which do not need to be connected.
|
184 |
+
* The ``hidden`` key offers some advanced functionality. More info at: https://docs.comfy.org/essentials/custom_node_more_on_inputs#hidden-inputs
|
185 |
+
|
186 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#input-types
|
187 |
+
"""
|
188 |
+
return {"required": {}}
|
189 |
+
|
190 |
+
OUTPUT_NODE: bool
|
191 |
+
"""Flags this node as an output node, causing any inputs it requires to be executed.
|
192 |
+
|
193 |
+
If a node is not connected to any output nodes, that node will not be executed. Usage::
|
194 |
+
|
195 |
+
OUTPUT_NODE = True
|
196 |
+
|
197 |
+
From the docs:
|
198 |
+
|
199 |
+
By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
|
200 |
+
|
201 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#output-node
|
202 |
+
"""
|
203 |
+
INPUT_IS_LIST: bool
|
204 |
+
"""A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
|
205 |
+
|
206 |
+
All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
|
207 |
+
|
208 |
+
From the docs:
|
209 |
+
|
210 |
+
A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
|
211 |
+
|
212 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lists#list-processing
|
213 |
+
"""
|
214 |
+
OUTPUT_IS_LIST: tuple[bool]
|
215 |
+
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
|
216 |
+
|
217 |
+
Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
|
218 |
+
|
219 |
+
A ``tuple[bool]``, where the items match those in `RETURN_TYPES`::
|
220 |
+
|
221 |
+
RETURN_TYPES = (IO.INT, IO.INT, IO.STRING)
|
222 |
+
OUTPUT_IS_LIST = (True, True, False) # The string output will be handled normally
|
223 |
+
|
224 |
+
From the docs:
|
225 |
+
|
226 |
+
In order to tell Comfy that the list being returned should not be wrapped, but treated as a series of data for sequential processing,
|
227 |
+
the node should provide a class attribute `OUTPUT_IS_LIST`, which is a ``tuple[bool]``, of the same length as `RETURN_TYPES`,
|
228 |
+
specifying which outputs which should be so treated.
|
229 |
+
|
230 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lists#list-processing
|
231 |
+
"""
|
232 |
+
|
233 |
+
RETURN_TYPES: tuple[IO]
|
234 |
+
"""A tuple representing the outputs of this node.
|
235 |
+
|
236 |
+
Usage::
|
237 |
+
|
238 |
+
RETURN_TYPES = (IO.INT, "INT", "CUSTOM_TYPE")
|
239 |
+
|
240 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#return-types
|
241 |
+
"""
|
242 |
+
RETURN_NAMES: tuple[str]
|
243 |
+
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
|
244 |
+
|
245 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#return-names
|
246 |
+
"""
|
247 |
+
OUTPUT_TOOLTIPS: tuple[str]
|
248 |
+
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
|
249 |
+
FUNCTION: str
|
250 |
+
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
|
251 |
+
|
252 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#function
|
253 |
+
"""
|
254 |
+
|
255 |
+
|
256 |
+
class CheckLazyMixin:
|
257 |
+
"""Provides a basic check_lazy_status implementation and type hinting for nodes that use lazy inputs."""
|
258 |
+
|
259 |
+
def check_lazy_status(self, **kwargs) -> list[str]:
|
260 |
+
"""Returns a list of input names that should be evaluated.
|
261 |
+
|
262 |
+
This basic mixin impl. requires all inputs.
|
263 |
+
|
264 |
+
:kwargs: All node inputs will be included here. If the input is ``None``, it should be assumed that it has not yet been evaluated. \
|
265 |
+
When using ``INPUT_IS_LIST = True``, unevaluated will instead be ``(None,)``.
|
266 |
+
|
267 |
+
Params should match the nodes execution ``FUNCTION`` (self, and all inputs by name).
|
268 |
+
Will be executed repeatedly until it returns an empty list, or all requested items were already evaluated (and sent as params).
|
269 |
+
|
270 |
+
Comfy Docs: https://docs.comfy.org/essentials/custom_node_lazy_evaluation#defining-check-lazy-status
|
271 |
+
"""
|
272 |
+
|
273 |
+
need = [name for name in kwargs if kwargs[name] is None]
|
274 |
+
return need
|
comfy/conds.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
import comfy.utils
|
4 |
+
|
5 |
+
|
6 |
+
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
|
7 |
+
return abs(a*b) // math.gcd(a, b)
|
8 |
+
|
9 |
+
class CONDRegular:
|
10 |
+
def __init__(self, cond):
|
11 |
+
self.cond = cond
|
12 |
+
|
13 |
+
def _copy_with(self, cond):
|
14 |
+
return self.__class__(cond)
|
15 |
+
|
16 |
+
def process_cond(self, batch_size, device, **kwargs):
|
17 |
+
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
|
18 |
+
|
19 |
+
def can_concat(self, other):
|
20 |
+
if self.cond.shape != other.cond.shape:
|
21 |
+
return False
|
22 |
+
return True
|
23 |
+
|
24 |
+
def concat(self, others):
|
25 |
+
conds = [self.cond]
|
26 |
+
for x in others:
|
27 |
+
conds.append(x.cond)
|
28 |
+
return torch.cat(conds)
|
29 |
+
|
30 |
+
class CONDNoiseShape(CONDRegular):
|
31 |
+
def process_cond(self, batch_size, device, area, **kwargs):
|
32 |
+
data = self.cond
|
33 |
+
if area is not None:
|
34 |
+
dims = len(area) // 2
|
35 |
+
for i in range(dims):
|
36 |
+
data = data.narrow(i + 2, area[i + dims], area[i])
|
37 |
+
|
38 |
+
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
|
39 |
+
|
40 |
+
|
41 |
+
class CONDCrossAttn(CONDRegular):
|
42 |
+
def can_concat(self, other):
|
43 |
+
s1 = self.cond.shape
|
44 |
+
s2 = other.cond.shape
|
45 |
+
if s1 != s2:
|
46 |
+
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
|
47 |
+
return False
|
48 |
+
|
49 |
+
mult_min = lcm(s1[1], s2[1])
|
50 |
+
diff = mult_min // min(s1[1], s2[1])
|
51 |
+
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
|
52 |
+
return False
|
53 |
+
return True
|
54 |
+
|
55 |
+
def concat(self, others):
|
56 |
+
conds = [self.cond]
|
57 |
+
crossattn_max_len = self.cond.shape[1]
|
58 |
+
for x in others:
|
59 |
+
c = x.cond
|
60 |
+
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
|
61 |
+
conds.append(c)
|
62 |
+
|
63 |
+
out = []
|
64 |
+
for c in conds:
|
65 |
+
if c.shape[1] < crossattn_max_len:
|
66 |
+
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
|
67 |
+
out.append(c)
|
68 |
+
return torch.cat(out)
|
69 |
+
|
70 |
+
class CONDConstant(CONDRegular):
|
71 |
+
def __init__(self, cond):
|
72 |
+
self.cond = cond
|
73 |
+
|
74 |
+
def process_cond(self, batch_size, device, **kwargs):
|
75 |
+
return self._copy_with(self.cond)
|
76 |
+
|
77 |
+
def can_concat(self, other):
|
78 |
+
if self.cond != other.cond:
|
79 |
+
return False
|
80 |
+
return True
|
81 |
+
|
82 |
+
def concat(self, others):
|
83 |
+
return self.cond
|
comfy/controlnet.py
ADDED
@@ -0,0 +1,862 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Comfy
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from enum import Enum
|
22 |
+
import math
|
23 |
+
import os
|
24 |
+
import logging
|
25 |
+
import comfy.utils
|
26 |
+
import comfy.model_management
|
27 |
+
import comfy.model_detection
|
28 |
+
import comfy.model_patcher
|
29 |
+
import comfy.ops
|
30 |
+
import comfy.latent_formats
|
31 |
+
|
32 |
+
import comfy.cldm.cldm
|
33 |
+
import comfy.t2i_adapter.adapter
|
34 |
+
import comfy.ldm.cascade.controlnet
|
35 |
+
import comfy.cldm.mmdit
|
36 |
+
import comfy.ldm.hydit.controlnet
|
37 |
+
import comfy.ldm.flux.controlnet
|
38 |
+
import comfy.cldm.dit_embedder
|
39 |
+
from typing import TYPE_CHECKING
|
40 |
+
if TYPE_CHECKING:
|
41 |
+
from comfy.hooks import HookGroup
|
42 |
+
|
43 |
+
|
44 |
+
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
45 |
+
current_batch_size = tensor.shape[0]
|
46 |
+
#print(current_batch_size, target_batch_size)
|
47 |
+
if current_batch_size == 1:
|
48 |
+
return tensor
|
49 |
+
|
50 |
+
per_batch = target_batch_size // batched_number
|
51 |
+
tensor = tensor[:per_batch]
|
52 |
+
|
53 |
+
if per_batch > tensor.shape[0]:
|
54 |
+
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
|
55 |
+
|
56 |
+
current_batch_size = tensor.shape[0]
|
57 |
+
if current_batch_size == target_batch_size:
|
58 |
+
return tensor
|
59 |
+
else:
|
60 |
+
return torch.cat([tensor] * batched_number, dim=0)
|
61 |
+
|
62 |
+
class StrengthType(Enum):
|
63 |
+
CONSTANT = 1
|
64 |
+
LINEAR_UP = 2
|
65 |
+
|
66 |
+
class ControlBase:
|
67 |
+
def __init__(self):
|
68 |
+
self.cond_hint_original = None
|
69 |
+
self.cond_hint = None
|
70 |
+
self.strength = 1.0
|
71 |
+
self.timestep_percent_range = (0.0, 1.0)
|
72 |
+
self.latent_format = None
|
73 |
+
self.vae = None
|
74 |
+
self.global_average_pooling = False
|
75 |
+
self.timestep_range = None
|
76 |
+
self.compression_ratio = 8
|
77 |
+
self.upscale_algorithm = 'nearest-exact'
|
78 |
+
self.extra_args = {}
|
79 |
+
self.previous_controlnet = None
|
80 |
+
self.extra_conds = []
|
81 |
+
self.strength_type = StrengthType.CONSTANT
|
82 |
+
self.concat_mask = False
|
83 |
+
self.extra_concat_orig = []
|
84 |
+
self.extra_concat = None
|
85 |
+
self.extra_hooks: HookGroup = None
|
86 |
+
self.preprocess_image = lambda a: a
|
87 |
+
|
88 |
+
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
|
89 |
+
self.cond_hint_original = cond_hint
|
90 |
+
self.strength = strength
|
91 |
+
self.timestep_percent_range = timestep_percent_range
|
92 |
+
if self.latent_format is not None:
|
93 |
+
if vae is None:
|
94 |
+
logging.warning("WARNING: no VAE provided to the controlnet apply node when this controlnet requires one.")
|
95 |
+
self.vae = vae
|
96 |
+
self.extra_concat_orig = extra_concat.copy()
|
97 |
+
if self.concat_mask and len(self.extra_concat_orig) == 0:
|
98 |
+
self.extra_concat_orig.append(torch.tensor([[[[1.0]]]]))
|
99 |
+
return self
|
100 |
+
|
101 |
+
def pre_run(self, model, percent_to_timestep_function):
|
102 |
+
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
|
103 |
+
if self.previous_controlnet is not None:
|
104 |
+
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
|
105 |
+
|
106 |
+
def set_previous_controlnet(self, controlnet):
|
107 |
+
self.previous_controlnet = controlnet
|
108 |
+
return self
|
109 |
+
|
110 |
+
def cleanup(self):
|
111 |
+
if self.previous_controlnet is not None:
|
112 |
+
self.previous_controlnet.cleanup()
|
113 |
+
|
114 |
+
self.cond_hint = None
|
115 |
+
self.extra_concat = None
|
116 |
+
self.timestep_range = None
|
117 |
+
|
118 |
+
def get_models(self):
|
119 |
+
out = []
|
120 |
+
if self.previous_controlnet is not None:
|
121 |
+
out += self.previous_controlnet.get_models()
|
122 |
+
return out
|
123 |
+
|
124 |
+
def get_extra_hooks(self):
|
125 |
+
out = []
|
126 |
+
if self.extra_hooks is not None:
|
127 |
+
out.append(self.extra_hooks)
|
128 |
+
if self.previous_controlnet is not None:
|
129 |
+
out += self.previous_controlnet.get_extra_hooks()
|
130 |
+
return out
|
131 |
+
|
132 |
+
def copy_to(self, c):
|
133 |
+
c.cond_hint_original = self.cond_hint_original
|
134 |
+
c.strength = self.strength
|
135 |
+
c.timestep_percent_range = self.timestep_percent_range
|
136 |
+
c.global_average_pooling = self.global_average_pooling
|
137 |
+
c.compression_ratio = self.compression_ratio
|
138 |
+
c.upscale_algorithm = self.upscale_algorithm
|
139 |
+
c.latent_format = self.latent_format
|
140 |
+
c.extra_args = self.extra_args.copy()
|
141 |
+
c.vae = self.vae
|
142 |
+
c.extra_conds = self.extra_conds.copy()
|
143 |
+
c.strength_type = self.strength_type
|
144 |
+
c.concat_mask = self.concat_mask
|
145 |
+
c.extra_concat_orig = self.extra_concat_orig.copy()
|
146 |
+
c.extra_hooks = self.extra_hooks.clone() if self.extra_hooks else None
|
147 |
+
c.preprocess_image = self.preprocess_image
|
148 |
+
|
149 |
+
def inference_memory_requirements(self, dtype):
|
150 |
+
if self.previous_controlnet is not None:
|
151 |
+
return self.previous_controlnet.inference_memory_requirements(dtype)
|
152 |
+
return 0
|
153 |
+
|
154 |
+
def control_merge(self, control, control_prev, output_dtype):
|
155 |
+
out = {'input':[], 'middle':[], 'output': []}
|
156 |
+
|
157 |
+
for key in control:
|
158 |
+
control_output = control[key]
|
159 |
+
applied_to = set()
|
160 |
+
for i in range(len(control_output)):
|
161 |
+
x = control_output[i]
|
162 |
+
if x is not None:
|
163 |
+
if self.global_average_pooling:
|
164 |
+
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
|
165 |
+
|
166 |
+
if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
|
167 |
+
applied_to.add(x)
|
168 |
+
if self.strength_type == StrengthType.CONSTANT:
|
169 |
+
x *= self.strength
|
170 |
+
elif self.strength_type == StrengthType.LINEAR_UP:
|
171 |
+
x *= (self.strength ** float(len(control_output) - i))
|
172 |
+
|
173 |
+
if output_dtype is not None and x.dtype != output_dtype:
|
174 |
+
x = x.to(output_dtype)
|
175 |
+
|
176 |
+
out[key].append(x)
|
177 |
+
|
178 |
+
if control_prev is not None:
|
179 |
+
for x in ['input', 'middle', 'output']:
|
180 |
+
o = out[x]
|
181 |
+
for i in range(len(control_prev[x])):
|
182 |
+
prev_val = control_prev[x][i]
|
183 |
+
if i >= len(o):
|
184 |
+
o.append(prev_val)
|
185 |
+
elif prev_val is not None:
|
186 |
+
if o[i] is None:
|
187 |
+
o[i] = prev_val
|
188 |
+
else:
|
189 |
+
if o[i].shape[0] < prev_val.shape[0]:
|
190 |
+
o[i] = prev_val + o[i]
|
191 |
+
else:
|
192 |
+
o[i] = prev_val + o[i] #TODO: change back to inplace add if shared tensors stop being an issue
|
193 |
+
return out
|
194 |
+
|
195 |
+
def set_extra_arg(self, argument, value=None):
|
196 |
+
self.extra_args[argument] = value
|
197 |
+
|
198 |
+
|
199 |
+
class ControlNet(ControlBase):
|
200 |
+
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False, preprocess_image=lambda a: a):
|
201 |
+
super().__init__()
|
202 |
+
self.control_model = control_model
|
203 |
+
self.load_device = load_device
|
204 |
+
if control_model is not None:
|
205 |
+
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
|
206 |
+
|
207 |
+
self.compression_ratio = compression_ratio
|
208 |
+
self.global_average_pooling = global_average_pooling
|
209 |
+
self.model_sampling_current = None
|
210 |
+
self.manual_cast_dtype = manual_cast_dtype
|
211 |
+
self.latent_format = latent_format
|
212 |
+
self.extra_conds += extra_conds
|
213 |
+
self.strength_type = strength_type
|
214 |
+
self.concat_mask = concat_mask
|
215 |
+
self.preprocess_image = preprocess_image
|
216 |
+
|
217 |
+
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
|
218 |
+
control_prev = None
|
219 |
+
if self.previous_controlnet is not None:
|
220 |
+
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
|
221 |
+
|
222 |
+
if self.timestep_range is not None:
|
223 |
+
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
224 |
+
if control_prev is not None:
|
225 |
+
return control_prev
|
226 |
+
else:
|
227 |
+
return None
|
228 |
+
|
229 |
+
dtype = self.control_model.dtype
|
230 |
+
if self.manual_cast_dtype is not None:
|
231 |
+
dtype = self.manual_cast_dtype
|
232 |
+
|
233 |
+
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
234 |
+
if self.cond_hint is not None:
|
235 |
+
del self.cond_hint
|
236 |
+
self.cond_hint = None
|
237 |
+
compression_ratio = self.compression_ratio
|
238 |
+
if self.vae is not None:
|
239 |
+
compression_ratio *= self.vae.downscale_ratio
|
240 |
+
else:
|
241 |
+
if self.latent_format is not None:
|
242 |
+
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
|
243 |
+
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
|
244 |
+
self.cond_hint = self.preprocess_image(self.cond_hint)
|
245 |
+
if self.vae is not None:
|
246 |
+
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
|
247 |
+
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
|
248 |
+
comfy.model_management.load_models_gpu(loaded_models)
|
249 |
+
if self.latent_format is not None:
|
250 |
+
self.cond_hint = self.latent_format.process_in(self.cond_hint)
|
251 |
+
if len(self.extra_concat_orig) > 0:
|
252 |
+
to_concat = []
|
253 |
+
for c in self.extra_concat_orig:
|
254 |
+
c = c.to(self.cond_hint.device)
|
255 |
+
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
|
256 |
+
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
|
257 |
+
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
|
258 |
+
|
259 |
+
self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
|
260 |
+
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
261 |
+
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
262 |
+
|
263 |
+
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
|
264 |
+
extra = self.extra_args.copy()
|
265 |
+
for c in self.extra_conds:
|
266 |
+
temp = cond.get(c, None)
|
267 |
+
if temp is not None:
|
268 |
+
extra[c] = temp.to(dtype)
|
269 |
+
|
270 |
+
timestep = self.model_sampling_current.timestep(t)
|
271 |
+
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
272 |
+
|
273 |
+
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
|
274 |
+
return self.control_merge(control, control_prev, output_dtype=None)
|
275 |
+
|
276 |
+
def copy(self):
|
277 |
+
c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
278 |
+
c.control_model = self.control_model
|
279 |
+
c.control_model_wrapped = self.control_model_wrapped
|
280 |
+
self.copy_to(c)
|
281 |
+
return c
|
282 |
+
|
283 |
+
def get_models(self):
|
284 |
+
out = super().get_models()
|
285 |
+
out.append(self.control_model_wrapped)
|
286 |
+
return out
|
287 |
+
|
288 |
+
def pre_run(self, model, percent_to_timestep_function):
|
289 |
+
super().pre_run(model, percent_to_timestep_function)
|
290 |
+
self.model_sampling_current = model.model_sampling
|
291 |
+
|
292 |
+
def cleanup(self):
|
293 |
+
self.model_sampling_current = None
|
294 |
+
super().cleanup()
|
295 |
+
|
296 |
+
class ControlLoraOps:
|
297 |
+
class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
298 |
+
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
299 |
+
device=None, dtype=None) -> None:
|
300 |
+
super().__init__()
|
301 |
+
self.in_features = in_features
|
302 |
+
self.out_features = out_features
|
303 |
+
self.weight = None
|
304 |
+
self.up = None
|
305 |
+
self.down = None
|
306 |
+
self.bias = None
|
307 |
+
|
308 |
+
def forward(self, input):
|
309 |
+
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
310 |
+
if self.up is not None:
|
311 |
+
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
|
312 |
+
else:
|
313 |
+
return torch.nn.functional.linear(input, weight, bias)
|
314 |
+
|
315 |
+
class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
316 |
+
def __init__(
|
317 |
+
self,
|
318 |
+
in_channels,
|
319 |
+
out_channels,
|
320 |
+
kernel_size,
|
321 |
+
stride=1,
|
322 |
+
padding=0,
|
323 |
+
dilation=1,
|
324 |
+
groups=1,
|
325 |
+
bias=True,
|
326 |
+
padding_mode='zeros',
|
327 |
+
device=None,
|
328 |
+
dtype=None
|
329 |
+
):
|
330 |
+
super().__init__()
|
331 |
+
self.in_channels = in_channels
|
332 |
+
self.out_channels = out_channels
|
333 |
+
self.kernel_size = kernel_size
|
334 |
+
self.stride = stride
|
335 |
+
self.padding = padding
|
336 |
+
self.dilation = dilation
|
337 |
+
self.transposed = False
|
338 |
+
self.output_padding = 0
|
339 |
+
self.groups = groups
|
340 |
+
self.padding_mode = padding_mode
|
341 |
+
|
342 |
+
self.weight = None
|
343 |
+
self.bias = None
|
344 |
+
self.up = None
|
345 |
+
self.down = None
|
346 |
+
|
347 |
+
|
348 |
+
def forward(self, input):
|
349 |
+
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
350 |
+
if self.up is not None:
|
351 |
+
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
|
352 |
+
else:
|
353 |
+
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
|
354 |
+
|
355 |
+
|
356 |
+
class ControlLora(ControlNet):
|
357 |
+
def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
|
358 |
+
ControlBase.__init__(self)
|
359 |
+
self.control_weights = control_weights
|
360 |
+
self.global_average_pooling = global_average_pooling
|
361 |
+
self.extra_conds += ["y"]
|
362 |
+
|
363 |
+
def pre_run(self, model, percent_to_timestep_function):
|
364 |
+
super().pre_run(model, percent_to_timestep_function)
|
365 |
+
controlnet_config = model.model_config.unet_config.copy()
|
366 |
+
controlnet_config.pop("out_channels")
|
367 |
+
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
|
368 |
+
self.manual_cast_dtype = model.manual_cast_dtype
|
369 |
+
dtype = model.get_dtype()
|
370 |
+
if self.manual_cast_dtype is None:
|
371 |
+
class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
|
372 |
+
pass
|
373 |
+
else:
|
374 |
+
class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
|
375 |
+
pass
|
376 |
+
dtype = self.manual_cast_dtype
|
377 |
+
|
378 |
+
controlnet_config["operations"] = control_lora_ops
|
379 |
+
controlnet_config["dtype"] = dtype
|
380 |
+
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
381 |
+
self.control_model.to(comfy.model_management.get_torch_device())
|
382 |
+
diffusion_model = model.diffusion_model
|
383 |
+
sd = diffusion_model.state_dict()
|
384 |
+
|
385 |
+
for k in sd:
|
386 |
+
weight = sd[k]
|
387 |
+
try:
|
388 |
+
comfy.utils.set_attr_param(self.control_model, k, weight)
|
389 |
+
except:
|
390 |
+
pass
|
391 |
+
|
392 |
+
for k in self.control_weights:
|
393 |
+
if k not in {"lora_controlnet"}:
|
394 |
+
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
|
395 |
+
|
396 |
+
def copy(self):
|
397 |
+
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
|
398 |
+
self.copy_to(c)
|
399 |
+
return c
|
400 |
+
|
401 |
+
def cleanup(self):
|
402 |
+
del self.control_model
|
403 |
+
self.control_model = None
|
404 |
+
super().cleanup()
|
405 |
+
|
406 |
+
def get_models(self):
|
407 |
+
out = ControlBase.get_models(self)
|
408 |
+
return out
|
409 |
+
|
410 |
+
def inference_memory_requirements(self, dtype):
|
411 |
+
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
412 |
+
|
413 |
+
def controlnet_config(sd, model_options={}):
|
414 |
+
model_config = comfy.model_detection.model_config_from_unet(sd, "", True)
|
415 |
+
|
416 |
+
unet_dtype = model_options.get("dtype", None)
|
417 |
+
if unet_dtype is None:
|
418 |
+
weight_dtype = comfy.utils.weight_dtype(sd)
|
419 |
+
|
420 |
+
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
|
421 |
+
if weight_dtype is not None:
|
422 |
+
supported_inference_dtypes.append(weight_dtype)
|
423 |
+
|
424 |
+
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)
|
425 |
+
|
426 |
+
load_device = comfy.model_management.get_torch_device()
|
427 |
+
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
428 |
+
|
429 |
+
operations = model_options.get("custom_operations", None)
|
430 |
+
if operations is None:
|
431 |
+
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
|
432 |
+
|
433 |
+
offload_device = comfy.model_management.unet_offload_device()
|
434 |
+
return model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device
|
435 |
+
|
436 |
+
def controlnet_load_state_dict(control_model, sd):
|
437 |
+
missing, unexpected = control_model.load_state_dict(sd, strict=False)
|
438 |
+
|
439 |
+
if len(missing) > 0:
|
440 |
+
logging.warning("missing controlnet keys: {}".format(missing))
|
441 |
+
|
442 |
+
if len(unexpected) > 0:
|
443 |
+
logging.debug("unexpected controlnet keys: {}".format(unexpected))
|
444 |
+
return control_model
|
445 |
+
|
446 |
+
|
447 |
+
def load_controlnet_mmdit(sd, model_options={}):
|
448 |
+
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
449 |
+
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
|
450 |
+
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
|
451 |
+
for k in sd:
|
452 |
+
new_sd[k] = sd[k]
|
453 |
+
|
454 |
+
concat_mask = False
|
455 |
+
control_latent_channels = new_sd.get("pos_embed_input.proj.weight").shape[1]
|
456 |
+
if control_latent_channels == 17: #inpaint controlnet
|
457 |
+
concat_mask = True
|
458 |
+
|
459 |
+
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
460 |
+
control_model = controlnet_load_state_dict(control_model, new_sd)
|
461 |
+
|
462 |
+
latent_format = comfy.latent_formats.SD3()
|
463 |
+
latent_format.shift_factor = 0 #SD3 controlnet weirdness
|
464 |
+
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
465 |
+
return control
|
466 |
+
|
467 |
+
|
468 |
+
class ControlNetSD35(ControlNet):
|
469 |
+
def pre_run(self, model, percent_to_timestep_function):
|
470 |
+
if self.control_model.double_y_emb:
|
471 |
+
missing, unexpected = self.control_model.orig_y_embedder.load_state_dict(model.diffusion_model.y_embedder.state_dict(), strict=False)
|
472 |
+
else:
|
473 |
+
missing, unexpected = self.control_model.x_embedder.load_state_dict(model.diffusion_model.x_embedder.state_dict(), strict=False)
|
474 |
+
super().pre_run(model, percent_to_timestep_function)
|
475 |
+
|
476 |
+
def copy(self):
|
477 |
+
c = ControlNetSD35(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
478 |
+
c.control_model = self.control_model
|
479 |
+
c.control_model_wrapped = self.control_model_wrapped
|
480 |
+
self.copy_to(c)
|
481 |
+
return c
|
482 |
+
|
483 |
+
def load_controlnet_sd35(sd, model_options={}):
|
484 |
+
control_type = -1
|
485 |
+
if "control_type" in sd:
|
486 |
+
control_type = round(sd.pop("control_type").item())
|
487 |
+
|
488 |
+
# blur_cnet = control_type == 0
|
489 |
+
canny_cnet = control_type == 1
|
490 |
+
depth_cnet = control_type == 2
|
491 |
+
|
492 |
+
new_sd = {}
|
493 |
+
for k in comfy.utils.MMDIT_MAP_BASIC:
|
494 |
+
if k[1] in sd:
|
495 |
+
new_sd[k[0]] = sd.pop(k[1])
|
496 |
+
for k in sd:
|
497 |
+
new_sd[k] = sd[k]
|
498 |
+
sd = new_sd
|
499 |
+
|
500 |
+
y_emb_shape = sd["y_embedder.mlp.0.weight"].shape
|
501 |
+
depth = y_emb_shape[0] // 64
|
502 |
+
hidden_size = 64 * depth
|
503 |
+
num_heads = depth
|
504 |
+
head_dim = hidden_size // num_heads
|
505 |
+
num_blocks = comfy.model_detection.count_blocks(new_sd, 'transformer_blocks.{}.')
|
506 |
+
|
507 |
+
load_device = comfy.model_management.get_torch_device()
|
508 |
+
offload_device = comfy.model_management.unet_offload_device()
|
509 |
+
unet_dtype = comfy.model_management.unet_dtype(model_params=-1)
|
510 |
+
|
511 |
+
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
512 |
+
|
513 |
+
operations = model_options.get("custom_operations", None)
|
514 |
+
if operations is None:
|
515 |
+
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
|
516 |
+
|
517 |
+
control_model = comfy.cldm.dit_embedder.ControlNetEmbedder(img_size=None,
|
518 |
+
patch_size=2,
|
519 |
+
in_chans=16,
|
520 |
+
num_layers=num_blocks,
|
521 |
+
main_model_double=depth,
|
522 |
+
double_y_emb=y_emb_shape[0] == y_emb_shape[1],
|
523 |
+
attention_head_dim=head_dim,
|
524 |
+
num_attention_heads=num_heads,
|
525 |
+
adm_in_channels=2048,
|
526 |
+
device=offload_device,
|
527 |
+
dtype=unet_dtype,
|
528 |
+
operations=operations)
|
529 |
+
|
530 |
+
control_model = controlnet_load_state_dict(control_model, sd)
|
531 |
+
|
532 |
+
latent_format = comfy.latent_formats.SD3()
|
533 |
+
preprocess_image = lambda a: a
|
534 |
+
if canny_cnet:
|
535 |
+
preprocess_image = lambda a: (a * 255 * 0.5 + 0.5)
|
536 |
+
elif depth_cnet:
|
537 |
+
preprocess_image = lambda a: 1.0 - a
|
538 |
+
|
539 |
+
control = ControlNetSD35(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, preprocess_image=preprocess_image)
|
540 |
+
return control
|
541 |
+
|
542 |
+
|
543 |
+
|
544 |
+
def load_controlnet_hunyuandit(controlnet_data, model_options={}):
|
545 |
+
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(controlnet_data, model_options=model_options)
|
546 |
+
|
547 |
+
control_model = comfy.ldm.hydit.controlnet.HunYuanControlNet(operations=operations, device=offload_device, dtype=unet_dtype)
|
548 |
+
control_model = controlnet_load_state_dict(control_model, controlnet_data)
|
549 |
+
|
550 |
+
latent_format = comfy.latent_formats.SDXL()
|
551 |
+
extra_conds = ['text_embedding_mask', 'encoder_hidden_states_t5', 'text_embedding_mask_t5', 'image_meta_size', 'style', 'cos_cis_img', 'sin_cis_img']
|
552 |
+
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
|
553 |
+
return control
|
554 |
+
|
555 |
+
def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
|
556 |
+
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
|
557 |
+
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
558 |
+
control_model = controlnet_load_state_dict(control_model, sd)
|
559 |
+
extra_conds = ['y', 'guidance']
|
560 |
+
control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
561 |
+
return control
|
562 |
+
|
563 |
+
def load_controlnet_flux_instantx(sd, model_options={}):
|
564 |
+
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
565 |
+
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
|
566 |
+
for k in sd:
|
567 |
+
new_sd[k] = sd[k]
|
568 |
+
|
569 |
+
num_union_modes = 0
|
570 |
+
union_cnet = "controlnet_mode_embedder.weight"
|
571 |
+
if union_cnet in new_sd:
|
572 |
+
num_union_modes = new_sd[union_cnet].shape[0]
|
573 |
+
|
574 |
+
control_latent_channels = new_sd.get("pos_embed_input.weight").shape[1] // 4
|
575 |
+
concat_mask = False
|
576 |
+
if control_latent_channels == 17:
|
577 |
+
concat_mask = True
|
578 |
+
|
579 |
+
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(latent_input=True, num_union_modes=num_union_modes, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
580 |
+
control_model = controlnet_load_state_dict(control_model, new_sd)
|
581 |
+
|
582 |
+
latent_format = comfy.latent_formats.Flux()
|
583 |
+
extra_conds = ['y', 'guidance']
|
584 |
+
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
585 |
+
return control
|
586 |
+
|
587 |
+
def convert_mistoline(sd):
|
588 |
+
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
|
589 |
+
|
590 |
+
|
591 |
+
def load_controlnet_state_dict(state_dict, model=None, model_options={}):
|
592 |
+
controlnet_data = state_dict
|
593 |
+
if 'after_proj_list.18.bias' in controlnet_data.keys(): #Hunyuan DiT
|
594 |
+
return load_controlnet_hunyuandit(controlnet_data, model_options=model_options)
|
595 |
+
|
596 |
+
if "lora_controlnet" in controlnet_data:
|
597 |
+
return ControlLora(controlnet_data, model_options=model_options)
|
598 |
+
|
599 |
+
controlnet_config = None
|
600 |
+
supported_inference_dtypes = None
|
601 |
+
|
602 |
+
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
|
603 |
+
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
|
604 |
+
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
|
605 |
+
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
|
606 |
+
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
|
607 |
+
|
608 |
+
count = 0
|
609 |
+
loop = True
|
610 |
+
while loop:
|
611 |
+
suffix = [".weight", ".bias"]
|
612 |
+
for s in suffix:
|
613 |
+
k_in = "controlnet_down_blocks.{}{}".format(count, s)
|
614 |
+
k_out = "zero_convs.{}.0{}".format(count, s)
|
615 |
+
if k_in not in controlnet_data:
|
616 |
+
loop = False
|
617 |
+
break
|
618 |
+
diffusers_keys[k_in] = k_out
|
619 |
+
count += 1
|
620 |
+
|
621 |
+
count = 0
|
622 |
+
loop = True
|
623 |
+
while loop:
|
624 |
+
suffix = [".weight", ".bias"]
|
625 |
+
for s in suffix:
|
626 |
+
if count == 0:
|
627 |
+
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
|
628 |
+
else:
|
629 |
+
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
|
630 |
+
k_out = "input_hint_block.{}{}".format(count * 2, s)
|
631 |
+
if k_in not in controlnet_data:
|
632 |
+
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
|
633 |
+
loop = False
|
634 |
+
diffusers_keys[k_in] = k_out
|
635 |
+
count += 1
|
636 |
+
|
637 |
+
new_sd = {}
|
638 |
+
for k in diffusers_keys:
|
639 |
+
if k in controlnet_data:
|
640 |
+
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
|
641 |
+
|
642 |
+
if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
|
643 |
+
controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
|
644 |
+
for k in list(controlnet_data.keys()):
|
645 |
+
new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
|
646 |
+
new_sd[new_k] = controlnet_data.pop(k)
|
647 |
+
|
648 |
+
leftover_keys = controlnet_data.keys()
|
649 |
+
if len(leftover_keys) > 0:
|
650 |
+
logging.warning("leftover keys: {}".format(leftover_keys))
|
651 |
+
controlnet_data = new_sd
|
652 |
+
elif "controlnet_blocks.0.weight" in controlnet_data:
|
653 |
+
if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
|
654 |
+
return load_controlnet_flux_xlabs_mistoline(controlnet_data, model_options=model_options)
|
655 |
+
elif "pos_embed_input.proj.weight" in controlnet_data:
|
656 |
+
if "transformer_blocks.0.adaLN_modulation.1.bias" in controlnet_data:
|
657 |
+
return load_controlnet_sd35(controlnet_data, model_options=model_options) #Stability sd3.5 format
|
658 |
+
else:
|
659 |
+
return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
|
660 |
+
elif "controlnet_x_embedder.weight" in controlnet_data:
|
661 |
+
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
|
662 |
+
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
|
663 |
+
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)
|
664 |
+
|
665 |
+
pth_key = 'control_model.zero_convs.0.0.weight'
|
666 |
+
pth = False
|
667 |
+
key = 'zero_convs.0.0.weight'
|
668 |
+
if pth_key in controlnet_data:
|
669 |
+
pth = True
|
670 |
+
key = pth_key
|
671 |
+
prefix = "control_model."
|
672 |
+
elif key in controlnet_data:
|
673 |
+
prefix = ""
|
674 |
+
else:
|
675 |
+
net = load_t2i_adapter(controlnet_data, model_options=model_options)
|
676 |
+
if net is None:
|
677 |
+
logging.error("error could not detect control model type.")
|
678 |
+
return net
|
679 |
+
|
680 |
+
if controlnet_config is None:
|
681 |
+
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
|
682 |
+
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
|
683 |
+
controlnet_config = model_config.unet_config
|
684 |
+
|
685 |
+
unet_dtype = model_options.get("dtype", None)
|
686 |
+
if unet_dtype is None:
|
687 |
+
weight_dtype = comfy.utils.weight_dtype(controlnet_data)
|
688 |
+
|
689 |
+
if supported_inference_dtypes is None:
|
690 |
+
supported_inference_dtypes = [comfy.model_management.unet_dtype()]
|
691 |
+
|
692 |
+
if weight_dtype is not None:
|
693 |
+
supported_inference_dtypes.append(weight_dtype)
|
694 |
+
|
695 |
+
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)
|
696 |
+
|
697 |
+
load_device = comfy.model_management.get_torch_device()
|
698 |
+
|
699 |
+
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
700 |
+
operations = model_options.get("custom_operations", None)
|
701 |
+
if operations is None:
|
702 |
+
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype)
|
703 |
+
|
704 |
+
controlnet_config["operations"] = operations
|
705 |
+
controlnet_config["dtype"] = unet_dtype
|
706 |
+
controlnet_config["device"] = comfy.model_management.unet_offload_device()
|
707 |
+
controlnet_config.pop("out_channels")
|
708 |
+
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
709 |
+
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
710 |
+
|
711 |
+
if pth:
|
712 |
+
if 'difference' in controlnet_data:
|
713 |
+
if model is not None:
|
714 |
+
comfy.model_management.load_models_gpu([model])
|
715 |
+
model_sd = model.model_state_dict()
|
716 |
+
for x in controlnet_data:
|
717 |
+
c_m = "control_model."
|
718 |
+
if x.startswith(c_m):
|
719 |
+
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
720 |
+
if sd_key in model_sd:
|
721 |
+
cd = controlnet_data[x]
|
722 |
+
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
723 |
+
else:
|
724 |
+
logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
725 |
+
|
726 |
+
class WeightsLoader(torch.nn.Module):
|
727 |
+
pass
|
728 |
+
w = WeightsLoader()
|
729 |
+
w.control_model = control_model
|
730 |
+
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
731 |
+
else:
|
732 |
+
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
733 |
+
|
734 |
+
if len(missing) > 0:
|
735 |
+
logging.warning("missing controlnet keys: {}".format(missing))
|
736 |
+
|
737 |
+
if len(unexpected) > 0:
|
738 |
+
logging.debug("unexpected controlnet keys: {}".format(unexpected))
|
739 |
+
|
740 |
+
global_average_pooling = model_options.get("global_average_pooling", False)
|
741 |
+
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
742 |
+
return control
|
743 |
+
|
744 |
+
def load_controlnet(ckpt_path, model=None, model_options={}):
|
745 |
+
if "global_average_pooling" not in model_options:
|
746 |
+
filename = os.path.splitext(ckpt_path)[0]
|
747 |
+
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
|
748 |
+
model_options["global_average_pooling"] = True
|
749 |
+
|
750 |
+
cnet = load_controlnet_state_dict(comfy.utils.load_torch_file(ckpt_path, safe_load=True), model=model, model_options=model_options)
|
751 |
+
if cnet is None:
|
752 |
+
logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
|
753 |
+
return cnet
|
754 |
+
|
755 |
+
class T2IAdapter(ControlBase):
|
756 |
+
def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
|
757 |
+
super().__init__()
|
758 |
+
self.t2i_model = t2i_model
|
759 |
+
self.channels_in = channels_in
|
760 |
+
self.control_input = None
|
761 |
+
self.compression_ratio = compression_ratio
|
762 |
+
self.upscale_algorithm = upscale_algorithm
|
763 |
+
if device is None:
|
764 |
+
device = comfy.model_management.get_torch_device()
|
765 |
+
self.device = device
|
766 |
+
|
767 |
+
def scale_image_to(self, width, height):
|
768 |
+
unshuffle_amount = self.t2i_model.unshuffle_amount
|
769 |
+
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
|
770 |
+
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
|
771 |
+
return width, height
|
772 |
+
|
773 |
+
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
|
774 |
+
control_prev = None
|
775 |
+
if self.previous_controlnet is not None:
|
776 |
+
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
|
777 |
+
|
778 |
+
if self.timestep_range is not None:
|
779 |
+
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
780 |
+
if control_prev is not None:
|
781 |
+
return control_prev
|
782 |
+
else:
|
783 |
+
return None
|
784 |
+
|
785 |
+
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
786 |
+
if self.cond_hint is not None:
|
787 |
+
del self.cond_hint
|
788 |
+
self.control_input = None
|
789 |
+
self.cond_hint = None
|
790 |
+
width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio)
|
791 |
+
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device)
|
792 |
+
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
793 |
+
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
794 |
+
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
795 |
+
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
796 |
+
if self.control_input is None:
|
797 |
+
self.t2i_model.to(x_noisy.dtype)
|
798 |
+
self.t2i_model.to(self.device)
|
799 |
+
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
|
800 |
+
self.t2i_model.cpu()
|
801 |
+
|
802 |
+
control_input = {}
|
803 |
+
for k in self.control_input:
|
804 |
+
control_input[k] = list(map(lambda a: None if a is None else a.clone(), self.control_input[k]))
|
805 |
+
|
806 |
+
return self.control_merge(control_input, control_prev, x_noisy.dtype)
|
807 |
+
|
808 |
+
def copy(self):
|
809 |
+
c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm)
|
810 |
+
self.copy_to(c)
|
811 |
+
return c
|
812 |
+
|
813 |
+
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
|
814 |
+
compression_ratio = 8
|
815 |
+
upscale_algorithm = 'nearest-exact'
|
816 |
+
|
817 |
+
if 'adapter' in t2i_data:
|
818 |
+
t2i_data = t2i_data['adapter']
|
819 |
+
if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
|
820 |
+
prefix_replace = {}
|
821 |
+
for i in range(4):
|
822 |
+
for j in range(2):
|
823 |
+
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
|
824 |
+
prefix_replace["adapter.body.{}.".format(i, )] = "body.{}.".format(i * 2)
|
825 |
+
prefix_replace["adapter."] = ""
|
826 |
+
t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
|
827 |
+
keys = t2i_data.keys()
|
828 |
+
|
829 |
+
if "body.0.in_conv.weight" in keys:
|
830 |
+
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
831 |
+
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
832 |
+
elif 'conv_in.weight' in keys:
|
833 |
+
cin = t2i_data['conv_in.weight'].shape[1]
|
834 |
+
channel = t2i_data['conv_in.weight'].shape[0]
|
835 |
+
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
836 |
+
use_conv = False
|
837 |
+
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
838 |
+
if len(down_opts) > 0:
|
839 |
+
use_conv = True
|
840 |
+
xl = False
|
841 |
+
if cin == 256 or cin == 768:
|
842 |
+
xl = True
|
843 |
+
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
844 |
+
elif "backbone.0.0.weight" in keys:
|
845 |
+
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
|
846 |
+
compression_ratio = 32
|
847 |
+
upscale_algorithm = 'bilinear'
|
848 |
+
elif "backbone.10.blocks.0.weight" in keys:
|
849 |
+
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
|
850 |
+
compression_ratio = 1
|
851 |
+
upscale_algorithm = 'nearest-exact'
|
852 |
+
else:
|
853 |
+
return None
|
854 |
+
|
855 |
+
missing, unexpected = model_ad.load_state_dict(t2i_data)
|
856 |
+
if len(missing) > 0:
|
857 |
+
logging.warning("t2i missing {}".format(missing))
|
858 |
+
|
859 |
+
if len(unexpected) > 0:
|
860 |
+
logging.debug("t2i unexpected {}".format(unexpected))
|
861 |
+
|
862 |
+
return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)
|
comfy/diffusers_convert.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
import logging
|
4 |
+
|
5 |
+
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
|
6 |
+
|
7 |
+
# =================#
|
8 |
+
# UNet Conversion #
|
9 |
+
# =================#
|
10 |
+
|
11 |
+
unet_conversion_map = [
|
12 |
+
# (stable-diffusion, HF Diffusers)
|
13 |
+
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
14 |
+
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
15 |
+
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
16 |
+
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
17 |
+
("input_blocks.0.0.weight", "conv_in.weight"),
|
18 |
+
("input_blocks.0.0.bias", "conv_in.bias"),
|
19 |
+
("out.0.weight", "conv_norm_out.weight"),
|
20 |
+
("out.0.bias", "conv_norm_out.bias"),
|
21 |
+
("out.2.weight", "conv_out.weight"),
|
22 |
+
("out.2.bias", "conv_out.bias"),
|
23 |
+
]
|
24 |
+
|
25 |
+
unet_conversion_map_resnet = [
|
26 |
+
# (stable-diffusion, HF Diffusers)
|
27 |
+
("in_layers.0", "norm1"),
|
28 |
+
("in_layers.2", "conv1"),
|
29 |
+
("out_layers.0", "norm2"),
|
30 |
+
("out_layers.3", "conv2"),
|
31 |
+
("emb_layers.1", "time_emb_proj"),
|
32 |
+
("skip_connection", "conv_shortcut"),
|
33 |
+
]
|
34 |
+
|
35 |
+
unet_conversion_map_layer = []
|
36 |
+
# hardcoded number of downblocks and resnets/attentions...
|
37 |
+
# would need smarter logic for other networks.
|
38 |
+
for i in range(4):
|
39 |
+
# loop over downblocks/upblocks
|
40 |
+
|
41 |
+
for j in range(2):
|
42 |
+
# loop over resnets/attentions for downblocks
|
43 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
44 |
+
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
|
45 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
46 |
+
|
47 |
+
if i < 3:
|
48 |
+
# no attention layers in down_blocks.3
|
49 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
50 |
+
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
|
51 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
52 |
+
|
53 |
+
for j in range(3):
|
54 |
+
# loop over resnets/attentions for upblocks
|
55 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
56 |
+
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
|
57 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
58 |
+
|
59 |
+
if i > 0:
|
60 |
+
# no attention layers in up_blocks.0
|
61 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
62 |
+
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
|
63 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
64 |
+
|
65 |
+
if i < 3:
|
66 |
+
# no downsample in down_blocks.3
|
67 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
68 |
+
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
|
69 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
70 |
+
|
71 |
+
# no upsample in up_blocks.3
|
72 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
73 |
+
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
|
74 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
75 |
+
|
76 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
77 |
+
sd_mid_atn_prefix = "middle_block.1."
|
78 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
79 |
+
|
80 |
+
for j in range(2):
|
81 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
82 |
+
sd_mid_res_prefix = f"middle_block.{2 * j}."
|
83 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
84 |
+
|
85 |
+
|
86 |
+
def convert_unet_state_dict(unet_state_dict):
|
87 |
+
# buyer beware: this is a *brittle* function,
|
88 |
+
# and correct output requires that all of these pieces interact in
|
89 |
+
# the exact order in which I have arranged them.
|
90 |
+
mapping = {k: k for k in unet_state_dict.keys()}
|
91 |
+
for sd_name, hf_name in unet_conversion_map:
|
92 |
+
mapping[hf_name] = sd_name
|
93 |
+
for k, v in mapping.items():
|
94 |
+
if "resnets" in k:
|
95 |
+
for sd_part, hf_part in unet_conversion_map_resnet:
|
96 |
+
v = v.replace(hf_part, sd_part)
|
97 |
+
mapping[k] = v
|
98 |
+
for k, v in mapping.items():
|
99 |
+
for sd_part, hf_part in unet_conversion_map_layer:
|
100 |
+
v = v.replace(hf_part, sd_part)
|
101 |
+
mapping[k] = v
|
102 |
+
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
103 |
+
return new_state_dict
|
104 |
+
|
105 |
+
|
106 |
+
# ================#
|
107 |
+
# VAE Conversion #
|
108 |
+
# ================#
|
109 |
+
|
110 |
+
vae_conversion_map = [
|
111 |
+
# (stable-diffusion, HF Diffusers)
|
112 |
+
("nin_shortcut", "conv_shortcut"),
|
113 |
+
("norm_out", "conv_norm_out"),
|
114 |
+
("mid.attn_1.", "mid_block.attentions.0."),
|
115 |
+
]
|
116 |
+
|
117 |
+
for i in range(4):
|
118 |
+
# down_blocks have two resnets
|
119 |
+
for j in range(2):
|
120 |
+
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
121 |
+
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
122 |
+
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
123 |
+
|
124 |
+
if i < 3:
|
125 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
126 |
+
sd_downsample_prefix = f"down.{i}.downsample."
|
127 |
+
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
128 |
+
|
129 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
130 |
+
sd_upsample_prefix = f"up.{3 - i}.upsample."
|
131 |
+
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
132 |
+
|
133 |
+
# up_blocks have three resnets
|
134 |
+
# also, up blocks in hf are numbered in reverse from sd
|
135 |
+
for j in range(3):
|
136 |
+
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
137 |
+
sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
|
138 |
+
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
139 |
+
|
140 |
+
# this part accounts for mid blocks in both the encoder and the decoder
|
141 |
+
for i in range(2):
|
142 |
+
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
143 |
+
sd_mid_res_prefix = f"mid.block_{i + 1}."
|
144 |
+
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
145 |
+
|
146 |
+
vae_conversion_map_attn = [
|
147 |
+
# (stable-diffusion, HF Diffusers)
|
148 |
+
("norm.", "group_norm."),
|
149 |
+
("q.", "query."),
|
150 |
+
("k.", "key."),
|
151 |
+
("v.", "value."),
|
152 |
+
("q.", "to_q."),
|
153 |
+
("k.", "to_k."),
|
154 |
+
("v.", "to_v."),
|
155 |
+
("proj_out.", "to_out.0."),
|
156 |
+
("proj_out.", "proj_attn."),
|
157 |
+
]
|
158 |
+
|
159 |
+
|
160 |
+
def reshape_weight_for_sd(w, conv3d=False):
|
161 |
+
# convert HF linear weights to SD conv2d weights
|
162 |
+
if conv3d:
|
163 |
+
return w.reshape(*w.shape, 1, 1, 1)
|
164 |
+
else:
|
165 |
+
return w.reshape(*w.shape, 1, 1)
|
166 |
+
|
167 |
+
|
168 |
+
def convert_vae_state_dict(vae_state_dict):
|
169 |
+
mapping = {k: k for k in vae_state_dict.keys()}
|
170 |
+
conv3d = False
|
171 |
+
for k, v in mapping.items():
|
172 |
+
for sd_part, hf_part in vae_conversion_map:
|
173 |
+
v = v.replace(hf_part, sd_part)
|
174 |
+
if v.endswith(".conv.weight"):
|
175 |
+
if not conv3d and vae_state_dict[k].ndim == 5:
|
176 |
+
conv3d = True
|
177 |
+
mapping[k] = v
|
178 |
+
for k, v in mapping.items():
|
179 |
+
if "attentions" in k:
|
180 |
+
for sd_part, hf_part in vae_conversion_map_attn:
|
181 |
+
v = v.replace(hf_part, sd_part)
|
182 |
+
mapping[k] = v
|
183 |
+
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
184 |
+
weights_to_convert = ["q", "k", "v", "proj_out"]
|
185 |
+
for k, v in new_state_dict.items():
|
186 |
+
for weight_name in weights_to_convert:
|
187 |
+
if f"mid.attn_1.{weight_name}.weight" in k:
|
188 |
+
logging.debug(f"Reshaping {k} for SD format")
|
189 |
+
new_state_dict[k] = reshape_weight_for_sd(v, conv3d=conv3d)
|
190 |
+
return new_state_dict
|
191 |
+
|
192 |
+
|
193 |
+
# =========================#
|
194 |
+
# Text Encoder Conversion #
|
195 |
+
# =========================#
|
196 |
+
|
197 |
+
|
198 |
+
textenc_conversion_lst = [
|
199 |
+
# (stable-diffusion, HF Diffusers)
|
200 |
+
("resblocks.", "text_model.encoder.layers."),
|
201 |
+
("ln_1", "layer_norm1"),
|
202 |
+
("ln_2", "layer_norm2"),
|
203 |
+
(".c_fc.", ".fc1."),
|
204 |
+
(".c_proj.", ".fc2."),
|
205 |
+
(".attn", ".self_attn"),
|
206 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
207 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
208 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
209 |
+
]
|
210 |
+
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
211 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
212 |
+
|
213 |
+
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
214 |
+
code2idx = {"q": 0, "k": 1, "v": 2}
|
215 |
+
|
216 |
+
# This function exists because at the time of writing torch.cat can't do fp8 with cuda
|
217 |
+
def cat_tensors(tensors):
|
218 |
+
x = 0
|
219 |
+
for t in tensors:
|
220 |
+
x += t.shape[0]
|
221 |
+
|
222 |
+
shape = [x] + list(tensors[0].shape)[1:]
|
223 |
+
out = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype)
|
224 |
+
|
225 |
+
x = 0
|
226 |
+
for t in tensors:
|
227 |
+
out[x:x + t.shape[0]] = t
|
228 |
+
x += t.shape[0]
|
229 |
+
|
230 |
+
return out
|
231 |
+
|
232 |
+
def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
|
233 |
+
new_state_dict = {}
|
234 |
+
capture_qkv_weight = {}
|
235 |
+
capture_qkv_bias = {}
|
236 |
+
for k, v in text_enc_dict.items():
|
237 |
+
if not k.startswith(prefix):
|
238 |
+
continue
|
239 |
+
if (
|
240 |
+
k.endswith(".self_attn.q_proj.weight")
|
241 |
+
or k.endswith(".self_attn.k_proj.weight")
|
242 |
+
or k.endswith(".self_attn.v_proj.weight")
|
243 |
+
):
|
244 |
+
k_pre = k[: -len(".q_proj.weight")]
|
245 |
+
k_code = k[-len("q_proj.weight")]
|
246 |
+
if k_pre not in capture_qkv_weight:
|
247 |
+
capture_qkv_weight[k_pre] = [None, None, None]
|
248 |
+
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
249 |
+
continue
|
250 |
+
|
251 |
+
if (
|
252 |
+
k.endswith(".self_attn.q_proj.bias")
|
253 |
+
or k.endswith(".self_attn.k_proj.bias")
|
254 |
+
or k.endswith(".self_attn.v_proj.bias")
|
255 |
+
):
|
256 |
+
k_pre = k[: -len(".q_proj.bias")]
|
257 |
+
k_code = k[-len("q_proj.bias")]
|
258 |
+
if k_pre not in capture_qkv_bias:
|
259 |
+
capture_qkv_bias[k_pre] = [None, None, None]
|
260 |
+
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
261 |
+
continue
|
262 |
+
|
263 |
+
text_proj = "transformer.text_projection.weight"
|
264 |
+
if k.endswith(text_proj):
|
265 |
+
new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous()
|
266 |
+
else:
|
267 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
268 |
+
new_state_dict[relabelled_key] = v
|
269 |
+
|
270 |
+
for k_pre, tensors in capture_qkv_weight.items():
|
271 |
+
if None in tensors:
|
272 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
273 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
274 |
+
new_state_dict[relabelled_key + ".in_proj_weight"] = cat_tensors(tensors)
|
275 |
+
|
276 |
+
for k_pre, tensors in capture_qkv_bias.items():
|
277 |
+
if None in tensors:
|
278 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
279 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
280 |
+
new_state_dict[relabelled_key + ".in_proj_bias"] = cat_tensors(tensors)
|
281 |
+
|
282 |
+
return new_state_dict
|
283 |
+
|
284 |
+
|
285 |
+
def convert_text_enc_state_dict(text_enc_dict):
|
286 |
+
return text_enc_dict
|
287 |
+
|
288 |
+
|
comfy/diffusers_load.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import comfy.sd
|
4 |
+
|
5 |
+
def first_file(path, filenames):
|
6 |
+
for f in filenames:
|
7 |
+
p = os.path.join(path, f)
|
8 |
+
if os.path.exists(p):
|
9 |
+
return p
|
10 |
+
return None
|
11 |
+
|
12 |
+
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
|
13 |
+
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
|
14 |
+
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
|
15 |
+
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
|
16 |
+
|
17 |
+
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
|
18 |
+
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
|
19 |
+
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
|
20 |
+
|
21 |
+
text_encoder_paths = [text_encoder1_path]
|
22 |
+
if text_encoder2_path is not None:
|
23 |
+
text_encoder_paths.append(text_encoder2_path)
|
24 |
+
|
25 |
+
unet = comfy.sd.load_diffusion_model(unet_path)
|
26 |
+
|
27 |
+
clip = None
|
28 |
+
if output_clip:
|
29 |
+
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
|
30 |
+
|
31 |
+
vae = None
|
32 |
+
if output_vae:
|
33 |
+
sd = comfy.utils.load_torch_file(vae_path)
|
34 |
+
vae = comfy.sd.VAE(sd=sd)
|
35 |
+
|
36 |
+
return (unet, clip, vae)
|
comfy/extra_samplers/uni_pc.py
ADDED
@@ -0,0 +1,873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#code taken from: https://github.com/wl-zhao/UniPC and modified
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import math
|
5 |
+
import logging
|
6 |
+
|
7 |
+
from tqdm.auto import trange
|
8 |
+
|
9 |
+
|
10 |
+
class NoiseScheduleVP:
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
schedule='discrete',
|
14 |
+
betas=None,
|
15 |
+
alphas_cumprod=None,
|
16 |
+
continuous_beta_0=0.1,
|
17 |
+
continuous_beta_1=20.,
|
18 |
+
):
|
19 |
+
r"""Create a wrapper class for the forward SDE (VP type).
|
20 |
+
|
21 |
+
***
|
22 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
23 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
24 |
+
***
|
25 |
+
|
26 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
27 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
28 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
29 |
+
|
30 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
31 |
+
sigma_t = self.marginal_std(t)
|
32 |
+
lambda_t = self.marginal_lambda(t)
|
33 |
+
|
34 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
35 |
+
|
36 |
+
t = self.inverse_lambda(lambda_t)
|
37 |
+
|
38 |
+
===============================================================
|
39 |
+
|
40 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
41 |
+
|
42 |
+
1. For discrete-time DPMs:
|
43 |
+
|
44 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
45 |
+
t_i = (i + 1) / N
|
46 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
47 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
51 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
52 |
+
|
53 |
+
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
54 |
+
|
55 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
56 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
57 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
58 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
59 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
60 |
+
and
|
61 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
62 |
+
|
63 |
+
|
64 |
+
2. For continuous-time DPMs:
|
65 |
+
|
66 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
67 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
68 |
+
|
69 |
+
Args:
|
70 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
71 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
72 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
73 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
74 |
+
T: A `float` number. The ending time of the forward process.
|
75 |
+
|
76 |
+
===============================================================
|
77 |
+
|
78 |
+
Args:
|
79 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
80 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
81 |
+
Returns:
|
82 |
+
A wrapper object of the forward SDE (VP type).
|
83 |
+
|
84 |
+
===============================================================
|
85 |
+
|
86 |
+
Example:
|
87 |
+
|
88 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
89 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
90 |
+
|
91 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
92 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
93 |
+
|
94 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
95 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
96 |
+
|
97 |
+
"""
|
98 |
+
|
99 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
100 |
+
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
|
101 |
+
|
102 |
+
self.schedule = schedule
|
103 |
+
if schedule == 'discrete':
|
104 |
+
if betas is not None:
|
105 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
106 |
+
else:
|
107 |
+
assert alphas_cumprod is not None
|
108 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
109 |
+
self.total_N = len(log_alphas)
|
110 |
+
self.T = 1.
|
111 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
112 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
113 |
+
else:
|
114 |
+
self.total_N = 1000
|
115 |
+
self.beta_0 = continuous_beta_0
|
116 |
+
self.beta_1 = continuous_beta_1
|
117 |
+
self.cosine_s = 0.008
|
118 |
+
self.cosine_beta_max = 999.
|
119 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
120 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
121 |
+
self.schedule = schedule
|
122 |
+
if schedule == 'cosine':
|
123 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
124 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
125 |
+
self.T = 0.9946
|
126 |
+
else:
|
127 |
+
self.T = 1.
|
128 |
+
|
129 |
+
def marginal_log_mean_coeff(self, t):
|
130 |
+
"""
|
131 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
132 |
+
"""
|
133 |
+
if self.schedule == 'discrete':
|
134 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
135 |
+
elif self.schedule == 'linear':
|
136 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
137 |
+
elif self.schedule == 'cosine':
|
138 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
139 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
140 |
+
return log_alpha_t
|
141 |
+
|
142 |
+
def marginal_alpha(self, t):
|
143 |
+
"""
|
144 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
145 |
+
"""
|
146 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
147 |
+
|
148 |
+
def marginal_std(self, t):
|
149 |
+
"""
|
150 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
151 |
+
"""
|
152 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
153 |
+
|
154 |
+
def marginal_lambda(self, t):
|
155 |
+
"""
|
156 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
157 |
+
"""
|
158 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
159 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
160 |
+
return log_mean_coeff - log_std
|
161 |
+
|
162 |
+
def inverse_lambda(self, lamb):
|
163 |
+
"""
|
164 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
165 |
+
"""
|
166 |
+
if self.schedule == 'linear':
|
167 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
168 |
+
Delta = self.beta_0**2 + tmp
|
169 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
170 |
+
elif self.schedule == 'discrete':
|
171 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
172 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
173 |
+
return t.reshape((-1,))
|
174 |
+
else:
|
175 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
176 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
177 |
+
t = t_fn(log_alpha)
|
178 |
+
return t
|
179 |
+
|
180 |
+
|
181 |
+
def model_wrapper(
|
182 |
+
model,
|
183 |
+
noise_schedule,
|
184 |
+
model_type="noise",
|
185 |
+
model_kwargs={},
|
186 |
+
guidance_type="uncond",
|
187 |
+
condition=None,
|
188 |
+
unconditional_condition=None,
|
189 |
+
guidance_scale=1.,
|
190 |
+
classifier_fn=None,
|
191 |
+
classifier_kwargs={},
|
192 |
+
):
|
193 |
+
"""Create a wrapper function for the noise prediction model.
|
194 |
+
|
195 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
196 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
197 |
+
|
198 |
+
We support four types of the diffusion model by setting `model_type`:
|
199 |
+
|
200 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
201 |
+
|
202 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
203 |
+
|
204 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
205 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
206 |
+
|
207 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
208 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
209 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
210 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
211 |
+
|
212 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
213 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
214 |
+
```
|
215 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
216 |
+
```
|
217 |
+
|
218 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
219 |
+
1. "uncond": unconditional sampling by DPMs.
|
220 |
+
The input `model` has the following format:
|
221 |
+
``
|
222 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
223 |
+
``
|
224 |
+
|
225 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
226 |
+
The input `model` has the following format:
|
227 |
+
``
|
228 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
229 |
+
``
|
230 |
+
|
231 |
+
The input `classifier_fn` has the following format:
|
232 |
+
``
|
233 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
234 |
+
``
|
235 |
+
|
236 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
237 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
238 |
+
|
239 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
240 |
+
The input `model` has the following format:
|
241 |
+
``
|
242 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
243 |
+
``
|
244 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
245 |
+
|
246 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
247 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
248 |
+
|
249 |
+
|
250 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
251 |
+
or continuous-time labels (i.e. epsilon to T).
|
252 |
+
|
253 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
254 |
+
``
|
255 |
+
def model_fn(x, t_continuous) -> noise:
|
256 |
+
t_input = get_model_input_time(t_continuous)
|
257 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
258 |
+
``
|
259 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
260 |
+
|
261 |
+
===============================================================
|
262 |
+
|
263 |
+
Args:
|
264 |
+
model: A diffusion model with the corresponding format described above.
|
265 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
266 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
267 |
+
"noise" or "x_start" or "v" or "score".
|
268 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
269 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
270 |
+
"uncond" or "classifier" or "classifier-free".
|
271 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
272 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
273 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
274 |
+
Only used for "classifier-free" guidance type.
|
275 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
276 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
277 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
278 |
+
Returns:
|
279 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
280 |
+
"""
|
281 |
+
|
282 |
+
def get_model_input_time(t_continuous):
|
283 |
+
"""
|
284 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
285 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
286 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
287 |
+
"""
|
288 |
+
if noise_schedule.schedule == 'discrete':
|
289 |
+
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
290 |
+
else:
|
291 |
+
return t_continuous
|
292 |
+
|
293 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
294 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
295 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
296 |
+
t_input = get_model_input_time(t_continuous)
|
297 |
+
output = model(x, t_input, **model_kwargs)
|
298 |
+
if model_type == "noise":
|
299 |
+
return output
|
300 |
+
elif model_type == "x_start":
|
301 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
302 |
+
dims = x.dim()
|
303 |
+
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
304 |
+
elif model_type == "v":
|
305 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
306 |
+
dims = x.dim()
|
307 |
+
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
308 |
+
elif model_type == "score":
|
309 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
310 |
+
dims = x.dim()
|
311 |
+
return -expand_dims(sigma_t, dims) * output
|
312 |
+
|
313 |
+
def cond_grad_fn(x, t_input):
|
314 |
+
"""
|
315 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
316 |
+
"""
|
317 |
+
with torch.enable_grad():
|
318 |
+
x_in = x.detach().requires_grad_(True)
|
319 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
320 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
321 |
+
|
322 |
+
def model_fn(x, t_continuous):
|
323 |
+
"""
|
324 |
+
The noise predicition model function that is used for DPM-Solver.
|
325 |
+
"""
|
326 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
327 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
328 |
+
if guidance_type == "uncond":
|
329 |
+
return noise_pred_fn(x, t_continuous)
|
330 |
+
elif guidance_type == "classifier":
|
331 |
+
assert classifier_fn is not None
|
332 |
+
t_input = get_model_input_time(t_continuous)
|
333 |
+
cond_grad = cond_grad_fn(x, t_input)
|
334 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
335 |
+
noise = noise_pred_fn(x, t_continuous)
|
336 |
+
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
337 |
+
elif guidance_type == "classifier-free":
|
338 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
339 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
340 |
+
else:
|
341 |
+
x_in = torch.cat([x] * 2)
|
342 |
+
t_in = torch.cat([t_continuous] * 2)
|
343 |
+
c_in = torch.cat([unconditional_condition, condition])
|
344 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
345 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
346 |
+
|
347 |
+
assert model_type in ["noise", "x_start", "v"]
|
348 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
349 |
+
return model_fn
|
350 |
+
|
351 |
+
|
352 |
+
class UniPC:
|
353 |
+
def __init__(
|
354 |
+
self,
|
355 |
+
model_fn,
|
356 |
+
noise_schedule,
|
357 |
+
predict_x0=True,
|
358 |
+
thresholding=False,
|
359 |
+
max_val=1.,
|
360 |
+
variant='bh1',
|
361 |
+
):
|
362 |
+
"""Construct a UniPC.
|
363 |
+
|
364 |
+
We support both data_prediction and noise_prediction.
|
365 |
+
"""
|
366 |
+
self.model = model_fn
|
367 |
+
self.noise_schedule = noise_schedule
|
368 |
+
self.variant = variant
|
369 |
+
self.predict_x0 = predict_x0
|
370 |
+
self.thresholding = thresholding
|
371 |
+
self.max_val = max_val
|
372 |
+
|
373 |
+
def dynamic_thresholding_fn(self, x0, t=None):
|
374 |
+
"""
|
375 |
+
The dynamic thresholding method.
|
376 |
+
"""
|
377 |
+
dims = x0.dim()
|
378 |
+
p = self.dynamic_thresholding_ratio
|
379 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
380 |
+
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
|
381 |
+
x0 = torch.clamp(x0, -s, s) / s
|
382 |
+
return x0
|
383 |
+
|
384 |
+
def noise_prediction_fn(self, x, t):
|
385 |
+
"""
|
386 |
+
Return the noise prediction model.
|
387 |
+
"""
|
388 |
+
return self.model(x, t)
|
389 |
+
|
390 |
+
def data_prediction_fn(self, x, t):
|
391 |
+
"""
|
392 |
+
Return the data prediction model (with thresholding).
|
393 |
+
"""
|
394 |
+
noise = self.noise_prediction_fn(x, t)
|
395 |
+
dims = x.dim()
|
396 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
397 |
+
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
398 |
+
if self.thresholding:
|
399 |
+
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
400 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
401 |
+
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
402 |
+
x0 = torch.clamp(x0, -s, s) / s
|
403 |
+
return x0
|
404 |
+
|
405 |
+
def model_fn(self, x, t):
|
406 |
+
"""
|
407 |
+
Convert the model to the noise prediction model or the data prediction model.
|
408 |
+
"""
|
409 |
+
if self.predict_x0:
|
410 |
+
return self.data_prediction_fn(x, t)
|
411 |
+
else:
|
412 |
+
return self.noise_prediction_fn(x, t)
|
413 |
+
|
414 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
415 |
+
"""Compute the intermediate time steps for sampling.
|
416 |
+
"""
|
417 |
+
if skip_type == 'logSNR':
|
418 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
419 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
420 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
421 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
422 |
+
elif skip_type == 'time_uniform':
|
423 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
424 |
+
elif skip_type == 'time_quadratic':
|
425 |
+
t_order = 2
|
426 |
+
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
427 |
+
return t
|
428 |
+
else:
|
429 |
+
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
430 |
+
|
431 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
432 |
+
"""
|
433 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
434 |
+
"""
|
435 |
+
if order == 3:
|
436 |
+
K = steps // 3 + 1
|
437 |
+
if steps % 3 == 0:
|
438 |
+
orders = [3,] * (K - 2) + [2, 1]
|
439 |
+
elif steps % 3 == 1:
|
440 |
+
orders = [3,] * (K - 1) + [1]
|
441 |
+
else:
|
442 |
+
orders = [3,] * (K - 1) + [2]
|
443 |
+
elif order == 2:
|
444 |
+
if steps % 2 == 0:
|
445 |
+
K = steps // 2
|
446 |
+
orders = [2,] * K
|
447 |
+
else:
|
448 |
+
K = steps // 2 + 1
|
449 |
+
orders = [2,] * (K - 1) + [1]
|
450 |
+
elif order == 1:
|
451 |
+
K = steps
|
452 |
+
orders = [1,] * steps
|
453 |
+
else:
|
454 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
455 |
+
if skip_type == 'logSNR':
|
456 |
+
# To reproduce the results in DPM-Solver paper
|
457 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
458 |
+
else:
|
459 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
|
460 |
+
return timesteps_outer, orders
|
461 |
+
|
462 |
+
def denoise_to_zero_fn(self, x, s):
|
463 |
+
"""
|
464 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
465 |
+
"""
|
466 |
+
return self.data_prediction_fn(x, s)
|
467 |
+
|
468 |
+
def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
|
469 |
+
if len(t.shape) == 0:
|
470 |
+
t = t.view(-1)
|
471 |
+
if 'bh' in self.variant:
|
472 |
+
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
473 |
+
else:
|
474 |
+
assert self.variant == 'vary_coeff'
|
475 |
+
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
476 |
+
|
477 |
+
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
|
478 |
+
logging.info(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
|
479 |
+
ns = self.noise_schedule
|
480 |
+
assert order <= len(model_prev_list)
|
481 |
+
|
482 |
+
# first compute rks
|
483 |
+
t_prev_0 = t_prev_list[-1]
|
484 |
+
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
485 |
+
lambda_t = ns.marginal_lambda(t)
|
486 |
+
model_prev_0 = model_prev_list[-1]
|
487 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
488 |
+
log_alpha_t = ns.marginal_log_mean_coeff(t)
|
489 |
+
alpha_t = torch.exp(log_alpha_t)
|
490 |
+
|
491 |
+
h = lambda_t - lambda_prev_0
|
492 |
+
|
493 |
+
rks = []
|
494 |
+
D1s = []
|
495 |
+
for i in range(1, order):
|
496 |
+
t_prev_i = t_prev_list[-(i + 1)]
|
497 |
+
model_prev_i = model_prev_list[-(i + 1)]
|
498 |
+
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
499 |
+
rk = (lambda_prev_i - lambda_prev_0) / h
|
500 |
+
rks.append(rk)
|
501 |
+
D1s.append((model_prev_i - model_prev_0) / rk)
|
502 |
+
|
503 |
+
rks.append(1.)
|
504 |
+
rks = torch.tensor(rks, device=x.device)
|
505 |
+
|
506 |
+
K = len(rks)
|
507 |
+
# build C matrix
|
508 |
+
C = []
|
509 |
+
|
510 |
+
col = torch.ones_like(rks)
|
511 |
+
for k in range(1, K + 1):
|
512 |
+
C.append(col)
|
513 |
+
col = col * rks / (k + 1)
|
514 |
+
C = torch.stack(C, dim=1)
|
515 |
+
|
516 |
+
if len(D1s) > 0:
|
517 |
+
D1s = torch.stack(D1s, dim=1) # (B, K)
|
518 |
+
C_inv_p = torch.linalg.inv(C[:-1, :-1])
|
519 |
+
A_p = C_inv_p
|
520 |
+
|
521 |
+
if use_corrector:
|
522 |
+
C_inv = torch.linalg.inv(C)
|
523 |
+
A_c = C_inv
|
524 |
+
|
525 |
+
hh = -h if self.predict_x0 else h
|
526 |
+
h_phi_1 = torch.expm1(hh)
|
527 |
+
h_phi_ks = []
|
528 |
+
factorial_k = 1
|
529 |
+
h_phi_k = h_phi_1
|
530 |
+
for k in range(1, K + 2):
|
531 |
+
h_phi_ks.append(h_phi_k)
|
532 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_k
|
533 |
+
factorial_k *= (k + 1)
|
534 |
+
|
535 |
+
model_t = None
|
536 |
+
if self.predict_x0:
|
537 |
+
x_t_ = (
|
538 |
+
sigma_t / sigma_prev_0 * x
|
539 |
+
- alpha_t * h_phi_1 * model_prev_0
|
540 |
+
)
|
541 |
+
# now predictor
|
542 |
+
x_t = x_t_
|
543 |
+
if len(D1s) > 0:
|
544 |
+
# compute the residuals for predictor
|
545 |
+
for k in range(K - 1):
|
546 |
+
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
547 |
+
# now corrector
|
548 |
+
if use_corrector:
|
549 |
+
model_t = self.model_fn(x_t, t)
|
550 |
+
D1_t = (model_t - model_prev_0)
|
551 |
+
x_t = x_t_
|
552 |
+
k = 0
|
553 |
+
for k in range(K - 1):
|
554 |
+
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
555 |
+
x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
556 |
+
else:
|
557 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
558 |
+
x_t_ = (
|
559 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
560 |
+
- (sigma_t * h_phi_1) * model_prev_0
|
561 |
+
)
|
562 |
+
# now predictor
|
563 |
+
x_t = x_t_
|
564 |
+
if len(D1s) > 0:
|
565 |
+
# compute the residuals for predictor
|
566 |
+
for k in range(K - 1):
|
567 |
+
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
568 |
+
# now corrector
|
569 |
+
if use_corrector:
|
570 |
+
model_t = self.model_fn(x_t, t)
|
571 |
+
D1_t = (model_t - model_prev_0)
|
572 |
+
x_t = x_t_
|
573 |
+
k = 0
|
574 |
+
for k in range(K - 1):
|
575 |
+
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
576 |
+
x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
577 |
+
return x_t, model_t
|
578 |
+
|
579 |
+
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
|
580 |
+
# print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
|
581 |
+
ns = self.noise_schedule
|
582 |
+
assert order <= len(model_prev_list)
|
583 |
+
dims = x.dim()
|
584 |
+
|
585 |
+
# first compute rks
|
586 |
+
t_prev_0 = t_prev_list[-1]
|
587 |
+
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
588 |
+
lambda_t = ns.marginal_lambda(t)
|
589 |
+
model_prev_0 = model_prev_list[-1]
|
590 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
591 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
592 |
+
alpha_t = torch.exp(log_alpha_t)
|
593 |
+
|
594 |
+
h = lambda_t - lambda_prev_0
|
595 |
+
|
596 |
+
rks = []
|
597 |
+
D1s = []
|
598 |
+
for i in range(1, order):
|
599 |
+
t_prev_i = t_prev_list[-(i + 1)]
|
600 |
+
model_prev_i = model_prev_list[-(i + 1)]
|
601 |
+
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
602 |
+
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
|
603 |
+
rks.append(rk)
|
604 |
+
D1s.append((model_prev_i - model_prev_0) / rk)
|
605 |
+
|
606 |
+
rks.append(1.)
|
607 |
+
rks = torch.tensor(rks, device=x.device)
|
608 |
+
|
609 |
+
R = []
|
610 |
+
b = []
|
611 |
+
|
612 |
+
hh = -h[0] if self.predict_x0 else h[0]
|
613 |
+
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
614 |
+
h_phi_k = h_phi_1 / hh - 1
|
615 |
+
|
616 |
+
factorial_i = 1
|
617 |
+
|
618 |
+
if self.variant == 'bh1':
|
619 |
+
B_h = hh
|
620 |
+
elif self.variant == 'bh2':
|
621 |
+
B_h = torch.expm1(hh)
|
622 |
+
else:
|
623 |
+
raise NotImplementedError()
|
624 |
+
|
625 |
+
for i in range(1, order + 1):
|
626 |
+
R.append(torch.pow(rks, i - 1))
|
627 |
+
b.append(h_phi_k * factorial_i / B_h)
|
628 |
+
factorial_i *= (i + 1)
|
629 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
630 |
+
|
631 |
+
R = torch.stack(R)
|
632 |
+
b = torch.tensor(b, device=x.device)
|
633 |
+
|
634 |
+
# now predictor
|
635 |
+
use_predictor = len(D1s) > 0 and x_t is None
|
636 |
+
if len(D1s) > 0:
|
637 |
+
D1s = torch.stack(D1s, dim=1) # (B, K)
|
638 |
+
if x_t is None:
|
639 |
+
# for order 2, we use a simplified version
|
640 |
+
if order == 2:
|
641 |
+
rhos_p = torch.tensor([0.5], device=b.device)
|
642 |
+
else:
|
643 |
+
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
644 |
+
else:
|
645 |
+
D1s = None
|
646 |
+
|
647 |
+
if use_corrector:
|
648 |
+
# print('using corrector')
|
649 |
+
# for order 1, we use a simplified version
|
650 |
+
if order == 1:
|
651 |
+
rhos_c = torch.tensor([0.5], device=b.device)
|
652 |
+
else:
|
653 |
+
rhos_c = torch.linalg.solve(R, b)
|
654 |
+
|
655 |
+
model_t = None
|
656 |
+
if self.predict_x0:
|
657 |
+
x_t_ = (
|
658 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
659 |
+
- expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
|
660 |
+
)
|
661 |
+
|
662 |
+
if x_t is None:
|
663 |
+
if use_predictor:
|
664 |
+
pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0])) # torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
665 |
+
else:
|
666 |
+
pred_res = 0
|
667 |
+
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
|
668 |
+
|
669 |
+
if use_corrector:
|
670 |
+
model_t = self.model_fn(x_t, t)
|
671 |
+
if D1s is not None:
|
672 |
+
corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0])) # torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
673 |
+
else:
|
674 |
+
corr_res = 0
|
675 |
+
D1_t = (model_t - model_prev_0)
|
676 |
+
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
677 |
+
else:
|
678 |
+
x_t_ = (
|
679 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
680 |
+
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
|
681 |
+
)
|
682 |
+
if x_t is None:
|
683 |
+
if use_predictor:
|
684 |
+
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
685 |
+
else:
|
686 |
+
pred_res = 0
|
687 |
+
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
|
688 |
+
|
689 |
+
if use_corrector:
|
690 |
+
model_t = self.model_fn(x_t, t)
|
691 |
+
if D1s is not None:
|
692 |
+
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
693 |
+
else:
|
694 |
+
corr_res = 0
|
695 |
+
D1_t = (model_t - model_prev_0)
|
696 |
+
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
697 |
+
return x_t, model_t
|
698 |
+
|
699 |
+
|
700 |
+
def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
701 |
+
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
702 |
+
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
|
703 |
+
):
|
704 |
+
# t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
705 |
+
# t_T = self.noise_schedule.T if t_start is None else t_start
|
706 |
+
steps = len(timesteps) - 1
|
707 |
+
if method == 'multistep':
|
708 |
+
assert steps >= order
|
709 |
+
# timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
710 |
+
assert timesteps.shape[0] - 1 == steps
|
711 |
+
# with torch.no_grad():
|
712 |
+
for step_index in trange(steps, disable=disable_pbar):
|
713 |
+
if step_index == 0:
|
714 |
+
vec_t = timesteps[0].expand((x.shape[0]))
|
715 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
716 |
+
t_prev_list = [vec_t]
|
717 |
+
elif step_index < order:
|
718 |
+
init_order = step_index
|
719 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
720 |
+
# for init_order in range(1, order):
|
721 |
+
vec_t = timesteps[init_order].expand(x.shape[0])
|
722 |
+
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
|
723 |
+
if model_x is None:
|
724 |
+
model_x = self.model_fn(x, vec_t)
|
725 |
+
model_prev_list.append(model_x)
|
726 |
+
t_prev_list.append(vec_t)
|
727 |
+
else:
|
728 |
+
extra_final_step = 0
|
729 |
+
if step_index == (steps - 1):
|
730 |
+
extra_final_step = 1
|
731 |
+
for step in range(step_index, step_index + 1 + extra_final_step):
|
732 |
+
vec_t = timesteps[step].expand(x.shape[0])
|
733 |
+
if lower_order_final:
|
734 |
+
step_order = min(order, steps + 1 - step)
|
735 |
+
else:
|
736 |
+
step_order = order
|
737 |
+
# print('this step order:', step_order)
|
738 |
+
if step == steps:
|
739 |
+
# print('do not run corrector at the last step')
|
740 |
+
use_corrector = False
|
741 |
+
else:
|
742 |
+
use_corrector = True
|
743 |
+
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
|
744 |
+
for i in range(order - 1):
|
745 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
746 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
747 |
+
t_prev_list[-1] = vec_t
|
748 |
+
# We do not need to evaluate the final model value.
|
749 |
+
if step < steps:
|
750 |
+
if model_x is None:
|
751 |
+
model_x = self.model_fn(x, vec_t)
|
752 |
+
model_prev_list[-1] = model_x
|
753 |
+
if callback is not None:
|
754 |
+
callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]})
|
755 |
+
else:
|
756 |
+
raise NotImplementedError()
|
757 |
+
# if denoise_to_zero:
|
758 |
+
# x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
759 |
+
return x
|
760 |
+
|
761 |
+
|
762 |
+
#############################################################
|
763 |
+
# other utility functions
|
764 |
+
#############################################################
|
765 |
+
|
766 |
+
def interpolate_fn(x, xp, yp):
|
767 |
+
"""
|
768 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
769 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
770 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
771 |
+
|
772 |
+
Args:
|
773 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
774 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
775 |
+
yp: PyTorch tensor with shape [C, K].
|
776 |
+
Returns:
|
777 |
+
The function values f(x), with shape [N, C].
|
778 |
+
"""
|
779 |
+
N, K = x.shape[0], xp.shape[1]
|
780 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
781 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
782 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
783 |
+
cand_start_idx = x_idx - 1
|
784 |
+
start_idx = torch.where(
|
785 |
+
torch.eq(x_idx, 0),
|
786 |
+
torch.tensor(1, device=x.device),
|
787 |
+
torch.where(
|
788 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
789 |
+
),
|
790 |
+
)
|
791 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
792 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
793 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
794 |
+
start_idx2 = torch.where(
|
795 |
+
torch.eq(x_idx, 0),
|
796 |
+
torch.tensor(0, device=x.device),
|
797 |
+
torch.where(
|
798 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
799 |
+
),
|
800 |
+
)
|
801 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
802 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
803 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
804 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
805 |
+
return cand
|
806 |
+
|
807 |
+
|
808 |
+
def expand_dims(v, dims):
|
809 |
+
"""
|
810 |
+
Expand the tensor `v` to the dim `dims`.
|
811 |
+
|
812 |
+
Args:
|
813 |
+
`v`: a PyTorch tensor with shape [N].
|
814 |
+
`dim`: a `int`.
|
815 |
+
Returns:
|
816 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
817 |
+
"""
|
818 |
+
return v[(...,) + (None,)*(dims - 1)]
|
819 |
+
|
820 |
+
|
821 |
+
class SigmaConvert:
|
822 |
+
schedule = ""
|
823 |
+
def marginal_log_mean_coeff(self, sigma):
|
824 |
+
return 0.5 * torch.log(1 / ((sigma * sigma) + 1))
|
825 |
+
|
826 |
+
def marginal_alpha(self, t):
|
827 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
828 |
+
|
829 |
+
def marginal_std(self, t):
|
830 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
831 |
+
|
832 |
+
def marginal_lambda(self, t):
|
833 |
+
"""
|
834 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
835 |
+
"""
|
836 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
837 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
838 |
+
return log_mean_coeff - log_std
|
839 |
+
|
840 |
+
def predict_eps_sigma(model, input, sigma_in, **kwargs):
|
841 |
+
sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1))
|
842 |
+
input = input * ((sigma ** 2 + 1.0) ** 0.5)
|
843 |
+
return (input - model(input, sigma_in, **kwargs)) / sigma
|
844 |
+
|
845 |
+
|
846 |
+
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
|
847 |
+
timesteps = sigmas.clone()
|
848 |
+
if sigmas[-1] == 0:
|
849 |
+
timesteps = sigmas[:]
|
850 |
+
timesteps[-1] = 0.001
|
851 |
+
else:
|
852 |
+
timesteps = sigmas.clone()
|
853 |
+
ns = SigmaConvert()
|
854 |
+
|
855 |
+
noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0)
|
856 |
+
model_type = "noise"
|
857 |
+
|
858 |
+
model_fn = model_wrapper(
|
859 |
+
lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs),
|
860 |
+
ns,
|
861 |
+
model_type=model_type,
|
862 |
+
guidance_type="uncond",
|
863 |
+
model_kwargs=extra_args,
|
864 |
+
)
|
865 |
+
|
866 |
+
order = min(3, len(timesteps) - 2)
|
867 |
+
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant)
|
868 |
+
x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
|
869 |
+
x /= ns.marginal_alpha(timesteps[-1])
|
870 |
+
return x
|
871 |
+
|
872 |
+
def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False):
|
873 |
+
return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2')
|
comfy/float.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None):
|
4 |
+
mantissa_scaled = torch.where(
|
5 |
+
normal_mask,
|
6 |
+
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
|
7 |
+
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
|
8 |
+
)
|
9 |
+
|
10 |
+
mantissa_scaled += torch.rand(mantissa_scaled.size(), dtype=mantissa_scaled.dtype, layout=mantissa_scaled.layout, device=mantissa_scaled.device, generator=generator)
|
11 |
+
return mantissa_scaled.floor() / (2**MANTISSA_BITS)
|
12 |
+
|
13 |
+
#Not 100% sure about this
|
14 |
+
def manual_stochastic_round_to_float8(x, dtype, generator=None):
|
15 |
+
if dtype == torch.float8_e4m3fn:
|
16 |
+
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7
|
17 |
+
elif dtype == torch.float8_e5m2:
|
18 |
+
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15
|
19 |
+
else:
|
20 |
+
raise ValueError("Unsupported dtype")
|
21 |
+
|
22 |
+
x = x.half()
|
23 |
+
sign = torch.sign(x)
|
24 |
+
abs_x = x.abs()
|
25 |
+
sign = torch.where(abs_x == 0, 0, sign)
|
26 |
+
|
27 |
+
# Combine exponent calculation and clamping
|
28 |
+
exponent = torch.clamp(
|
29 |
+
torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS,
|
30 |
+
0, 2**EXPONENT_BITS - 1
|
31 |
+
)
|
32 |
+
|
33 |
+
# Combine mantissa calculation and rounding
|
34 |
+
normal_mask = ~(exponent == 0)
|
35 |
+
|
36 |
+
abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=generator)
|
37 |
+
|
38 |
+
sign *= torch.where(
|
39 |
+
normal_mask,
|
40 |
+
(2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x),
|
41 |
+
(2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
|
42 |
+
)
|
43 |
+
|
44 |
+
inf = torch.finfo(dtype)
|
45 |
+
torch.clamp(sign, min=inf.min, max=inf.max, out=sign)
|
46 |
+
return sign
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
def stochastic_rounding(value, dtype, seed=0):
|
51 |
+
if dtype == torch.float32:
|
52 |
+
return value.to(dtype=torch.float32)
|
53 |
+
if dtype == torch.float16:
|
54 |
+
return value.to(dtype=torch.float16)
|
55 |
+
if dtype == torch.bfloat16:
|
56 |
+
return value.to(dtype=torch.bfloat16)
|
57 |
+
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
|
58 |
+
generator = torch.Generator(device=value.device)
|
59 |
+
generator.manual_seed(seed)
|
60 |
+
output = torch.empty_like(value, dtype=dtype)
|
61 |
+
num_slices = max(1, (value.numel() / (4096 * 4096)))
|
62 |
+
slice_size = max(1, round(value.shape[0] / num_slices))
|
63 |
+
for i in range(0, value.shape[0], slice_size):
|
64 |
+
output[i:i+slice_size].copy_(manual_stochastic_round_to_float8(value[i:i+slice_size], dtype, generator=generator))
|
65 |
+
return output
|
66 |
+
|
67 |
+
return value.to(dtype=dtype)
|
comfy/gligen.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from .ldm.modules.attention import CrossAttention
|
5 |
+
from inspect import isfunction
|
6 |
+
import comfy.ops
|
7 |
+
ops = comfy.ops.manual_cast
|
8 |
+
|
9 |
+
def exists(val):
|
10 |
+
return val is not None
|
11 |
+
|
12 |
+
|
13 |
+
def uniq(arr):
|
14 |
+
return{el: True for el in arr}.keys()
|
15 |
+
|
16 |
+
|
17 |
+
def default(val, d):
|
18 |
+
if exists(val):
|
19 |
+
return val
|
20 |
+
return d() if isfunction(d) else d
|
21 |
+
|
22 |
+
|
23 |
+
# feedforward
|
24 |
+
class GEGLU(nn.Module):
|
25 |
+
def __init__(self, dim_in, dim_out):
|
26 |
+
super().__init__()
|
27 |
+
self.proj = ops.Linear(dim_in, dim_out * 2)
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
31 |
+
return x * torch.nn.functional.gelu(gate)
|
32 |
+
|
33 |
+
|
34 |
+
class FeedForward(nn.Module):
|
35 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
36 |
+
super().__init__()
|
37 |
+
inner_dim = int(dim * mult)
|
38 |
+
dim_out = default(dim_out, dim)
|
39 |
+
project_in = nn.Sequential(
|
40 |
+
ops.Linear(dim, inner_dim),
|
41 |
+
nn.GELU()
|
42 |
+
) if not glu else GEGLU(dim, inner_dim)
|
43 |
+
|
44 |
+
self.net = nn.Sequential(
|
45 |
+
project_in,
|
46 |
+
nn.Dropout(dropout),
|
47 |
+
ops.Linear(inner_dim, dim_out)
|
48 |
+
)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
return self.net(x)
|
52 |
+
|
53 |
+
|
54 |
+
class GatedCrossAttentionDense(nn.Module):
|
55 |
+
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
56 |
+
super().__init__()
|
57 |
+
|
58 |
+
self.attn = CrossAttention(
|
59 |
+
query_dim=query_dim,
|
60 |
+
context_dim=context_dim,
|
61 |
+
heads=n_heads,
|
62 |
+
dim_head=d_head,
|
63 |
+
operations=ops)
|
64 |
+
self.ff = FeedForward(query_dim, glu=True)
|
65 |
+
|
66 |
+
self.norm1 = ops.LayerNorm(query_dim)
|
67 |
+
self.norm2 = ops.LayerNorm(query_dim)
|
68 |
+
|
69 |
+
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
|
70 |
+
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
|
71 |
+
|
72 |
+
# this can be useful: we can externally change magnitude of tanh(alpha)
|
73 |
+
# for example, when it is set to 0, then the entire model is same as
|
74 |
+
# original one
|
75 |
+
self.scale = 1
|
76 |
+
|
77 |
+
def forward(self, x, objs):
|
78 |
+
|
79 |
+
x = x + self.scale * \
|
80 |
+
torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs)
|
81 |
+
x = x + self.scale * \
|
82 |
+
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
|
83 |
+
|
84 |
+
return x
|
85 |
+
|
86 |
+
|
87 |
+
class GatedSelfAttentionDense(nn.Module):
|
88 |
+
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
89 |
+
super().__init__()
|
90 |
+
|
91 |
+
# we need a linear projection since we need cat visual feature and obj
|
92 |
+
# feature
|
93 |
+
self.linear = ops.Linear(context_dim, query_dim)
|
94 |
+
|
95 |
+
self.attn = CrossAttention(
|
96 |
+
query_dim=query_dim,
|
97 |
+
context_dim=query_dim,
|
98 |
+
heads=n_heads,
|
99 |
+
dim_head=d_head,
|
100 |
+
operations=ops)
|
101 |
+
self.ff = FeedForward(query_dim, glu=True)
|
102 |
+
|
103 |
+
self.norm1 = ops.LayerNorm(query_dim)
|
104 |
+
self.norm2 = ops.LayerNorm(query_dim)
|
105 |
+
|
106 |
+
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
|
107 |
+
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
|
108 |
+
|
109 |
+
# this can be useful: we can externally change magnitude of tanh(alpha)
|
110 |
+
# for example, when it is set to 0, then the entire model is same as
|
111 |
+
# original one
|
112 |
+
self.scale = 1
|
113 |
+
|
114 |
+
def forward(self, x, objs):
|
115 |
+
|
116 |
+
N_visual = x.shape[1]
|
117 |
+
objs = self.linear(objs)
|
118 |
+
|
119 |
+
x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn(
|
120 |
+
self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :]
|
121 |
+
x = x + self.scale * \
|
122 |
+
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
|
123 |
+
|
124 |
+
return x
|
125 |
+
|
126 |
+
|
127 |
+
class GatedSelfAttentionDense2(nn.Module):
|
128 |
+
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
129 |
+
super().__init__()
|
130 |
+
|
131 |
+
# we need a linear projection since we need cat visual feature and obj
|
132 |
+
# feature
|
133 |
+
self.linear = ops.Linear(context_dim, query_dim)
|
134 |
+
|
135 |
+
self.attn = CrossAttention(
|
136 |
+
query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops)
|
137 |
+
self.ff = FeedForward(query_dim, glu=True)
|
138 |
+
|
139 |
+
self.norm1 = ops.LayerNorm(query_dim)
|
140 |
+
self.norm2 = ops.LayerNorm(query_dim)
|
141 |
+
|
142 |
+
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
|
143 |
+
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
|
144 |
+
|
145 |
+
# this can be useful: we can externally change magnitude of tanh(alpha)
|
146 |
+
# for example, when it is set to 0, then the entire model is same as
|
147 |
+
# original one
|
148 |
+
self.scale = 1
|
149 |
+
|
150 |
+
def forward(self, x, objs):
|
151 |
+
|
152 |
+
B, N_visual, _ = x.shape
|
153 |
+
B, N_ground, _ = objs.shape
|
154 |
+
|
155 |
+
objs = self.linear(objs)
|
156 |
+
|
157 |
+
# sanity check
|
158 |
+
size_v = math.sqrt(N_visual)
|
159 |
+
size_g = math.sqrt(N_ground)
|
160 |
+
assert int(size_v) == size_v, "Visual tokens must be square rootable"
|
161 |
+
assert int(size_g) == size_g, "Grounding tokens must be square rootable"
|
162 |
+
size_v = int(size_v)
|
163 |
+
size_g = int(size_g)
|
164 |
+
|
165 |
+
# select grounding token and resize it to visual token size as residual
|
166 |
+
out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[
|
167 |
+
:, N_visual:, :]
|
168 |
+
out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g)
|
169 |
+
out = torch.nn.functional.interpolate(
|
170 |
+
out, (size_v, size_v), mode='bicubic')
|
171 |
+
residual = out.reshape(B, -1, N_visual).permute(0, 2, 1)
|
172 |
+
|
173 |
+
# add residual to visual feature
|
174 |
+
x = x + self.scale * torch.tanh(self.alpha_attn) * residual
|
175 |
+
x = x + self.scale * \
|
176 |
+
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
|
177 |
+
|
178 |
+
return x
|
179 |
+
|
180 |
+
|
181 |
+
class FourierEmbedder():
|
182 |
+
def __init__(self, num_freqs=64, temperature=100):
|
183 |
+
|
184 |
+
self.num_freqs = num_freqs
|
185 |
+
self.temperature = temperature
|
186 |
+
self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs)
|
187 |
+
|
188 |
+
@torch.no_grad()
|
189 |
+
def __call__(self, x, cat_dim=-1):
|
190 |
+
"x: arbitrary shape of tensor. dim: cat dim"
|
191 |
+
out = []
|
192 |
+
for freq in self.freq_bands:
|
193 |
+
out.append(torch.sin(freq * x))
|
194 |
+
out.append(torch.cos(freq * x))
|
195 |
+
return torch.cat(out, cat_dim)
|
196 |
+
|
197 |
+
|
198 |
+
class PositionNet(nn.Module):
|
199 |
+
def __init__(self, in_dim, out_dim, fourier_freqs=8):
|
200 |
+
super().__init__()
|
201 |
+
self.in_dim = in_dim
|
202 |
+
self.out_dim = out_dim
|
203 |
+
|
204 |
+
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
|
205 |
+
self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy
|
206 |
+
|
207 |
+
self.linears = nn.Sequential(
|
208 |
+
ops.Linear(self.in_dim + self.position_dim, 512),
|
209 |
+
nn.SiLU(),
|
210 |
+
ops.Linear(512, 512),
|
211 |
+
nn.SiLU(),
|
212 |
+
ops.Linear(512, out_dim),
|
213 |
+
)
|
214 |
+
|
215 |
+
self.null_positive_feature = torch.nn.Parameter(
|
216 |
+
torch.zeros([self.in_dim]))
|
217 |
+
self.null_position_feature = torch.nn.Parameter(
|
218 |
+
torch.zeros([self.position_dim]))
|
219 |
+
|
220 |
+
def forward(self, boxes, masks, positive_embeddings):
|
221 |
+
B, N, _ = boxes.shape
|
222 |
+
masks = masks.unsqueeze(-1)
|
223 |
+
positive_embeddings = positive_embeddings
|
224 |
+
|
225 |
+
# embedding position (it may includes padding as placeholder)
|
226 |
+
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
|
227 |
+
|
228 |
+
# learnable null embedding
|
229 |
+
positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
|
230 |
+
xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
|
231 |
+
|
232 |
+
# replace padding with learnable null embedding
|
233 |
+
positive_embeddings = positive_embeddings * \
|
234 |
+
masks + (1 - masks) * positive_null
|
235 |
+
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
|
236 |
+
|
237 |
+
objs = self.linears(
|
238 |
+
torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
|
239 |
+
assert objs.shape == torch.Size([B, N, self.out_dim])
|
240 |
+
return objs
|
241 |
+
|
242 |
+
|
243 |
+
class Gligen(nn.Module):
|
244 |
+
def __init__(self, modules, position_net, key_dim):
|
245 |
+
super().__init__()
|
246 |
+
self.module_list = nn.ModuleList(modules)
|
247 |
+
self.position_net = position_net
|
248 |
+
self.key_dim = key_dim
|
249 |
+
self.max_objs = 30
|
250 |
+
self.current_device = torch.device("cpu")
|
251 |
+
|
252 |
+
def _set_position(self, boxes, masks, positive_embeddings):
|
253 |
+
objs = self.position_net(boxes, masks, positive_embeddings)
|
254 |
+
def func(x, extra_options):
|
255 |
+
key = extra_options["transformer_index"]
|
256 |
+
module = self.module_list[key]
|
257 |
+
return module(x, objs.to(device=x.device, dtype=x.dtype))
|
258 |
+
return func
|
259 |
+
|
260 |
+
def set_position(self, latent_image_shape, position_params, device):
|
261 |
+
batch, c, h, w = latent_image_shape
|
262 |
+
masks = torch.zeros([self.max_objs], device="cpu")
|
263 |
+
boxes = []
|
264 |
+
positive_embeddings = []
|
265 |
+
for p in position_params:
|
266 |
+
x1 = (p[4]) / w
|
267 |
+
y1 = (p[3]) / h
|
268 |
+
x2 = (p[4] + p[2]) / w
|
269 |
+
y2 = (p[3] + p[1]) / h
|
270 |
+
masks[len(boxes)] = 1.0
|
271 |
+
boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)]
|
272 |
+
positive_embeddings += [p[0]]
|
273 |
+
append_boxes = []
|
274 |
+
append_conds = []
|
275 |
+
if len(boxes) < self.max_objs:
|
276 |
+
append_boxes = [torch.zeros(
|
277 |
+
[self.max_objs - len(boxes), 4], device="cpu")]
|
278 |
+
append_conds = [torch.zeros(
|
279 |
+
[self.max_objs - len(boxes), self.key_dim], device="cpu")]
|
280 |
+
|
281 |
+
box_out = torch.cat(
|
282 |
+
boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1)
|
283 |
+
masks = masks.unsqueeze(0).repeat(batch, 1)
|
284 |
+
conds = torch.cat(positive_embeddings +
|
285 |
+
append_conds).unsqueeze(0).repeat(batch, 1, 1)
|
286 |
+
return self._set_position(
|
287 |
+
box_out.to(device),
|
288 |
+
masks.to(device),
|
289 |
+
conds.to(device))
|
290 |
+
|
291 |
+
def set_empty(self, latent_image_shape, device):
|
292 |
+
batch, c, h, w = latent_image_shape
|
293 |
+
masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1)
|
294 |
+
box_out = torch.zeros([self.max_objs, 4],
|
295 |
+
device="cpu").repeat(batch, 1, 1)
|
296 |
+
conds = torch.zeros([self.max_objs, self.key_dim],
|
297 |
+
device="cpu").repeat(batch, 1, 1)
|
298 |
+
return self._set_position(
|
299 |
+
box_out.to(device),
|
300 |
+
masks.to(device),
|
301 |
+
conds.to(device))
|
302 |
+
|
303 |
+
|
304 |
+
def load_gligen(sd):
|
305 |
+
sd_k = sd.keys()
|
306 |
+
output_list = []
|
307 |
+
key_dim = 768
|
308 |
+
for a in ["input_blocks", "middle_block", "output_blocks"]:
|
309 |
+
for b in range(20):
|
310 |
+
k_temp = filter(lambda k: "{}.{}.".format(a, b)
|
311 |
+
in k and ".fuser." in k, sd_k)
|
312 |
+
k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp)
|
313 |
+
|
314 |
+
n_sd = {}
|
315 |
+
for k in k_temp:
|
316 |
+
n_sd[k[1]] = sd[k[0]]
|
317 |
+
if len(n_sd) > 0:
|
318 |
+
query_dim = n_sd["linear.weight"].shape[0]
|
319 |
+
key_dim = n_sd["linear.weight"].shape[1]
|
320 |
+
|
321 |
+
if key_dim == 768: # SD1.x
|
322 |
+
n_heads = 8
|
323 |
+
d_head = query_dim // n_heads
|
324 |
+
else:
|
325 |
+
d_head = 64
|
326 |
+
n_heads = query_dim // d_head
|
327 |
+
|
328 |
+
gated = GatedSelfAttentionDense(
|
329 |
+
query_dim, key_dim, n_heads, d_head)
|
330 |
+
gated.load_state_dict(n_sd, strict=False)
|
331 |
+
output_list.append(gated)
|
332 |
+
|
333 |
+
if "position_net.null_positive_feature" in sd_k:
|
334 |
+
in_dim = sd["position_net.null_positive_feature"].shape[0]
|
335 |
+
out_dim = sd["position_net.linears.4.weight"].shape[0]
|
336 |
+
|
337 |
+
class WeightsLoader(torch.nn.Module):
|
338 |
+
pass
|
339 |
+
w = WeightsLoader()
|
340 |
+
w.position_net = PositionNet(in_dim, out_dim)
|
341 |
+
w.load_state_dict(sd, strict=False)
|
342 |
+
|
343 |
+
gligen = Gligen(output_list, w.position_net, key_dim)
|
344 |
+
return gligen
|
comfy/hooks.py
ADDED
@@ -0,0 +1,785 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import TYPE_CHECKING, Callable
|
3 |
+
import enum
|
4 |
+
import math
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import itertools
|
8 |
+
import logging
|
9 |
+
|
10 |
+
if TYPE_CHECKING:
|
11 |
+
from comfy.model_patcher import ModelPatcher, PatcherInjection
|
12 |
+
from comfy.model_base import BaseModel
|
13 |
+
from comfy.sd import CLIP
|
14 |
+
import comfy.lora
|
15 |
+
import comfy.model_management
|
16 |
+
import comfy.patcher_extension
|
17 |
+
from node_helpers import conditioning_set_values
|
18 |
+
|
19 |
+
# #######################################################################################################
|
20 |
+
# Hooks explanation
|
21 |
+
# -------------------
|
22 |
+
# The purpose of hooks is to allow conds to influence sampling without the need for ComfyUI core code to
|
23 |
+
# make explicit special cases like it does for ControlNet and GLIGEN.
|
24 |
+
#
|
25 |
+
# This is necessary for nodes/features that are intended for use with masked or scheduled conds, or those
|
26 |
+
# that should run special code when a 'marked' cond is used in sampling.
|
27 |
+
# #######################################################################################################
|
28 |
+
|
29 |
+
class EnumHookMode(enum.Enum):
|
30 |
+
'''
|
31 |
+
Priority of hook memory optimization vs. speed, mostly related to WeightHooks.
|
32 |
+
|
33 |
+
MinVram: No caching will occur for any operations related to hooks.
|
34 |
+
MaxSpeed: Excess VRAM (and RAM, once VRAM is sufficiently depleted) will be used to cache hook weights when switching hook groups.
|
35 |
+
'''
|
36 |
+
MinVram = "minvram"
|
37 |
+
MaxSpeed = "maxspeed"
|
38 |
+
|
39 |
+
class EnumHookType(enum.Enum):
|
40 |
+
'''
|
41 |
+
Hook types, each of which has different expected behavior.
|
42 |
+
'''
|
43 |
+
Weight = "weight"
|
44 |
+
ObjectPatch = "object_patch"
|
45 |
+
AdditionalModels = "add_models"
|
46 |
+
TransformerOptions = "transformer_options"
|
47 |
+
Injections = "add_injections"
|
48 |
+
|
49 |
+
class EnumWeightTarget(enum.Enum):
|
50 |
+
Model = "model"
|
51 |
+
Clip = "clip"
|
52 |
+
|
53 |
+
class EnumHookScope(enum.Enum):
|
54 |
+
'''
|
55 |
+
Determines if hook should be limited in its influence over sampling.
|
56 |
+
|
57 |
+
AllConditioning: hook will affect all conds used in sampling.
|
58 |
+
HookedOnly: hook will only affect the conds it was attached to.
|
59 |
+
'''
|
60 |
+
AllConditioning = "all_conditioning"
|
61 |
+
HookedOnly = "hooked_only"
|
62 |
+
|
63 |
+
|
64 |
+
class _HookRef:
|
65 |
+
pass
|
66 |
+
|
67 |
+
|
68 |
+
def default_should_register(hook: Hook, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
69 |
+
'''Example for how custom_should_register function can look like.'''
|
70 |
+
return True
|
71 |
+
|
72 |
+
|
73 |
+
def create_target_dict(target: EnumWeightTarget=None, **kwargs) -> dict[str]:
|
74 |
+
'''Creates base dictionary for use with Hooks' target param.'''
|
75 |
+
d = {}
|
76 |
+
if target is not None:
|
77 |
+
d['target'] = target
|
78 |
+
d.update(kwargs)
|
79 |
+
return d
|
80 |
+
|
81 |
+
|
82 |
+
class Hook:
|
83 |
+
def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None, hook_id: str=None,
|
84 |
+
hook_keyframe: HookKeyframeGroup=None, hook_scope=EnumHookScope.AllConditioning):
|
85 |
+
self.hook_type = hook_type
|
86 |
+
'''Enum identifying the general class of this hook.'''
|
87 |
+
self.hook_ref = hook_ref if hook_ref else _HookRef()
|
88 |
+
'''Reference shared between hook clones that have the same value. Should NOT be modified.'''
|
89 |
+
self.hook_id = hook_id
|
90 |
+
'''Optional string ID to identify hook; useful if need to consolidate duplicates at registration time.'''
|
91 |
+
self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup()
|
92 |
+
'''Keyframe storage that can be referenced to get strength for current sampling step.'''
|
93 |
+
self.hook_scope = hook_scope
|
94 |
+
'''Scope of where this hook should apply in terms of the conds used in sampling run.'''
|
95 |
+
self.custom_should_register = default_should_register
|
96 |
+
'''Can be overriden with a compatible function to decide if this hook should be registered without the need to override .should_register'''
|
97 |
+
|
98 |
+
@property
|
99 |
+
def strength(self):
|
100 |
+
return self.hook_keyframe.strength
|
101 |
+
|
102 |
+
def initialize_timesteps(self, model: BaseModel):
|
103 |
+
self.reset()
|
104 |
+
self.hook_keyframe.initialize_timesteps(model)
|
105 |
+
|
106 |
+
def reset(self):
|
107 |
+
self.hook_keyframe.reset()
|
108 |
+
|
109 |
+
def clone(self):
|
110 |
+
c: Hook = self.__class__()
|
111 |
+
c.hook_type = self.hook_type
|
112 |
+
c.hook_ref = self.hook_ref
|
113 |
+
c.hook_id = self.hook_id
|
114 |
+
c.hook_keyframe = self.hook_keyframe
|
115 |
+
c.hook_scope = self.hook_scope
|
116 |
+
c.custom_should_register = self.custom_should_register
|
117 |
+
return c
|
118 |
+
|
119 |
+
def should_register(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
120 |
+
return self.custom_should_register(self, model, model_options, target_dict, registered)
|
121 |
+
|
122 |
+
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
123 |
+
raise NotImplementedError("add_hook_patches should be defined for Hook subclasses")
|
124 |
+
|
125 |
+
def __eq__(self, other: Hook):
|
126 |
+
return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref
|
127 |
+
|
128 |
+
def __hash__(self):
|
129 |
+
return hash(self.hook_ref)
|
130 |
+
|
131 |
+
class WeightHook(Hook):
|
132 |
+
'''
|
133 |
+
Hook responsible for tracking weights to be applied to some model/clip.
|
134 |
+
|
135 |
+
Note, value of hook_scope is ignored and is treated as HookedOnly.
|
136 |
+
'''
|
137 |
+
def __init__(self, strength_model=1.0, strength_clip=1.0):
|
138 |
+
super().__init__(hook_type=EnumHookType.Weight, hook_scope=EnumHookScope.HookedOnly)
|
139 |
+
self.weights: dict = None
|
140 |
+
self.weights_clip: dict = None
|
141 |
+
self.need_weight_init = True
|
142 |
+
self._strength_model = strength_model
|
143 |
+
self._strength_clip = strength_clip
|
144 |
+
self.hook_scope = EnumHookScope.HookedOnly # this value does not matter for WeightHooks, just for docs
|
145 |
+
|
146 |
+
@property
|
147 |
+
def strength_model(self):
|
148 |
+
return self._strength_model * self.strength
|
149 |
+
|
150 |
+
@property
|
151 |
+
def strength_clip(self):
|
152 |
+
return self._strength_clip * self.strength
|
153 |
+
|
154 |
+
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
155 |
+
if not self.should_register(model, model_options, target_dict, registered):
|
156 |
+
return False
|
157 |
+
weights = None
|
158 |
+
|
159 |
+
target = target_dict.get('target', None)
|
160 |
+
if target == EnumWeightTarget.Clip:
|
161 |
+
strength = self._strength_clip
|
162 |
+
else:
|
163 |
+
strength = self._strength_model
|
164 |
+
|
165 |
+
if self.need_weight_init:
|
166 |
+
key_map = {}
|
167 |
+
if target == EnumWeightTarget.Clip:
|
168 |
+
key_map = comfy.lora.model_lora_keys_clip(model.model, key_map)
|
169 |
+
else:
|
170 |
+
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
171 |
+
weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False)
|
172 |
+
else:
|
173 |
+
if target == EnumWeightTarget.Clip:
|
174 |
+
weights = self.weights_clip
|
175 |
+
else:
|
176 |
+
weights = self.weights
|
177 |
+
model.add_hook_patches(hook=self, patches=weights, strength_patch=strength)
|
178 |
+
registered.add(self)
|
179 |
+
return True
|
180 |
+
# TODO: add logs about any keys that were not applied
|
181 |
+
|
182 |
+
def clone(self):
|
183 |
+
c: WeightHook = super().clone()
|
184 |
+
c.weights = self.weights
|
185 |
+
c.weights_clip = self.weights_clip
|
186 |
+
c.need_weight_init = self.need_weight_init
|
187 |
+
c._strength_model = self._strength_model
|
188 |
+
c._strength_clip = self._strength_clip
|
189 |
+
return c
|
190 |
+
|
191 |
+
class ObjectPatchHook(Hook):
|
192 |
+
def __init__(self, object_patches: dict[str]=None,
|
193 |
+
hook_scope=EnumHookScope.AllConditioning):
|
194 |
+
super().__init__(hook_type=EnumHookType.ObjectPatch)
|
195 |
+
self.object_patches = object_patches
|
196 |
+
self.hook_scope = hook_scope
|
197 |
+
|
198 |
+
def clone(self):
|
199 |
+
c: ObjectPatchHook = super().clone()
|
200 |
+
c.object_patches = self.object_patches
|
201 |
+
return c
|
202 |
+
|
203 |
+
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
204 |
+
raise NotImplementedError("ObjectPatchHook is not supported yet in ComfyUI.")
|
205 |
+
|
206 |
+
class AdditionalModelsHook(Hook):
|
207 |
+
'''
|
208 |
+
Hook responsible for telling model management any additional models that should be loaded.
|
209 |
+
|
210 |
+
Note, value of hook_scope is ignored and is treated as AllConditioning.
|
211 |
+
'''
|
212 |
+
def __init__(self, models: list[ModelPatcher]=None, key: str=None):
|
213 |
+
super().__init__(hook_type=EnumHookType.AdditionalModels)
|
214 |
+
self.models = models
|
215 |
+
self.key = key
|
216 |
+
|
217 |
+
def clone(self):
|
218 |
+
c: AdditionalModelsHook = super().clone()
|
219 |
+
c.models = self.models.copy() if self.models else self.models
|
220 |
+
c.key = self.key
|
221 |
+
return c
|
222 |
+
|
223 |
+
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
224 |
+
if not self.should_register(model, model_options, target_dict, registered):
|
225 |
+
return False
|
226 |
+
registered.add(self)
|
227 |
+
return True
|
228 |
+
|
229 |
+
class TransformerOptionsHook(Hook):
|
230 |
+
'''
|
231 |
+
Hook responsible for adding wrappers, callbacks, patches, or anything else related to transformer_options.
|
232 |
+
'''
|
233 |
+
def __init__(self, transformers_dict: dict[str, dict[str, dict[str, list[Callable]]]]=None,
|
234 |
+
hook_scope=EnumHookScope.AllConditioning):
|
235 |
+
super().__init__(hook_type=EnumHookType.TransformerOptions)
|
236 |
+
self.transformers_dict = transformers_dict
|
237 |
+
self.hook_scope = hook_scope
|
238 |
+
self._skip_adding = False
|
239 |
+
'''Internal value used to avoid double load of transformer_options when hook_scope is AllConditioning.'''
|
240 |
+
|
241 |
+
def clone(self):
|
242 |
+
c: TransformerOptionsHook = super().clone()
|
243 |
+
c.transformers_dict = self.transformers_dict
|
244 |
+
c._skip_adding = self._skip_adding
|
245 |
+
return c
|
246 |
+
|
247 |
+
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
248 |
+
if not self.should_register(model, model_options, target_dict, registered):
|
249 |
+
return False
|
250 |
+
# NOTE: to_load_options will be used to manually load patches/wrappers/callbacks from hooks
|
251 |
+
self._skip_adding = False
|
252 |
+
if self.hook_scope == EnumHookScope.AllConditioning:
|
253 |
+
add_model_options = {"transformer_options": self.transformers_dict,
|
254 |
+
"to_load_options": self.transformers_dict}
|
255 |
+
# skip_adding if included in AllConditioning to avoid double loading
|
256 |
+
self._skip_adding = True
|
257 |
+
else:
|
258 |
+
add_model_options = {"to_load_options": self.transformers_dict}
|
259 |
+
registered.add(self)
|
260 |
+
comfy.patcher_extension.merge_nested_dicts(model_options, add_model_options, copy_dict1=False)
|
261 |
+
return True
|
262 |
+
|
263 |
+
def on_apply_hooks(self, model: ModelPatcher, transformer_options: dict[str]):
|
264 |
+
if not self._skip_adding:
|
265 |
+
comfy.patcher_extension.merge_nested_dicts(transformer_options, self.transformers_dict, copy_dict1=False)
|
266 |
+
|
267 |
+
WrapperHook = TransformerOptionsHook
|
268 |
+
'''Only here for backwards compatibility, WrapperHook is identical to TransformerOptionsHook.'''
|
269 |
+
|
270 |
+
class InjectionsHook(Hook):
|
271 |
+
def __init__(self, key: str=None, injections: list[PatcherInjection]=None,
|
272 |
+
hook_scope=EnumHookScope.AllConditioning):
|
273 |
+
super().__init__(hook_type=EnumHookType.Injections)
|
274 |
+
self.key = key
|
275 |
+
self.injections = injections
|
276 |
+
self.hook_scope = hook_scope
|
277 |
+
|
278 |
+
def clone(self):
|
279 |
+
c: InjectionsHook = super().clone()
|
280 |
+
c.key = self.key
|
281 |
+
c.injections = self.injections.copy() if self.injections else self.injections
|
282 |
+
return c
|
283 |
+
|
284 |
+
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
|
285 |
+
raise NotImplementedError("InjectionsHook is not supported yet in ComfyUI.")
|
286 |
+
|
287 |
+
class HookGroup:
|
288 |
+
'''
|
289 |
+
Stores groups of hooks, and allows them to be queried by type.
|
290 |
+
|
291 |
+
To prevent breaking their functionality, never modify the underlying self.hooks or self._hook_dict vars directly;
|
292 |
+
always use the provided functions on HookGroup.
|
293 |
+
'''
|
294 |
+
def __init__(self):
|
295 |
+
self.hooks: list[Hook] = []
|
296 |
+
self._hook_dict: dict[EnumHookType, list[Hook]] = {}
|
297 |
+
|
298 |
+
def __len__(self):
|
299 |
+
return len(self.hooks)
|
300 |
+
|
301 |
+
def add(self, hook: Hook):
|
302 |
+
if hook not in self.hooks:
|
303 |
+
self.hooks.append(hook)
|
304 |
+
self._hook_dict.setdefault(hook.hook_type, []).append(hook)
|
305 |
+
|
306 |
+
def remove(self, hook: Hook):
|
307 |
+
if hook in self.hooks:
|
308 |
+
self.hooks.remove(hook)
|
309 |
+
self._hook_dict[hook.hook_type].remove(hook)
|
310 |
+
|
311 |
+
def get_type(self, hook_type: EnumHookType):
|
312 |
+
return self._hook_dict.get(hook_type, [])
|
313 |
+
|
314 |
+
def contains(self, hook: Hook):
|
315 |
+
return hook in self.hooks
|
316 |
+
|
317 |
+
def is_subset_of(self, other: HookGroup):
|
318 |
+
self_hooks = set(self.hooks)
|
319 |
+
other_hooks = set(other.hooks)
|
320 |
+
return self_hooks.issubset(other_hooks)
|
321 |
+
|
322 |
+
def new_with_common_hooks(self, other: HookGroup):
|
323 |
+
c = HookGroup()
|
324 |
+
for hook in self.hooks:
|
325 |
+
if other.contains(hook):
|
326 |
+
c.add(hook.clone())
|
327 |
+
return c
|
328 |
+
|
329 |
+
def clone(self):
|
330 |
+
c = HookGroup()
|
331 |
+
for hook in self.hooks:
|
332 |
+
c.add(hook.clone())
|
333 |
+
return c
|
334 |
+
|
335 |
+
def clone_and_combine(self, other: HookGroup):
|
336 |
+
c = self.clone()
|
337 |
+
if other is not None:
|
338 |
+
for hook in other.hooks:
|
339 |
+
c.add(hook.clone())
|
340 |
+
return c
|
341 |
+
|
342 |
+
def set_keyframes_on_hooks(self, hook_kf: HookKeyframeGroup):
|
343 |
+
if hook_kf is None:
|
344 |
+
hook_kf = HookKeyframeGroup()
|
345 |
+
else:
|
346 |
+
hook_kf = hook_kf.clone()
|
347 |
+
for hook in self.hooks:
|
348 |
+
hook.hook_keyframe = hook_kf
|
349 |
+
|
350 |
+
def get_hooks_for_clip_schedule(self):
|
351 |
+
scheduled_hooks: dict[WeightHook, list[tuple[tuple[float,float], HookKeyframe]]] = {}
|
352 |
+
# only care about WeightHooks, for now
|
353 |
+
for hook in self.get_type(EnumHookType.Weight):
|
354 |
+
hook: WeightHook
|
355 |
+
hook_schedule = []
|
356 |
+
# if no hook keyframes, assign default value
|
357 |
+
if len(hook.hook_keyframe.keyframes) == 0:
|
358 |
+
hook_schedule.append(((0.0, 1.0), None))
|
359 |
+
scheduled_hooks[hook] = hook_schedule
|
360 |
+
continue
|
361 |
+
# find ranges of values
|
362 |
+
prev_keyframe = hook.hook_keyframe.keyframes[0]
|
363 |
+
for keyframe in hook.hook_keyframe.keyframes:
|
364 |
+
if keyframe.start_percent > prev_keyframe.start_percent and not math.isclose(keyframe.strength, prev_keyframe.strength):
|
365 |
+
hook_schedule.append(((prev_keyframe.start_percent, keyframe.start_percent), prev_keyframe))
|
366 |
+
prev_keyframe = keyframe
|
367 |
+
elif keyframe.start_percent == prev_keyframe.start_percent:
|
368 |
+
prev_keyframe = keyframe
|
369 |
+
# create final range, assuming last start_percent was not 1.0
|
370 |
+
if not math.isclose(prev_keyframe.start_percent, 1.0):
|
371 |
+
hook_schedule.append(((prev_keyframe.start_percent, 1.0), prev_keyframe))
|
372 |
+
scheduled_hooks[hook] = hook_schedule
|
373 |
+
# hooks should not have their schedules in a list of tuples
|
374 |
+
all_ranges: list[tuple[float, float]] = []
|
375 |
+
for range_kfs in scheduled_hooks.values():
|
376 |
+
for t_range, keyframe in range_kfs:
|
377 |
+
all_ranges.append(t_range)
|
378 |
+
# turn list of ranges into boundaries
|
379 |
+
boundaries_set = set(itertools.chain.from_iterable(all_ranges))
|
380 |
+
boundaries_set.add(0.0)
|
381 |
+
boundaries = sorted(boundaries_set)
|
382 |
+
real_ranges = [(boundaries[i], boundaries[i + 1]) for i in range(len(boundaries) - 1)]
|
383 |
+
# with real ranges defined, give appropriate hooks w/ keyframes for each range
|
384 |
+
scheduled_keyframes: list[tuple[tuple[float,float], list[tuple[WeightHook, HookKeyframe]]]] = []
|
385 |
+
for t_range in real_ranges:
|
386 |
+
hooks_schedule = []
|
387 |
+
for hook, val in scheduled_hooks.items():
|
388 |
+
keyframe = None
|
389 |
+
# check if is a keyframe that works for the current t_range
|
390 |
+
for stored_range, stored_kf in val:
|
391 |
+
# if stored start is less than current end, then fits - give it assigned keyframe
|
392 |
+
if stored_range[0] < t_range[1] and stored_range[1] > t_range[0]:
|
393 |
+
keyframe = stored_kf
|
394 |
+
break
|
395 |
+
hooks_schedule.append((hook, keyframe))
|
396 |
+
scheduled_keyframes.append((t_range, hooks_schedule))
|
397 |
+
return scheduled_keyframes
|
398 |
+
|
399 |
+
def reset(self):
|
400 |
+
for hook in self.hooks:
|
401 |
+
hook.reset()
|
402 |
+
|
403 |
+
@staticmethod
|
404 |
+
def combine_all_hooks(hooks_list: list[HookGroup], require_count=0) -> HookGroup:
|
405 |
+
actual: list[HookGroup] = []
|
406 |
+
for group in hooks_list:
|
407 |
+
if group is not None:
|
408 |
+
actual.append(group)
|
409 |
+
if len(actual) < require_count:
|
410 |
+
raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.")
|
411 |
+
# if no hooks, then return None
|
412 |
+
if len(actual) == 0:
|
413 |
+
return None
|
414 |
+
# if only 1 hook, just return itself without cloning
|
415 |
+
elif len(actual) == 1:
|
416 |
+
return actual[0]
|
417 |
+
final_hook: HookGroup = None
|
418 |
+
for hook in actual:
|
419 |
+
if final_hook is None:
|
420 |
+
final_hook = hook.clone()
|
421 |
+
else:
|
422 |
+
final_hook = final_hook.clone_and_combine(hook)
|
423 |
+
return final_hook
|
424 |
+
|
425 |
+
|
426 |
+
class HookKeyframe:
|
427 |
+
def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1):
|
428 |
+
self.strength = strength
|
429 |
+
# scheduling
|
430 |
+
self.start_percent = float(start_percent)
|
431 |
+
self.start_t = 999999999.9
|
432 |
+
self.guarantee_steps = guarantee_steps
|
433 |
+
|
434 |
+
def get_effective_guarantee_steps(self, max_sigma: torch.Tensor):
|
435 |
+
'''If keyframe starts before current sampling range (max_sigma), treat as 0.'''
|
436 |
+
if self.start_t > max_sigma:
|
437 |
+
return 0
|
438 |
+
return self.guarantee_steps
|
439 |
+
|
440 |
+
def clone(self):
|
441 |
+
c = HookKeyframe(strength=self.strength,
|
442 |
+
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
|
443 |
+
c.start_t = self.start_t
|
444 |
+
return c
|
445 |
+
|
446 |
+
class HookKeyframeGroup:
|
447 |
+
def __init__(self):
|
448 |
+
self.keyframes: list[HookKeyframe] = []
|
449 |
+
self._current_keyframe: HookKeyframe = None
|
450 |
+
self._current_used_steps = 0
|
451 |
+
self._current_index = 0
|
452 |
+
self._current_strength = None
|
453 |
+
self._curr_t = -1.
|
454 |
+
|
455 |
+
# properties shadow those of HookWeightsKeyframe
|
456 |
+
@property
|
457 |
+
def strength(self):
|
458 |
+
if self._current_keyframe is not None:
|
459 |
+
return self._current_keyframe.strength
|
460 |
+
return 1.0
|
461 |
+
|
462 |
+
def reset(self):
|
463 |
+
self._current_keyframe = None
|
464 |
+
self._current_used_steps = 0
|
465 |
+
self._current_index = 0
|
466 |
+
self._current_strength = None
|
467 |
+
self.curr_t = -1.
|
468 |
+
self._set_first_as_current()
|
469 |
+
|
470 |
+
def add(self, keyframe: HookKeyframe):
|
471 |
+
# add to end of list, then sort
|
472 |
+
self.keyframes.append(keyframe)
|
473 |
+
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
|
474 |
+
self._set_first_as_current()
|
475 |
+
|
476 |
+
def _set_first_as_current(self):
|
477 |
+
if len(self.keyframes) > 0:
|
478 |
+
self._current_keyframe = self.keyframes[0]
|
479 |
+
else:
|
480 |
+
self._current_keyframe = None
|
481 |
+
|
482 |
+
def has_guarantee_steps(self):
|
483 |
+
for kf in self.keyframes:
|
484 |
+
if kf.guarantee_steps > 0:
|
485 |
+
return True
|
486 |
+
return False
|
487 |
+
|
488 |
+
def has_index(self, index: int):
|
489 |
+
return index >= 0 and index < len(self.keyframes)
|
490 |
+
|
491 |
+
def is_empty(self):
|
492 |
+
return len(self.keyframes) == 0
|
493 |
+
|
494 |
+
def clone(self):
|
495 |
+
c = HookKeyframeGroup()
|
496 |
+
for keyframe in self.keyframes:
|
497 |
+
c.keyframes.append(keyframe.clone())
|
498 |
+
c._set_first_as_current()
|
499 |
+
return c
|
500 |
+
|
501 |
+
def initialize_timesteps(self, model: BaseModel):
|
502 |
+
for keyframe in self.keyframes:
|
503 |
+
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
|
504 |
+
|
505 |
+
def prepare_current_keyframe(self, curr_t: float, transformer_options: dict[str, torch.Tensor]) -> bool:
|
506 |
+
if self.is_empty():
|
507 |
+
return False
|
508 |
+
if curr_t == self._curr_t:
|
509 |
+
return False
|
510 |
+
max_sigma = torch.max(transformer_options["sample_sigmas"])
|
511 |
+
prev_index = self._current_index
|
512 |
+
prev_strength = self._current_strength
|
513 |
+
# if met guaranteed steps, look for next keyframe in case need to switch
|
514 |
+
if self._current_used_steps >= self._current_keyframe.get_effective_guarantee_steps(max_sigma):
|
515 |
+
# if has next index, loop through and see if need to switch
|
516 |
+
if self.has_index(self._current_index+1):
|
517 |
+
for i in range(self._current_index+1, len(self.keyframes)):
|
518 |
+
eval_c = self.keyframes[i]
|
519 |
+
# check if start_t is greater or equal to curr_t
|
520 |
+
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
|
521 |
+
if eval_c.start_t >= curr_t:
|
522 |
+
self._current_index = i
|
523 |
+
self._current_strength = eval_c.strength
|
524 |
+
self._current_keyframe = eval_c
|
525 |
+
self._current_used_steps = 0
|
526 |
+
# if guarantee_steps greater than zero, stop searching for other keyframes
|
527 |
+
if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0:
|
528 |
+
break
|
529 |
+
# if eval_c is outside the percent range, stop looking further
|
530 |
+
else: break
|
531 |
+
# update steps current context is used
|
532 |
+
self._current_used_steps += 1
|
533 |
+
# update current timestep this was performed on
|
534 |
+
self._curr_t = curr_t
|
535 |
+
# return True if keyframe changed, False if no change
|
536 |
+
return prev_index != self._current_index and prev_strength != self._current_strength
|
537 |
+
|
538 |
+
|
539 |
+
class InterpolationMethod:
|
540 |
+
LINEAR = "linear"
|
541 |
+
EASE_IN = "ease_in"
|
542 |
+
EASE_OUT = "ease_out"
|
543 |
+
EASE_IN_OUT = "ease_in_out"
|
544 |
+
|
545 |
+
_LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
|
546 |
+
|
547 |
+
@classmethod
|
548 |
+
def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
|
549 |
+
diff = num_to - num_from
|
550 |
+
if method == cls.LINEAR:
|
551 |
+
weights = torch.linspace(num_from, num_to, length)
|
552 |
+
elif method == cls.EASE_IN:
|
553 |
+
index = torch.linspace(0, 1, length)
|
554 |
+
weights = diff * np.power(index, 2) + num_from
|
555 |
+
elif method == cls.EASE_OUT:
|
556 |
+
index = torch.linspace(0, 1, length)
|
557 |
+
weights = diff * (1 - np.power(1 - index, 2)) + num_from
|
558 |
+
elif method == cls.EASE_IN_OUT:
|
559 |
+
index = torch.linspace(0, 1, length)
|
560 |
+
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
|
561 |
+
else:
|
562 |
+
raise ValueError(f"Unrecognized interpolation method '{method}'.")
|
563 |
+
if reverse:
|
564 |
+
weights = weights.flip(dims=(0,))
|
565 |
+
return weights
|
566 |
+
|
567 |
+
def get_sorted_list_via_attr(objects: list, attr: str) -> list:
|
568 |
+
if not objects:
|
569 |
+
return objects
|
570 |
+
elif len(objects) <= 1:
|
571 |
+
return [x for x in objects]
|
572 |
+
# now that we know we have to sort, do it following these rules:
|
573 |
+
# a) if objects have same value of attribute, maintain their relative order
|
574 |
+
# b) perform sorting of the groups of objects with same attributes
|
575 |
+
unique_attrs = {}
|
576 |
+
for o in objects:
|
577 |
+
val_attr = getattr(o, attr)
|
578 |
+
attr_list: list = unique_attrs.get(val_attr, list())
|
579 |
+
attr_list.append(o)
|
580 |
+
if val_attr not in unique_attrs:
|
581 |
+
unique_attrs[val_attr] = attr_list
|
582 |
+
# now that we have the unique attr values grouped together in relative order, sort them by key
|
583 |
+
sorted_attrs = dict(sorted(unique_attrs.items()))
|
584 |
+
# now flatten out the dict into a list to return
|
585 |
+
sorted_list = []
|
586 |
+
for object_list in sorted_attrs.values():
|
587 |
+
sorted_list.extend(object_list)
|
588 |
+
return sorted_list
|
589 |
+
|
590 |
+
def create_transformer_options_from_hooks(model: ModelPatcher, hooks: HookGroup, transformer_options: dict[str]=None):
|
591 |
+
# if no hooks or is not a ModelPatcher for sampling, return empty dict
|
592 |
+
if hooks is None or model.is_clip:
|
593 |
+
return {}
|
594 |
+
if transformer_options is None:
|
595 |
+
transformer_options = {}
|
596 |
+
for hook in hooks.get_type(EnumHookType.TransformerOptions):
|
597 |
+
hook: TransformerOptionsHook
|
598 |
+
hook.on_apply_hooks(model, transformer_options)
|
599 |
+
return transformer_options
|
600 |
+
|
601 |
+
def create_hook_lora(lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float):
|
602 |
+
hook_group = HookGroup()
|
603 |
+
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
604 |
+
hook_group.add(hook)
|
605 |
+
hook.weights = lora
|
606 |
+
return hook_group
|
607 |
+
|
608 |
+
def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float):
|
609 |
+
hook_group = HookGroup()
|
610 |
+
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
611 |
+
hook_group.add(hook)
|
612 |
+
patches_model = None
|
613 |
+
patches_clip = None
|
614 |
+
if weights_model is not None:
|
615 |
+
patches_model = {}
|
616 |
+
for key in weights_model:
|
617 |
+
patches_model[key] = ("model_as_lora", (weights_model[key],))
|
618 |
+
if weights_clip is not None:
|
619 |
+
patches_clip = {}
|
620 |
+
for key in weights_clip:
|
621 |
+
patches_clip[key] = ("model_as_lora", (weights_clip[key],))
|
622 |
+
hook.weights = patches_model
|
623 |
+
hook.weights_clip = patches_clip
|
624 |
+
hook.need_weight_init = False
|
625 |
+
return hook_group
|
626 |
+
|
627 |
+
def get_patch_weights_from_model(model: ModelPatcher, discard_model_sampling=True):
|
628 |
+
if model is None:
|
629 |
+
return None
|
630 |
+
patches_model: dict[str, torch.Tensor] = model.model.state_dict()
|
631 |
+
if discard_model_sampling:
|
632 |
+
# do not include ANY model_sampling components of the model that should act as a patch
|
633 |
+
for key in list(patches_model.keys()):
|
634 |
+
if key.startswith("model_sampling"):
|
635 |
+
patches_model.pop(key, None)
|
636 |
+
return patches_model
|
637 |
+
|
638 |
+
# NOTE: this function shows how to register weight hooks directly on the ModelPatchers
|
639 |
+
def load_hook_lora_for_models(model: ModelPatcher, clip: CLIP, lora: dict[str, torch.Tensor],
|
640 |
+
strength_model: float, strength_clip: float):
|
641 |
+
key_map = {}
|
642 |
+
if model is not None:
|
643 |
+
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
644 |
+
if clip is not None:
|
645 |
+
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
646 |
+
|
647 |
+
hook_group = HookGroup()
|
648 |
+
hook = WeightHook()
|
649 |
+
hook_group.add(hook)
|
650 |
+
loaded: dict[str] = comfy.lora.load_lora(lora, key_map)
|
651 |
+
if model is not None:
|
652 |
+
new_modelpatcher = model.clone()
|
653 |
+
k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model)
|
654 |
+
else:
|
655 |
+
k = ()
|
656 |
+
new_modelpatcher = None
|
657 |
+
|
658 |
+
if clip is not None:
|
659 |
+
new_clip = clip.clone()
|
660 |
+
k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip)
|
661 |
+
else:
|
662 |
+
k1 = ()
|
663 |
+
new_clip = None
|
664 |
+
k = set(k)
|
665 |
+
k1 = set(k1)
|
666 |
+
for x in loaded:
|
667 |
+
if (x not in k) and (x not in k1):
|
668 |
+
logging.warning(f"NOT LOADED {x}")
|
669 |
+
return (new_modelpatcher, new_clip, hook_group)
|
670 |
+
|
671 |
+
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):
|
672 |
+
hooks_key = 'hooks'
|
673 |
+
# if hooks only exist in one dict, do what's needed so that it ends up in c_dict
|
674 |
+
if hooks_key not in values:
|
675 |
+
return
|
676 |
+
if hooks_key not in c_dict:
|
677 |
+
hooks_value = values.get(hooks_key, None)
|
678 |
+
if hooks_value is not None:
|
679 |
+
c_dict[hooks_key] = hooks_value
|
680 |
+
return
|
681 |
+
# otherwise, need to combine with minimum duplication via cache
|
682 |
+
hooks_tuple = (c_dict[hooks_key], values[hooks_key])
|
683 |
+
cached_hooks = cache.get(hooks_tuple, None)
|
684 |
+
if cached_hooks is None:
|
685 |
+
new_hooks = hooks_tuple[0].clone_and_combine(hooks_tuple[1])
|
686 |
+
cache[hooks_tuple] = new_hooks
|
687 |
+
c_dict[hooks_key] = new_hooks
|
688 |
+
else:
|
689 |
+
c_dict[hooks_key] = cache[hooks_tuple]
|
690 |
+
|
691 |
+
def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True,
|
692 |
+
cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
|
693 |
+
c = []
|
694 |
+
if cache is None:
|
695 |
+
cache = {}
|
696 |
+
for t in conditioning:
|
697 |
+
n = [t[0], t[1].copy()]
|
698 |
+
for k in values:
|
699 |
+
if append_hooks and k == 'hooks':
|
700 |
+
_combine_hooks_from_values(n[1], values, cache)
|
701 |
+
else:
|
702 |
+
n[1][k] = values[k]
|
703 |
+
c.append(n)
|
704 |
+
|
705 |
+
return c
|
706 |
+
|
707 |
+
def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True, cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
|
708 |
+
if hooks is None:
|
709 |
+
return cond
|
710 |
+
return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks, cache=cache)
|
711 |
+
|
712 |
+
def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]):
|
713 |
+
if timestep_range is None:
|
714 |
+
return cond
|
715 |
+
return conditioning_set_values(cond, {"start_percent": timestep_range[0],
|
716 |
+
"end_percent": timestep_range[1]})
|
717 |
+
|
718 |
+
def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float):
|
719 |
+
if mask is None:
|
720 |
+
return cond
|
721 |
+
set_area_to_bounds = False
|
722 |
+
if set_cond_area != 'default':
|
723 |
+
set_area_to_bounds = True
|
724 |
+
if len(mask.shape) < 3:
|
725 |
+
mask = mask.unsqueeze(0)
|
726 |
+
return conditioning_set_values(cond, {'mask': mask,
|
727 |
+
'set_area_to_bounds': set_area_to_bounds,
|
728 |
+
'mask_strength': strength})
|
729 |
+
|
730 |
+
def combine_conditioning(conds: list):
|
731 |
+
combined_conds = []
|
732 |
+
for cond in conds:
|
733 |
+
combined_conds.extend(cond)
|
734 |
+
return combined_conds
|
735 |
+
|
736 |
+
def combine_with_new_conds(conds: list, new_conds: list):
|
737 |
+
combined_conds = []
|
738 |
+
for c, new_c in zip(conds, new_conds):
|
739 |
+
combined_conds.append(combine_conditioning([c, new_c]))
|
740 |
+
return combined_conds
|
741 |
+
|
742 |
+
def set_conds_props(conds: list, strength: float, set_cond_area: str,
|
743 |
+
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
744 |
+
final_conds = []
|
745 |
+
cache = {}
|
746 |
+
for c in conds:
|
747 |
+
# first, apply lora_hook to conditioning, if provided
|
748 |
+
c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks, cache=cache)
|
749 |
+
# next, apply mask to conditioning
|
750 |
+
c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area)
|
751 |
+
# apply timesteps, if present
|
752 |
+
c = set_timesteps_for_conditioning(cond=c, timestep_range=timesteps_range)
|
753 |
+
# finally, apply mask to conditioning and store
|
754 |
+
final_conds.append(c)
|
755 |
+
return final_conds
|
756 |
+
|
757 |
+
def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default",
|
758 |
+
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
759 |
+
combined_conds = []
|
760 |
+
cache = {}
|
761 |
+
for c, masked_c in zip(conds, new_conds):
|
762 |
+
# first, apply lora_hook to new conditioning, if provided
|
763 |
+
masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks, cache=cache)
|
764 |
+
# next, apply mask to new conditioning, if provided
|
765 |
+
masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength)
|
766 |
+
# apply timesteps, if present
|
767 |
+
masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=timesteps_range)
|
768 |
+
# finally, combine with existing conditioning and store
|
769 |
+
combined_conds.append(combine_conditioning([c, masked_c]))
|
770 |
+
return combined_conds
|
771 |
+
|
772 |
+
def set_default_conds_and_combine(conds: list, new_conds: list,
|
773 |
+
hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
|
774 |
+
combined_conds = []
|
775 |
+
cache = {}
|
776 |
+
for c, new_c in zip(conds, new_conds):
|
777 |
+
# first, apply lora_hook to new conditioning, if provided
|
778 |
+
new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks, cache=cache)
|
779 |
+
# next, add default_cond key to cond so that during sampling, it can be identified
|
780 |
+
new_c = conditioning_set_values(new_c, {'default': True})
|
781 |
+
# apply timesteps, if present
|
782 |
+
new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=timesteps_range)
|
783 |
+
# finally, combine with existing conditioning and store
|
784 |
+
combined_conds.append(combine_conditioning([c, new_c]))
|
785 |
+
return combined_conds
|
comfy/k_diffusion/deis.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Taken from: https://github.com/zju-pi/diff-sampler/blob/main/gits-main/solver_utils.py
|
2 |
+
#under Apache 2 license
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# A pytorch reimplementation of DEIS (https://github.com/qsh-zh/deis).
|
7 |
+
#############################
|
8 |
+
### Utils for DEIS solver ###
|
9 |
+
#############################
|
10 |
+
#----------------------------------------------------------------------------
|
11 |
+
# Transfer from the input time (sigma) used in EDM to that (t) used in DEIS.
|
12 |
+
|
13 |
+
def edm2t(edm_steps, epsilon_s=1e-3, sigma_min=0.002, sigma_max=80):
|
14 |
+
vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d
|
15 |
+
vp_beta_d = 2 * (np.log(torch.tensor(sigma_min).cpu() ** 2 + 1) / epsilon_s - np.log(torch.tensor(sigma_max).cpu() ** 2 + 1)) / (epsilon_s - 1)
|
16 |
+
vp_beta_min = np.log(torch.tensor(sigma_max).cpu() ** 2 + 1) - 0.5 * vp_beta_d
|
17 |
+
t_steps = vp_sigma_inv(vp_beta_d.clone().detach().cpu(), vp_beta_min.clone().detach().cpu())(edm_steps.clone().detach().cpu())
|
18 |
+
return t_steps, vp_beta_min, vp_beta_d + vp_beta_min
|
19 |
+
|
20 |
+
#----------------------------------------------------------------------------
|
21 |
+
|
22 |
+
def cal_poly(prev_t, j, taus):
|
23 |
+
poly = 1
|
24 |
+
for k in range(prev_t.shape[0]):
|
25 |
+
if k == j:
|
26 |
+
continue
|
27 |
+
poly *= (taus - prev_t[k]) / (prev_t[j] - prev_t[k])
|
28 |
+
return poly
|
29 |
+
|
30 |
+
#----------------------------------------------------------------------------
|
31 |
+
# Transfer from t to alpha_t.
|
32 |
+
|
33 |
+
def t2alpha_fn(beta_0, beta_1, t):
|
34 |
+
return torch.exp(-0.5 * t ** 2 * (beta_1 - beta_0) - t * beta_0)
|
35 |
+
|
36 |
+
#----------------------------------------------------------------------------
|
37 |
+
|
38 |
+
def cal_intergrand(beta_0, beta_1, taus):
|
39 |
+
with torch.inference_mode(mode=False):
|
40 |
+
taus = taus.clone()
|
41 |
+
beta_0 = beta_0.clone()
|
42 |
+
beta_1 = beta_1.clone()
|
43 |
+
with torch.enable_grad():
|
44 |
+
taus.requires_grad_(True)
|
45 |
+
alpha = t2alpha_fn(beta_0, beta_1, taus)
|
46 |
+
log_alpha = alpha.log()
|
47 |
+
log_alpha.sum().backward()
|
48 |
+
d_log_alpha_dtau = taus.grad
|
49 |
+
integrand = -0.5 * d_log_alpha_dtau / torch.sqrt(alpha * (1 - alpha))
|
50 |
+
return integrand
|
51 |
+
|
52 |
+
#----------------------------------------------------------------------------
|
53 |
+
|
54 |
+
def get_deis_coeff_list(t_steps, max_order, N=10000, deis_mode='tab'):
|
55 |
+
"""
|
56 |
+
Get the coefficient list for DEIS sampling.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
t_steps: A pytorch tensor. The time steps for sampling.
|
60 |
+
max_order: A `int`. Maximum order of the solver. 1 <= max_order <= 4
|
61 |
+
N: A `int`. Use how many points to perform the numerical integration when deis_mode=='tab'.
|
62 |
+
deis_mode: A `str`. Select between 'tab' and 'rhoab'. Type of DEIS.
|
63 |
+
Returns:
|
64 |
+
A pytorch tensor. A batch of generated samples or sampling trajectories if return_inters=True.
|
65 |
+
"""
|
66 |
+
if deis_mode == 'tab':
|
67 |
+
t_steps, beta_0, beta_1 = edm2t(t_steps)
|
68 |
+
C = []
|
69 |
+
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
|
70 |
+
order = min(i+1, max_order)
|
71 |
+
if order == 1:
|
72 |
+
C.append([])
|
73 |
+
else:
|
74 |
+
taus = torch.linspace(t_cur, t_next, N) # split the interval for integral appximation
|
75 |
+
dtau = (t_next - t_cur) / N
|
76 |
+
prev_t = t_steps[[i - k for k in range(order)]]
|
77 |
+
coeff_temp = []
|
78 |
+
integrand = cal_intergrand(beta_0, beta_1, taus)
|
79 |
+
for j in range(order):
|
80 |
+
poly = cal_poly(prev_t, j, taus)
|
81 |
+
coeff_temp.append(torch.sum(integrand * poly) * dtau)
|
82 |
+
C.append(coeff_temp)
|
83 |
+
|
84 |
+
elif deis_mode == 'rhoab':
|
85 |
+
# Analytical solution, second order
|
86 |
+
def get_def_intergral_2(a, b, start, end, c):
|
87 |
+
coeff = (end**3 - start**3) / 3 - (end**2 - start**2) * (a + b) / 2 + (end - start) * a * b
|
88 |
+
return coeff / ((c - a) * (c - b))
|
89 |
+
|
90 |
+
# Analytical solution, third order
|
91 |
+
def get_def_intergral_3(a, b, c, start, end, d):
|
92 |
+
coeff = (end**4 - start**4) / 4 - (end**3 - start**3) * (a + b + c) / 3 \
|
93 |
+
+ (end**2 - start**2) * (a*b + a*c + b*c) / 2 - (end - start) * a * b * c
|
94 |
+
return coeff / ((d - a) * (d - b) * (d - c))
|
95 |
+
|
96 |
+
C = []
|
97 |
+
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
|
98 |
+
order = min(i, max_order)
|
99 |
+
if order == 0:
|
100 |
+
C.append([])
|
101 |
+
else:
|
102 |
+
prev_t = t_steps[[i - k for k in range(order+1)]]
|
103 |
+
if order == 1:
|
104 |
+
coeff_cur = ((t_next - prev_t[1])**2 - (t_cur - prev_t[1])**2) / (2 * (t_cur - prev_t[1]))
|
105 |
+
coeff_prev1 = (t_next - t_cur)**2 / (2 * (prev_t[1] - t_cur))
|
106 |
+
coeff_temp = [coeff_cur, coeff_prev1]
|
107 |
+
elif order == 2:
|
108 |
+
coeff_cur = get_def_intergral_2(prev_t[1], prev_t[2], t_cur, t_next, t_cur)
|
109 |
+
coeff_prev1 = get_def_intergral_2(t_cur, prev_t[2], t_cur, t_next, prev_t[1])
|
110 |
+
coeff_prev2 = get_def_intergral_2(t_cur, prev_t[1], t_cur, t_next, prev_t[2])
|
111 |
+
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2]
|
112 |
+
elif order == 3:
|
113 |
+
coeff_cur = get_def_intergral_3(prev_t[1], prev_t[2], prev_t[3], t_cur, t_next, t_cur)
|
114 |
+
coeff_prev1 = get_def_intergral_3(t_cur, prev_t[2], prev_t[3], t_cur, t_next, prev_t[1])
|
115 |
+
coeff_prev2 = get_def_intergral_3(t_cur, prev_t[1], prev_t[3], t_cur, t_next, prev_t[2])
|
116 |
+
coeff_prev3 = get_def_intergral_3(t_cur, prev_t[1], prev_t[2], t_cur, t_next, prev_t[3])
|
117 |
+
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3]
|
118 |
+
C.append(coeff_temp)
|
119 |
+
return C
|
120 |
+
|
comfy/k_diffusion/sampling.py
ADDED
@@ -0,0 +1,1338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
from scipy import integrate
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torchsde
|
7 |
+
from tqdm.auto import trange, tqdm
|
8 |
+
|
9 |
+
from . import utils
|
10 |
+
from . import deis
|
11 |
+
import comfy.model_patcher
|
12 |
+
import comfy.model_sampling
|
13 |
+
|
14 |
+
def append_zero(x):
|
15 |
+
return torch.cat([x, x.new_zeros([1])])
|
16 |
+
|
17 |
+
|
18 |
+
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
|
19 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
20 |
+
ramp = torch.linspace(0, 1, n, device=device)
|
21 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
22 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
23 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
24 |
+
return append_zero(sigmas).to(device)
|
25 |
+
|
26 |
+
|
27 |
+
def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
|
28 |
+
"""Constructs an exponential noise schedule."""
|
29 |
+
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
|
30 |
+
return append_zero(sigmas)
|
31 |
+
|
32 |
+
|
33 |
+
def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
|
34 |
+
"""Constructs an polynomial in log sigma noise schedule."""
|
35 |
+
ramp = torch.linspace(1, 0, n, device=device) ** rho
|
36 |
+
sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
|
37 |
+
return append_zero(sigmas)
|
38 |
+
|
39 |
+
|
40 |
+
def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
|
41 |
+
"""Constructs a continuous VP noise schedule."""
|
42 |
+
t = torch.linspace(1, eps_s, n, device=device)
|
43 |
+
sigmas = torch.sqrt(torch.special.expm1(beta_d * t ** 2 / 2 + beta_min * t))
|
44 |
+
return append_zero(sigmas)
|
45 |
+
|
46 |
+
|
47 |
+
def get_sigmas_laplace(n, sigma_min, sigma_max, mu=0., beta=0.5, device='cpu'):
|
48 |
+
"""Constructs the noise schedule proposed by Tiankai et al. (2024). """
|
49 |
+
epsilon = 1e-5 # avoid log(0)
|
50 |
+
x = torch.linspace(0, 1, n, device=device)
|
51 |
+
clamp = lambda x: torch.clamp(x, min=sigma_min, max=sigma_max)
|
52 |
+
lmb = mu - beta * torch.sign(0.5-x) * torch.log(1 - 2 * torch.abs(0.5-x) + epsilon)
|
53 |
+
sigmas = clamp(torch.exp(lmb))
|
54 |
+
return sigmas
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
def to_d(x, sigma, denoised):
|
59 |
+
"""Converts a denoiser output to a Karras ODE derivative."""
|
60 |
+
return (x - denoised) / utils.append_dims(sigma, x.ndim)
|
61 |
+
|
62 |
+
|
63 |
+
def get_ancestral_step(sigma_from, sigma_to, eta=1.):
|
64 |
+
"""Calculates the noise level (sigma_down) to step down to and the amount
|
65 |
+
of noise to add (sigma_up) when doing an ancestral sampling step."""
|
66 |
+
if not eta:
|
67 |
+
return sigma_to, 0.
|
68 |
+
sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
|
69 |
+
sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
|
70 |
+
return sigma_down, sigma_up
|
71 |
+
|
72 |
+
|
73 |
+
def default_noise_sampler(x, seed=None):
|
74 |
+
if seed is not None:
|
75 |
+
generator = torch.Generator(device=x.device)
|
76 |
+
generator.manual_seed(seed)
|
77 |
+
else:
|
78 |
+
generator = None
|
79 |
+
|
80 |
+
return lambda sigma, sigma_next: torch.randn(x.size(), dtype=x.dtype, layout=x.layout, device=x.device, generator=generator)
|
81 |
+
|
82 |
+
|
83 |
+
class BatchedBrownianTree:
|
84 |
+
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
|
85 |
+
|
86 |
+
def __init__(self, x, t0, t1, seed=None, **kwargs):
|
87 |
+
self.cpu_tree = True
|
88 |
+
if "cpu" in kwargs:
|
89 |
+
self.cpu_tree = kwargs.pop("cpu")
|
90 |
+
t0, t1, self.sign = self.sort(t0, t1)
|
91 |
+
w0 = kwargs.get('w0', torch.zeros_like(x))
|
92 |
+
if seed is None:
|
93 |
+
seed = torch.randint(0, 2 ** 63 - 1, []).item()
|
94 |
+
self.batched = True
|
95 |
+
try:
|
96 |
+
assert len(seed) == x.shape[0]
|
97 |
+
w0 = w0[0]
|
98 |
+
except TypeError:
|
99 |
+
seed = [seed]
|
100 |
+
self.batched = False
|
101 |
+
if self.cpu_tree:
|
102 |
+
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
|
103 |
+
else:
|
104 |
+
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
|
105 |
+
|
106 |
+
@staticmethod
|
107 |
+
def sort(a, b):
|
108 |
+
return (a, b, 1) if a < b else (b, a, -1)
|
109 |
+
|
110 |
+
def __call__(self, t0, t1):
|
111 |
+
t0, t1, sign = self.sort(t0, t1)
|
112 |
+
if self.cpu_tree:
|
113 |
+
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
|
114 |
+
else:
|
115 |
+
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
|
116 |
+
|
117 |
+
return w if self.batched else w[0]
|
118 |
+
|
119 |
+
|
120 |
+
class BrownianTreeNoiseSampler:
|
121 |
+
"""A noise sampler backed by a torchsde.BrownianTree.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
x (Tensor): The tensor whose shape, device and dtype to use to generate
|
125 |
+
random samples.
|
126 |
+
sigma_min (float): The low end of the valid interval.
|
127 |
+
sigma_max (float): The high end of the valid interval.
|
128 |
+
seed (int or List[int]): The random seed. If a list of seeds is
|
129 |
+
supplied instead of a single integer, then the noise sampler will
|
130 |
+
use one BrownianTree per batch item, each with its own seed.
|
131 |
+
transform (callable): A function that maps sigma to the sampler's
|
132 |
+
internal timestep.
|
133 |
+
"""
|
134 |
+
|
135 |
+
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
|
136 |
+
self.transform = transform
|
137 |
+
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
|
138 |
+
self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
|
139 |
+
|
140 |
+
def __call__(self, sigma, sigma_next):
|
141 |
+
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
|
142 |
+
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
|
143 |
+
|
144 |
+
|
145 |
+
@torch.no_grad()
|
146 |
+
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
147 |
+
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
|
148 |
+
extra_args = {} if extra_args is None else extra_args
|
149 |
+
s_in = x.new_ones([x.shape[0]])
|
150 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
151 |
+
if s_churn > 0:
|
152 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
153 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
154 |
+
else:
|
155 |
+
gamma = 0
|
156 |
+
sigma_hat = sigmas[i]
|
157 |
+
|
158 |
+
if gamma > 0:
|
159 |
+
eps = torch.randn_like(x) * s_noise
|
160 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
161 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
162 |
+
d = to_d(x, sigma_hat, denoised)
|
163 |
+
if callback is not None:
|
164 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
165 |
+
dt = sigmas[i + 1] - sigma_hat
|
166 |
+
# Euler method
|
167 |
+
x = x + d * dt
|
168 |
+
return x
|
169 |
+
|
170 |
+
|
171 |
+
@torch.no_grad()
|
172 |
+
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
173 |
+
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
|
174 |
+
return sample_euler_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
|
175 |
+
"""Ancestral sampling with Euler method steps."""
|
176 |
+
extra_args = {} if extra_args is None else extra_args
|
177 |
+
seed = extra_args.get("seed", None)
|
178 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
179 |
+
s_in = x.new_ones([x.shape[0]])
|
180 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
181 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
182 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
183 |
+
if callback is not None:
|
184 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
185 |
+
|
186 |
+
if sigma_down == 0:
|
187 |
+
x = denoised
|
188 |
+
else:
|
189 |
+
d = to_d(x, sigmas[i], denoised)
|
190 |
+
# Euler method
|
191 |
+
dt = sigma_down - sigmas[i]
|
192 |
+
x = x + d * dt + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
193 |
+
return x
|
194 |
+
|
195 |
+
@torch.no_grad()
|
196 |
+
def sample_euler_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1., noise_sampler=None):
|
197 |
+
"""Ancestral sampling with Euler method steps."""
|
198 |
+
extra_args = {} if extra_args is None else extra_args
|
199 |
+
seed = extra_args.get("seed", None)
|
200 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
201 |
+
s_in = x.new_ones([x.shape[0]])
|
202 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
203 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
204 |
+
# sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
205 |
+
if callback is not None:
|
206 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
207 |
+
|
208 |
+
if sigmas[i + 1] == 0:
|
209 |
+
x = denoised
|
210 |
+
else:
|
211 |
+
downstep_ratio = 1 + (sigmas[i + 1] / sigmas[i] - 1) * eta
|
212 |
+
sigma_down = sigmas[i + 1] * downstep_ratio
|
213 |
+
alpha_ip1 = 1 - sigmas[i + 1]
|
214 |
+
alpha_down = 1 - sigma_down
|
215 |
+
renoise_coeff = (sigmas[i + 1]**2 - sigma_down**2 * alpha_ip1**2 / alpha_down**2)**0.5
|
216 |
+
# Euler method
|
217 |
+
sigma_down_i_ratio = sigma_down / sigmas[i]
|
218 |
+
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * denoised
|
219 |
+
if eta > 0:
|
220 |
+
x = (alpha_ip1 / alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
221 |
+
return x
|
222 |
+
|
223 |
+
@torch.no_grad()
|
224 |
+
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
225 |
+
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
|
226 |
+
extra_args = {} if extra_args is None else extra_args
|
227 |
+
s_in = x.new_ones([x.shape[0]])
|
228 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
229 |
+
if s_churn > 0:
|
230 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
231 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
232 |
+
else:
|
233 |
+
gamma = 0
|
234 |
+
sigma_hat = sigmas[i]
|
235 |
+
|
236 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
237 |
+
if gamma > 0:
|
238 |
+
eps = torch.randn_like(x) * s_noise
|
239 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
240 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
241 |
+
d = to_d(x, sigma_hat, denoised)
|
242 |
+
if callback is not None:
|
243 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
244 |
+
dt = sigmas[i + 1] - sigma_hat
|
245 |
+
if sigmas[i + 1] == 0:
|
246 |
+
# Euler method
|
247 |
+
x = x + d * dt
|
248 |
+
else:
|
249 |
+
# Heun's method
|
250 |
+
x_2 = x + d * dt
|
251 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
252 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
253 |
+
d_prime = (d + d_2) / 2
|
254 |
+
x = x + d_prime * dt
|
255 |
+
return x
|
256 |
+
|
257 |
+
|
258 |
+
@torch.no_grad()
|
259 |
+
def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
260 |
+
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
|
261 |
+
extra_args = {} if extra_args is None else extra_args
|
262 |
+
s_in = x.new_ones([x.shape[0]])
|
263 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
264 |
+
if s_churn > 0:
|
265 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
266 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
267 |
+
else:
|
268 |
+
gamma = 0
|
269 |
+
sigma_hat = sigmas[i]
|
270 |
+
|
271 |
+
if gamma > 0:
|
272 |
+
eps = torch.randn_like(x) * s_noise
|
273 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
274 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
275 |
+
d = to_d(x, sigma_hat, denoised)
|
276 |
+
if callback is not None:
|
277 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
278 |
+
if sigmas[i + 1] == 0:
|
279 |
+
# Euler method
|
280 |
+
dt = sigmas[i + 1] - sigma_hat
|
281 |
+
x = x + d * dt
|
282 |
+
else:
|
283 |
+
# DPM-Solver-2
|
284 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
285 |
+
dt_1 = sigma_mid - sigma_hat
|
286 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
287 |
+
x_2 = x + d * dt_1
|
288 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
289 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
290 |
+
x = x + d_2 * dt_2
|
291 |
+
return x
|
292 |
+
|
293 |
+
|
294 |
+
@torch.no_grad()
|
295 |
+
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
296 |
+
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
|
297 |
+
return sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
|
298 |
+
|
299 |
+
"""Ancestral sampling with DPM-Solver second-order steps."""
|
300 |
+
extra_args = {} if extra_args is None else extra_args
|
301 |
+
seed = extra_args.get("seed", None)
|
302 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
303 |
+
s_in = x.new_ones([x.shape[0]])
|
304 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
305 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
306 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
307 |
+
if callback is not None:
|
308 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
309 |
+
d = to_d(x, sigmas[i], denoised)
|
310 |
+
if sigma_down == 0:
|
311 |
+
# Euler method
|
312 |
+
dt = sigma_down - sigmas[i]
|
313 |
+
x = x + d * dt
|
314 |
+
else:
|
315 |
+
# DPM-Solver-2
|
316 |
+
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
|
317 |
+
dt_1 = sigma_mid - sigmas[i]
|
318 |
+
dt_2 = sigma_down - sigmas[i]
|
319 |
+
x_2 = x + d * dt_1
|
320 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
321 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
322 |
+
x = x + d_2 * dt_2
|
323 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
324 |
+
return x
|
325 |
+
|
326 |
+
@torch.no_grad()
|
327 |
+
def sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
328 |
+
"""Ancestral sampling with DPM-Solver second-order steps."""
|
329 |
+
extra_args = {} if extra_args is None else extra_args
|
330 |
+
seed = extra_args.get("seed", None)
|
331 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
332 |
+
s_in = x.new_ones([x.shape[0]])
|
333 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
334 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
335 |
+
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
|
336 |
+
sigma_down = sigmas[i+1] * downstep_ratio
|
337 |
+
alpha_ip1 = 1 - sigmas[i+1]
|
338 |
+
alpha_down = 1 - sigma_down
|
339 |
+
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
|
340 |
+
|
341 |
+
if callback is not None:
|
342 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
343 |
+
d = to_d(x, sigmas[i], denoised)
|
344 |
+
if sigma_down == 0:
|
345 |
+
# Euler method
|
346 |
+
dt = sigma_down - sigmas[i]
|
347 |
+
x = x + d * dt
|
348 |
+
else:
|
349 |
+
# DPM-Solver-2
|
350 |
+
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
|
351 |
+
dt_1 = sigma_mid - sigmas[i]
|
352 |
+
dt_2 = sigma_down - sigmas[i]
|
353 |
+
x_2 = x + d * dt_1
|
354 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
355 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
356 |
+
x = x + d_2 * dt_2
|
357 |
+
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
358 |
+
return x
|
359 |
+
|
360 |
+
def linear_multistep_coeff(order, t, i, j):
|
361 |
+
if order - 1 > i:
|
362 |
+
raise ValueError(f'Order {order} too high for step {i}')
|
363 |
+
def fn(tau):
|
364 |
+
prod = 1.
|
365 |
+
for k in range(order):
|
366 |
+
if j == k:
|
367 |
+
continue
|
368 |
+
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
|
369 |
+
return prod
|
370 |
+
return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
|
371 |
+
|
372 |
+
|
373 |
+
@torch.no_grad()
|
374 |
+
def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
|
375 |
+
extra_args = {} if extra_args is None else extra_args
|
376 |
+
s_in = x.new_ones([x.shape[0]])
|
377 |
+
sigmas_cpu = sigmas.detach().cpu().numpy()
|
378 |
+
ds = []
|
379 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
380 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
381 |
+
d = to_d(x, sigmas[i], denoised)
|
382 |
+
ds.append(d)
|
383 |
+
if len(ds) > order:
|
384 |
+
ds.pop(0)
|
385 |
+
if callback is not None:
|
386 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
387 |
+
cur_order = min(i + 1, order)
|
388 |
+
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
|
389 |
+
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
390 |
+
return x
|
391 |
+
|
392 |
+
|
393 |
+
class PIDStepSizeController:
|
394 |
+
"""A PID controller for ODE adaptive step size control."""
|
395 |
+
def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
|
396 |
+
self.h = h
|
397 |
+
self.b1 = (pcoeff + icoeff + dcoeff) / order
|
398 |
+
self.b2 = -(pcoeff + 2 * dcoeff) / order
|
399 |
+
self.b3 = dcoeff / order
|
400 |
+
self.accept_safety = accept_safety
|
401 |
+
self.eps = eps
|
402 |
+
self.errs = []
|
403 |
+
|
404 |
+
def limiter(self, x):
|
405 |
+
return 1 + math.atan(x - 1)
|
406 |
+
|
407 |
+
def propose_step(self, error):
|
408 |
+
inv_error = 1 / (float(error) + self.eps)
|
409 |
+
if not self.errs:
|
410 |
+
self.errs = [inv_error, inv_error, inv_error]
|
411 |
+
self.errs[0] = inv_error
|
412 |
+
factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
|
413 |
+
factor = self.limiter(factor)
|
414 |
+
accept = factor >= self.accept_safety
|
415 |
+
if accept:
|
416 |
+
self.errs[2] = self.errs[1]
|
417 |
+
self.errs[1] = self.errs[0]
|
418 |
+
self.h *= factor
|
419 |
+
return accept
|
420 |
+
|
421 |
+
|
422 |
+
class DPMSolver(nn.Module):
|
423 |
+
"""DPM-Solver. See https://arxiv.org/abs/2206.00927."""
|
424 |
+
|
425 |
+
def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
|
426 |
+
super().__init__()
|
427 |
+
self.model = model
|
428 |
+
self.extra_args = {} if extra_args is None else extra_args
|
429 |
+
self.eps_callback = eps_callback
|
430 |
+
self.info_callback = info_callback
|
431 |
+
|
432 |
+
def t(self, sigma):
|
433 |
+
return -sigma.log()
|
434 |
+
|
435 |
+
def sigma(self, t):
|
436 |
+
return t.neg().exp()
|
437 |
+
|
438 |
+
def eps(self, eps_cache, key, x, t, *args, **kwargs):
|
439 |
+
if key in eps_cache:
|
440 |
+
return eps_cache[key], eps_cache
|
441 |
+
sigma = self.sigma(t) * x.new_ones([x.shape[0]])
|
442 |
+
eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
|
443 |
+
if self.eps_callback is not None:
|
444 |
+
self.eps_callback()
|
445 |
+
return eps, {key: eps, **eps_cache}
|
446 |
+
|
447 |
+
def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
|
448 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
449 |
+
h = t_next - t
|
450 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
451 |
+
x_1 = x - self.sigma(t_next) * h.expm1() * eps
|
452 |
+
return x_1, eps_cache
|
453 |
+
|
454 |
+
def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
|
455 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
456 |
+
h = t_next - t
|
457 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
458 |
+
s1 = t + r1 * h
|
459 |
+
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
|
460 |
+
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
|
461 |
+
x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
|
462 |
+
return x_2, eps_cache
|
463 |
+
|
464 |
+
def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
|
465 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
466 |
+
h = t_next - t
|
467 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
468 |
+
s1 = t + r1 * h
|
469 |
+
s2 = t + r2 * h
|
470 |
+
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
|
471 |
+
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
|
472 |
+
u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
|
473 |
+
eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
|
474 |
+
x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
|
475 |
+
return x_3, eps_cache
|
476 |
+
|
477 |
+
def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
|
478 |
+
noise_sampler = default_noise_sampler(x, seed=self.extra_args.get("seed", None)) if noise_sampler is None else noise_sampler
|
479 |
+
if not t_end > t_start and eta:
|
480 |
+
raise ValueError('eta must be 0 for reverse sampling')
|
481 |
+
|
482 |
+
m = math.floor(nfe / 3) + 1
|
483 |
+
ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
|
484 |
+
|
485 |
+
if nfe % 3 == 0:
|
486 |
+
orders = [3] * (m - 2) + [2, 1]
|
487 |
+
else:
|
488 |
+
orders = [3] * (m - 1) + [nfe % 3]
|
489 |
+
|
490 |
+
for i in range(len(orders)):
|
491 |
+
eps_cache = {}
|
492 |
+
t, t_next = ts[i], ts[i + 1]
|
493 |
+
if eta:
|
494 |
+
sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
|
495 |
+
t_next_ = torch.minimum(t_end, self.t(sd))
|
496 |
+
su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
|
497 |
+
else:
|
498 |
+
t_next_, su = t_next, 0.
|
499 |
+
|
500 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
501 |
+
denoised = x - self.sigma(t) * eps
|
502 |
+
if self.info_callback is not None:
|
503 |
+
self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
|
504 |
+
|
505 |
+
if orders[i] == 1:
|
506 |
+
x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
|
507 |
+
elif orders[i] == 2:
|
508 |
+
x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
|
509 |
+
else:
|
510 |
+
x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
|
511 |
+
|
512 |
+
x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
|
513 |
+
|
514 |
+
return x
|
515 |
+
|
516 |
+
def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
|
517 |
+
noise_sampler = default_noise_sampler(x, seed=self.extra_args.get("seed", None)) if noise_sampler is None else noise_sampler
|
518 |
+
if order not in {2, 3}:
|
519 |
+
raise ValueError('order should be 2 or 3')
|
520 |
+
forward = t_end > t_start
|
521 |
+
if not forward and eta:
|
522 |
+
raise ValueError('eta must be 0 for reverse sampling')
|
523 |
+
h_init = abs(h_init) * (1 if forward else -1)
|
524 |
+
atol = torch.tensor(atol)
|
525 |
+
rtol = torch.tensor(rtol)
|
526 |
+
s = t_start
|
527 |
+
x_prev = x
|
528 |
+
accept = True
|
529 |
+
pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
|
530 |
+
info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
|
531 |
+
|
532 |
+
while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
|
533 |
+
eps_cache = {}
|
534 |
+
t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
|
535 |
+
if eta:
|
536 |
+
sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
|
537 |
+
t_ = torch.minimum(t_end, self.t(sd))
|
538 |
+
su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
|
539 |
+
else:
|
540 |
+
t_, su = t, 0.
|
541 |
+
|
542 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
|
543 |
+
denoised = x - self.sigma(s) * eps
|
544 |
+
|
545 |
+
if order == 2:
|
546 |
+
x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
|
547 |
+
x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
|
548 |
+
else:
|
549 |
+
x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
|
550 |
+
x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
|
551 |
+
delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
|
552 |
+
error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
|
553 |
+
accept = pid.propose_step(error)
|
554 |
+
if accept:
|
555 |
+
x_prev = x_low
|
556 |
+
x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
|
557 |
+
s = t
|
558 |
+
info['n_accept'] += 1
|
559 |
+
else:
|
560 |
+
info['n_reject'] += 1
|
561 |
+
info['nfe'] += order
|
562 |
+
info['steps'] += 1
|
563 |
+
|
564 |
+
if self.info_callback is not None:
|
565 |
+
self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
|
566 |
+
|
567 |
+
return x, info
|
568 |
+
|
569 |
+
|
570 |
+
@torch.no_grad()
|
571 |
+
def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
|
572 |
+
"""DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
|
573 |
+
if sigma_min <= 0 or sigma_max <= 0:
|
574 |
+
raise ValueError('sigma_min and sigma_max must not be 0')
|
575 |
+
with tqdm(total=n, disable=disable) as pbar:
|
576 |
+
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
|
577 |
+
if callback is not None:
|
578 |
+
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
|
579 |
+
return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
|
580 |
+
|
581 |
+
|
582 |
+
@torch.no_grad()
|
583 |
+
def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
|
584 |
+
"""DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
|
585 |
+
if sigma_min <= 0 or sigma_max <= 0:
|
586 |
+
raise ValueError('sigma_min and sigma_max must not be 0')
|
587 |
+
with tqdm(disable=disable) as pbar:
|
588 |
+
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
|
589 |
+
if callback is not None:
|
590 |
+
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
|
591 |
+
x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
|
592 |
+
if return_info:
|
593 |
+
return x, info
|
594 |
+
return x
|
595 |
+
|
596 |
+
|
597 |
+
@torch.no_grad()
|
598 |
+
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
599 |
+
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
|
600 |
+
return sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
|
601 |
+
|
602 |
+
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
603 |
+
extra_args = {} if extra_args is None else extra_args
|
604 |
+
seed = extra_args.get("seed", None)
|
605 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
606 |
+
s_in = x.new_ones([x.shape[0]])
|
607 |
+
sigma_fn = lambda t: t.neg().exp()
|
608 |
+
t_fn = lambda sigma: sigma.log().neg()
|
609 |
+
|
610 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
611 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
612 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
613 |
+
if callback is not None:
|
614 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
615 |
+
if sigma_down == 0:
|
616 |
+
# Euler method
|
617 |
+
d = to_d(x, sigmas[i], denoised)
|
618 |
+
dt = sigma_down - sigmas[i]
|
619 |
+
x = x + d * dt
|
620 |
+
else:
|
621 |
+
# DPM-Solver++(2S)
|
622 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
|
623 |
+
r = 1 / 2
|
624 |
+
h = t_next - t
|
625 |
+
s = t + r * h
|
626 |
+
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
|
627 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
628 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
|
629 |
+
# Noise addition
|
630 |
+
if sigmas[i + 1] > 0:
|
631 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
632 |
+
return x
|
633 |
+
|
634 |
+
|
635 |
+
@torch.no_grad()
|
636 |
+
def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
637 |
+
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
638 |
+
extra_args = {} if extra_args is None else extra_args
|
639 |
+
seed = extra_args.get("seed", None)
|
640 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
641 |
+
s_in = x.new_ones([x.shape[0]])
|
642 |
+
sigma_fn = lambda lbda: (lbda.exp() + 1) ** -1
|
643 |
+
lambda_fn = lambda sigma: ((1-sigma)/sigma).log()
|
644 |
+
|
645 |
+
# logged_x = x.unsqueeze(0)
|
646 |
+
|
647 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
648 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
649 |
+
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
|
650 |
+
sigma_down = sigmas[i+1] * downstep_ratio
|
651 |
+
alpha_ip1 = 1 - sigmas[i+1]
|
652 |
+
alpha_down = 1 - sigma_down
|
653 |
+
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
|
654 |
+
# sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
655 |
+
if callback is not None:
|
656 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
657 |
+
if sigmas[i + 1] == 0:
|
658 |
+
# Euler method
|
659 |
+
d = to_d(x, sigmas[i], denoised)
|
660 |
+
dt = sigma_down - sigmas[i]
|
661 |
+
x = x + d * dt
|
662 |
+
else:
|
663 |
+
# DPM-Solver++(2S)
|
664 |
+
if sigmas[i] == 1.0:
|
665 |
+
sigma_s = 0.9999
|
666 |
+
else:
|
667 |
+
t_i, t_down = lambda_fn(sigmas[i]), lambda_fn(sigma_down)
|
668 |
+
r = 1 / 2
|
669 |
+
h = t_down - t_i
|
670 |
+
s = t_i + r * h
|
671 |
+
sigma_s = sigma_fn(s)
|
672 |
+
# sigma_s = sigmas[i+1]
|
673 |
+
sigma_s_i_ratio = sigma_s / sigmas[i]
|
674 |
+
u = sigma_s_i_ratio * x + (1 - sigma_s_i_ratio) * denoised
|
675 |
+
D_i = model(u, sigma_s * s_in, **extra_args)
|
676 |
+
sigma_down_i_ratio = sigma_down / sigmas[i]
|
677 |
+
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * D_i
|
678 |
+
# print("sigma_i", sigmas[i], "sigma_ip1", sigmas[i+1],"sigma_down", sigma_down, "sigma_down_i_ratio", sigma_down_i_ratio, "sigma_s_i_ratio", sigma_s_i_ratio, "renoise_coeff", renoise_coeff)
|
679 |
+
# Noise addition
|
680 |
+
if sigmas[i + 1] > 0 and eta > 0:
|
681 |
+
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
682 |
+
# logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
|
683 |
+
return x
|
684 |
+
|
685 |
+
@torch.no_grad()
|
686 |
+
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
687 |
+
"""DPM-Solver++ (stochastic)."""
|
688 |
+
if len(sigmas) <= 1:
|
689 |
+
return x
|
690 |
+
|
691 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
692 |
+
seed = extra_args.get("seed", None)
|
693 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
694 |
+
extra_args = {} if extra_args is None else extra_args
|
695 |
+
s_in = x.new_ones([x.shape[0]])
|
696 |
+
sigma_fn = lambda t: t.neg().exp()
|
697 |
+
t_fn = lambda sigma: sigma.log().neg()
|
698 |
+
|
699 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
700 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
701 |
+
if callback is not None:
|
702 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
703 |
+
if sigmas[i + 1] == 0:
|
704 |
+
# Euler method
|
705 |
+
d = to_d(x, sigmas[i], denoised)
|
706 |
+
dt = sigmas[i + 1] - sigmas[i]
|
707 |
+
x = x + d * dt
|
708 |
+
else:
|
709 |
+
# DPM-Solver++
|
710 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
711 |
+
h = t_next - t
|
712 |
+
s = t + h * r
|
713 |
+
fac = 1 / (2 * r)
|
714 |
+
|
715 |
+
# Step 1
|
716 |
+
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
|
717 |
+
s_ = t_fn(sd)
|
718 |
+
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
|
719 |
+
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
|
720 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
721 |
+
|
722 |
+
# Step 2
|
723 |
+
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
|
724 |
+
t_next_ = t_fn(sd)
|
725 |
+
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
726 |
+
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
|
727 |
+
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
|
728 |
+
return x
|
729 |
+
|
730 |
+
|
731 |
+
@torch.no_grad()
|
732 |
+
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
733 |
+
"""DPM-Solver++(2M)."""
|
734 |
+
extra_args = {} if extra_args is None else extra_args
|
735 |
+
s_in = x.new_ones([x.shape[0]])
|
736 |
+
sigma_fn = lambda t: t.neg().exp()
|
737 |
+
t_fn = lambda sigma: sigma.log().neg()
|
738 |
+
old_denoised = None
|
739 |
+
|
740 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
741 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
742 |
+
if callback is not None:
|
743 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
744 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
745 |
+
h = t_next - t
|
746 |
+
if old_denoised is None or sigmas[i + 1] == 0:
|
747 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
|
748 |
+
else:
|
749 |
+
h_last = t - t_fn(sigmas[i - 1])
|
750 |
+
r = h_last / h
|
751 |
+
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
|
752 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
|
753 |
+
old_denoised = denoised
|
754 |
+
return x
|
755 |
+
|
756 |
+
@torch.no_grad()
|
757 |
+
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
758 |
+
"""DPM-Solver++(2M) SDE."""
|
759 |
+
if len(sigmas) <= 1:
|
760 |
+
return x
|
761 |
+
|
762 |
+
if solver_type not in {'heun', 'midpoint'}:
|
763 |
+
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
|
764 |
+
|
765 |
+
seed = extra_args.get("seed", None)
|
766 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
767 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
768 |
+
extra_args = {} if extra_args is None else extra_args
|
769 |
+
s_in = x.new_ones([x.shape[0]])
|
770 |
+
|
771 |
+
old_denoised = None
|
772 |
+
h_last = None
|
773 |
+
h = None
|
774 |
+
|
775 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
776 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
777 |
+
if callback is not None:
|
778 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
779 |
+
if sigmas[i + 1] == 0:
|
780 |
+
# Denoising step
|
781 |
+
x = denoised
|
782 |
+
else:
|
783 |
+
# DPM-Solver++(2M) SDE
|
784 |
+
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
785 |
+
h = s - t
|
786 |
+
eta_h = eta * h
|
787 |
+
|
788 |
+
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
|
789 |
+
|
790 |
+
if old_denoised is not None:
|
791 |
+
r = h_last / h
|
792 |
+
if solver_type == 'heun':
|
793 |
+
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
|
794 |
+
elif solver_type == 'midpoint':
|
795 |
+
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
796 |
+
|
797 |
+
if eta:
|
798 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
|
799 |
+
|
800 |
+
old_denoised = denoised
|
801 |
+
h_last = h
|
802 |
+
return x
|
803 |
+
|
804 |
+
@torch.no_grad()
|
805 |
+
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
806 |
+
"""DPM-Solver++(3M) SDE."""
|
807 |
+
|
808 |
+
if len(sigmas) <= 1:
|
809 |
+
return x
|
810 |
+
|
811 |
+
seed = extra_args.get("seed", None)
|
812 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
813 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
814 |
+
extra_args = {} if extra_args is None else extra_args
|
815 |
+
s_in = x.new_ones([x.shape[0]])
|
816 |
+
|
817 |
+
denoised_1, denoised_2 = None, None
|
818 |
+
h, h_1, h_2 = None, None, None
|
819 |
+
|
820 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
821 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
822 |
+
if callback is not None:
|
823 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
824 |
+
if sigmas[i + 1] == 0:
|
825 |
+
# Denoising step
|
826 |
+
x = denoised
|
827 |
+
else:
|
828 |
+
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
829 |
+
h = s - t
|
830 |
+
h_eta = h * (eta + 1)
|
831 |
+
|
832 |
+
x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
|
833 |
+
|
834 |
+
if h_2 is not None:
|
835 |
+
r0 = h_1 / h
|
836 |
+
r1 = h_2 / h
|
837 |
+
d1_0 = (denoised - denoised_1) / r0
|
838 |
+
d1_1 = (denoised_1 - denoised_2) / r1
|
839 |
+
d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
|
840 |
+
d2 = (d1_0 - d1_1) / (r0 + r1)
|
841 |
+
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
842 |
+
phi_3 = phi_2 / h_eta - 0.5
|
843 |
+
x = x + phi_2 * d1 - phi_3 * d2
|
844 |
+
elif h_1 is not None:
|
845 |
+
r = h_1 / h
|
846 |
+
d = (denoised - denoised_1) / r
|
847 |
+
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
848 |
+
x = x + phi_2 * d
|
849 |
+
|
850 |
+
if eta:
|
851 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
|
852 |
+
|
853 |
+
denoised_1, denoised_2 = denoised, denoised_1
|
854 |
+
h_1, h_2 = h, h_1
|
855 |
+
return x
|
856 |
+
|
857 |
+
@torch.no_grad()
|
858 |
+
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
859 |
+
if len(sigmas) <= 1:
|
860 |
+
return x
|
861 |
+
|
862 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
863 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
864 |
+
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
865 |
+
|
866 |
+
@torch.no_grad()
|
867 |
+
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
868 |
+
if len(sigmas) <= 1:
|
869 |
+
return x
|
870 |
+
|
871 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
872 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
873 |
+
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
874 |
+
|
875 |
+
@torch.no_grad()
|
876 |
+
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
877 |
+
if len(sigmas) <= 1:
|
878 |
+
return x
|
879 |
+
|
880 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
881 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
882 |
+
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
|
883 |
+
|
884 |
+
|
885 |
+
def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
|
886 |
+
alpha_cumprod = 1 / ((sigma * sigma) + 1)
|
887 |
+
alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1)
|
888 |
+
alpha = (alpha_cumprod / alpha_cumprod_prev)
|
889 |
+
|
890 |
+
mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt())
|
891 |
+
if sigma_prev > 0:
|
892 |
+
mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev)
|
893 |
+
return mu
|
894 |
+
|
895 |
+
def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
|
896 |
+
extra_args = {} if extra_args is None else extra_args
|
897 |
+
seed = extra_args.get("seed", None)
|
898 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
899 |
+
s_in = x.new_ones([x.shape[0]])
|
900 |
+
|
901 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
902 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
903 |
+
if callback is not None:
|
904 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
905 |
+
x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler)
|
906 |
+
if sigmas[i + 1] != 0:
|
907 |
+
x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0)
|
908 |
+
return x
|
909 |
+
|
910 |
+
|
911 |
+
@torch.no_grad()
|
912 |
+
def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
913 |
+
return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
|
914 |
+
|
915 |
+
@torch.no_grad()
|
916 |
+
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
917 |
+
extra_args = {} if extra_args is None else extra_args
|
918 |
+
seed = extra_args.get("seed", None)
|
919 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
920 |
+
s_in = x.new_ones([x.shape[0]])
|
921 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
922 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
923 |
+
if callback is not None:
|
924 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
925 |
+
|
926 |
+
x = denoised
|
927 |
+
if sigmas[i + 1] > 0:
|
928 |
+
x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x)
|
929 |
+
return x
|
930 |
+
|
931 |
+
|
932 |
+
|
933 |
+
@torch.no_grad()
|
934 |
+
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
935 |
+
# From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
|
936 |
+
extra_args = {} if extra_args is None else extra_args
|
937 |
+
s_in = x.new_ones([x.shape[0]])
|
938 |
+
s_end = sigmas[-1]
|
939 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
940 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
941 |
+
eps = torch.randn_like(x) * s_noise
|
942 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
943 |
+
if gamma > 0:
|
944 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
945 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
946 |
+
d = to_d(x, sigma_hat, denoised)
|
947 |
+
if callback is not None:
|
948 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
949 |
+
dt = sigmas[i + 1] - sigma_hat
|
950 |
+
if sigmas[i + 1] == s_end:
|
951 |
+
# Euler method
|
952 |
+
x = x + d * dt
|
953 |
+
elif sigmas[i + 2] == s_end:
|
954 |
+
|
955 |
+
# Heun's method
|
956 |
+
x_2 = x + d * dt
|
957 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
958 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
959 |
+
|
960 |
+
w = 2 * sigmas[0]
|
961 |
+
w2 = sigmas[i+1]/w
|
962 |
+
w1 = 1 - w2
|
963 |
+
|
964 |
+
d_prime = d * w1 + d_2 * w2
|
965 |
+
|
966 |
+
|
967 |
+
x = x + d_prime * dt
|
968 |
+
|
969 |
+
else:
|
970 |
+
# Heun++
|
971 |
+
x_2 = x + d * dt
|
972 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
973 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
974 |
+
dt_2 = sigmas[i + 2] - sigmas[i + 1]
|
975 |
+
|
976 |
+
x_3 = x_2 + d_2 * dt_2
|
977 |
+
denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
|
978 |
+
d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
|
979 |
+
|
980 |
+
w = 3 * sigmas[0]
|
981 |
+
w2 = sigmas[i + 1] / w
|
982 |
+
w3 = sigmas[i + 2] / w
|
983 |
+
w1 = 1 - w2 - w3
|
984 |
+
|
985 |
+
d_prime = w1 * d + w2 * d_2 + w3 * d_3
|
986 |
+
x = x + d_prime * dt
|
987 |
+
return x
|
988 |
+
|
989 |
+
|
990 |
+
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
|
991 |
+
#under Apache 2 license
|
992 |
+
def sample_ipndm(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=4):
|
993 |
+
extra_args = {} if extra_args is None else extra_args
|
994 |
+
s_in = x.new_ones([x.shape[0]])
|
995 |
+
|
996 |
+
x_next = x
|
997 |
+
|
998 |
+
buffer_model = []
|
999 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
1000 |
+
t_cur = sigmas[i]
|
1001 |
+
t_next = sigmas[i + 1]
|
1002 |
+
|
1003 |
+
x_cur = x_next
|
1004 |
+
|
1005 |
+
denoised = model(x_cur, t_cur * s_in, **extra_args)
|
1006 |
+
if callback is not None:
|
1007 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
1008 |
+
|
1009 |
+
d_cur = (x_cur - denoised) / t_cur
|
1010 |
+
|
1011 |
+
order = min(max_order, i+1)
|
1012 |
+
if order == 1: # First Euler step.
|
1013 |
+
x_next = x_cur + (t_next - t_cur) * d_cur
|
1014 |
+
elif order == 2: # Use one history point.
|
1015 |
+
x_next = x_cur + (t_next - t_cur) * (3 * d_cur - buffer_model[-1]) / 2
|
1016 |
+
elif order == 3: # Use two history points.
|
1017 |
+
x_next = x_cur + (t_next - t_cur) * (23 * d_cur - 16 * buffer_model[-1] + 5 * buffer_model[-2]) / 12
|
1018 |
+
elif order == 4: # Use three history points.
|
1019 |
+
x_next = x_cur + (t_next - t_cur) * (55 * d_cur - 59 * buffer_model[-1] + 37 * buffer_model[-2] - 9 * buffer_model[-3]) / 24
|
1020 |
+
|
1021 |
+
if len(buffer_model) == max_order - 1:
|
1022 |
+
for k in range(max_order - 2):
|
1023 |
+
buffer_model[k] = buffer_model[k+1]
|
1024 |
+
buffer_model[-1] = d_cur
|
1025 |
+
else:
|
1026 |
+
buffer_model.append(d_cur)
|
1027 |
+
|
1028 |
+
return x_next
|
1029 |
+
|
1030 |
+
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
|
1031 |
+
#under Apache 2 license
|
1032 |
+
def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=4):
|
1033 |
+
extra_args = {} if extra_args is None else extra_args
|
1034 |
+
s_in = x.new_ones([x.shape[0]])
|
1035 |
+
|
1036 |
+
x_next = x
|
1037 |
+
t_steps = sigmas
|
1038 |
+
|
1039 |
+
buffer_model = []
|
1040 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
1041 |
+
t_cur = sigmas[i]
|
1042 |
+
t_next = sigmas[i + 1]
|
1043 |
+
|
1044 |
+
x_cur = x_next
|
1045 |
+
|
1046 |
+
denoised = model(x_cur, t_cur * s_in, **extra_args)
|
1047 |
+
if callback is not None:
|
1048 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
1049 |
+
|
1050 |
+
d_cur = (x_cur - denoised) / t_cur
|
1051 |
+
|
1052 |
+
order = min(max_order, i+1)
|
1053 |
+
if order == 1: # First Euler step.
|
1054 |
+
x_next = x_cur + (t_next - t_cur) * d_cur
|
1055 |
+
elif order == 2: # Use one history point.
|
1056 |
+
h_n = (t_next - t_cur)
|
1057 |
+
h_n_1 = (t_cur - t_steps[i-1])
|
1058 |
+
coeff1 = (2 + (h_n / h_n_1)) / 2
|
1059 |
+
coeff2 = -(h_n / h_n_1) / 2
|
1060 |
+
x_next = x_cur + (t_next - t_cur) * (coeff1 * d_cur + coeff2 * buffer_model[-1])
|
1061 |
+
elif order == 3: # Use two history points.
|
1062 |
+
h_n = (t_next - t_cur)
|
1063 |
+
h_n_1 = (t_cur - t_steps[i-1])
|
1064 |
+
h_n_2 = (t_steps[i-1] - t_steps[i-2])
|
1065 |
+
temp = (1 - h_n / (3 * (h_n + h_n_1)) * (h_n * (h_n + h_n_1)) / (h_n_1 * (h_n_1 + h_n_2))) / 2
|
1066 |
+
coeff1 = (2 + (h_n / h_n_1)) / 2 + temp
|
1067 |
+
coeff2 = -(h_n / h_n_1) / 2 - (1 + h_n_1 / h_n_2) * temp
|
1068 |
+
coeff3 = temp * h_n_1 / h_n_2
|
1069 |
+
x_next = x_cur + (t_next - t_cur) * (coeff1 * d_cur + coeff2 * buffer_model[-1] + coeff3 * buffer_model[-2])
|
1070 |
+
elif order == 4: # Use three history points.
|
1071 |
+
h_n = (t_next - t_cur)
|
1072 |
+
h_n_1 = (t_cur - t_steps[i-1])
|
1073 |
+
h_n_2 = (t_steps[i-1] - t_steps[i-2])
|
1074 |
+
h_n_3 = (t_steps[i-2] - t_steps[i-3])
|
1075 |
+
temp1 = (1 - h_n / (3 * (h_n + h_n_1)) * (h_n * (h_n + h_n_1)) / (h_n_1 * (h_n_1 + h_n_2))) / 2
|
1076 |
+
temp2 = ((1 - h_n / (3 * (h_n + h_n_1))) / 2 + (1 - h_n / (2 * (h_n + h_n_1))) * h_n / (6 * (h_n + h_n_1 + h_n_2))) \
|
1077 |
+
* (h_n * (h_n + h_n_1) * (h_n + h_n_1 + h_n_2)) / (h_n_1 * (h_n_1 + h_n_2) * (h_n_1 + h_n_2 + h_n_3))
|
1078 |
+
coeff1 = (2 + (h_n / h_n_1)) / 2 + temp1 + temp2
|
1079 |
+
coeff2 = -(h_n / h_n_1) / 2 - (1 + h_n_1 / h_n_2) * temp1 - (1 + (h_n_1 / h_n_2) + (h_n_1 * (h_n_1 + h_n_2) / (h_n_2 * (h_n_2 + h_n_3)))) * temp2
|
1080 |
+
coeff3 = temp1 * h_n_1 / h_n_2 + ((h_n_1 / h_n_2) + (h_n_1 * (h_n_1 + h_n_2) / (h_n_2 * (h_n_2 + h_n_3))) * (1 + h_n_2 / h_n_3)) * temp2
|
1081 |
+
coeff4 = -temp2 * (h_n_1 * (h_n_1 + h_n_2) / (h_n_2 * (h_n_2 + h_n_3))) * h_n_1 / h_n_2
|
1082 |
+
x_next = x_cur + (t_next - t_cur) * (coeff1 * d_cur + coeff2 * buffer_model[-1] + coeff3 * buffer_model[-2] + coeff4 * buffer_model[-3])
|
1083 |
+
|
1084 |
+
if len(buffer_model) == max_order - 1:
|
1085 |
+
for k in range(max_order - 2):
|
1086 |
+
buffer_model[k] = buffer_model[k+1]
|
1087 |
+
buffer_model[-1] = d_cur.detach()
|
1088 |
+
else:
|
1089 |
+
buffer_model.append(d_cur.detach())
|
1090 |
+
|
1091 |
+
return x_next
|
1092 |
+
|
1093 |
+
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
|
1094 |
+
#under Apache 2 license
|
1095 |
+
@torch.no_grad()
|
1096 |
+
def sample_deis(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=3, deis_mode='tab'):
|
1097 |
+
extra_args = {} if extra_args is None else extra_args
|
1098 |
+
s_in = x.new_ones([x.shape[0]])
|
1099 |
+
|
1100 |
+
x_next = x
|
1101 |
+
t_steps = sigmas
|
1102 |
+
|
1103 |
+
coeff_list = deis.get_deis_coeff_list(t_steps, max_order, deis_mode=deis_mode)
|
1104 |
+
|
1105 |
+
buffer_model = []
|
1106 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
1107 |
+
t_cur = sigmas[i]
|
1108 |
+
t_next = sigmas[i + 1]
|
1109 |
+
|
1110 |
+
x_cur = x_next
|
1111 |
+
|
1112 |
+
denoised = model(x_cur, t_cur * s_in, **extra_args)
|
1113 |
+
if callback is not None:
|
1114 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
1115 |
+
|
1116 |
+
d_cur = (x_cur - denoised) / t_cur
|
1117 |
+
|
1118 |
+
order = min(max_order, i+1)
|
1119 |
+
if t_next <= 0:
|
1120 |
+
order = 1
|
1121 |
+
|
1122 |
+
if order == 1: # First Euler step.
|
1123 |
+
x_next = x_cur + (t_next - t_cur) * d_cur
|
1124 |
+
elif order == 2: # Use one history point.
|
1125 |
+
coeff_cur, coeff_prev1 = coeff_list[i]
|
1126 |
+
x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1]
|
1127 |
+
elif order == 3: # Use two history points.
|
1128 |
+
coeff_cur, coeff_prev1, coeff_prev2 = coeff_list[i]
|
1129 |
+
x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1] + coeff_prev2 * buffer_model[-2]
|
1130 |
+
elif order == 4: # Use three history points.
|
1131 |
+
coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3 = coeff_list[i]
|
1132 |
+
x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1] + coeff_prev2 * buffer_model[-2] + coeff_prev3 * buffer_model[-3]
|
1133 |
+
|
1134 |
+
if len(buffer_model) == max_order - 1:
|
1135 |
+
for k in range(max_order - 2):
|
1136 |
+
buffer_model[k] = buffer_model[k+1]
|
1137 |
+
buffer_model[-1] = d_cur.detach()
|
1138 |
+
else:
|
1139 |
+
buffer_model.append(d_cur.detach())
|
1140 |
+
|
1141 |
+
return x_next
|
1142 |
+
|
1143 |
+
@torch.no_grad()
|
1144 |
+
def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
1145 |
+
extra_args = {} if extra_args is None else extra_args
|
1146 |
+
|
1147 |
+
temp = [0]
|
1148 |
+
def post_cfg_function(args):
|
1149 |
+
temp[0] = args["uncond_denoised"]
|
1150 |
+
return args["denoised"]
|
1151 |
+
|
1152 |
+
model_options = extra_args.get("model_options", {}).copy()
|
1153 |
+
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
1154 |
+
|
1155 |
+
s_in = x.new_ones([x.shape[0]])
|
1156 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
1157 |
+
sigma_hat = sigmas[i]
|
1158 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
1159 |
+
d = to_d(x, sigma_hat, temp[0])
|
1160 |
+
if callback is not None:
|
1161 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
1162 |
+
# Euler method
|
1163 |
+
x = denoised + d * sigmas[i + 1]
|
1164 |
+
return x
|
1165 |
+
|
1166 |
+
@torch.no_grad()
|
1167 |
+
def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
1168 |
+
"""Ancestral sampling with Euler method steps."""
|
1169 |
+
extra_args = {} if extra_args is None else extra_args
|
1170 |
+
seed = extra_args.get("seed", None)
|
1171 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
1172 |
+
|
1173 |
+
temp = [0]
|
1174 |
+
def post_cfg_function(args):
|
1175 |
+
temp[0] = args["uncond_denoised"]
|
1176 |
+
return args["denoised"]
|
1177 |
+
|
1178 |
+
model_options = extra_args.get("model_options", {}).copy()
|
1179 |
+
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
1180 |
+
|
1181 |
+
s_in = x.new_ones([x.shape[0]])
|
1182 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
1183 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
1184 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
1185 |
+
if callback is not None:
|
1186 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
1187 |
+
d = to_d(x, sigmas[i], temp[0])
|
1188 |
+
# Euler method
|
1189 |
+
x = denoised + d * sigma_down
|
1190 |
+
if sigmas[i + 1] > 0:
|
1191 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
1192 |
+
return x
|
1193 |
+
@torch.no_grad()
|
1194 |
+
def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
1195 |
+
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
1196 |
+
extra_args = {} if extra_args is None else extra_args
|
1197 |
+
seed = extra_args.get("seed", None)
|
1198 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
1199 |
+
|
1200 |
+
temp = [0]
|
1201 |
+
def post_cfg_function(args):
|
1202 |
+
temp[0] = args["uncond_denoised"]
|
1203 |
+
return args["denoised"]
|
1204 |
+
|
1205 |
+
model_options = extra_args.get("model_options", {}).copy()
|
1206 |
+
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
1207 |
+
|
1208 |
+
s_in = x.new_ones([x.shape[0]])
|
1209 |
+
sigma_fn = lambda t: t.neg().exp()
|
1210 |
+
t_fn = lambda sigma: sigma.log().neg()
|
1211 |
+
|
1212 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
1213 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
1214 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
1215 |
+
if callback is not None:
|
1216 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
1217 |
+
if sigma_down == 0:
|
1218 |
+
# Euler method
|
1219 |
+
d = to_d(x, sigmas[i], temp[0])
|
1220 |
+
x = denoised + d * sigma_down
|
1221 |
+
else:
|
1222 |
+
# DPM-Solver++(2S)
|
1223 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
|
1224 |
+
# r = torch.sinh(1 + (2 - eta) * (t_next - t) / (t - t_fn(sigma_up))) works only on non-cfgpp, weird
|
1225 |
+
r = 1 / 2
|
1226 |
+
h = t_next - t
|
1227 |
+
s = t + r * h
|
1228 |
+
x_2 = (sigma_fn(s) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h * r).expm1() * denoised
|
1229 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
1230 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h).expm1() * denoised_2
|
1231 |
+
# Noise addition
|
1232 |
+
if sigmas[i + 1] > 0:
|
1233 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
1234 |
+
return x
|
1235 |
+
|
1236 |
+
@torch.no_grad()
|
1237 |
+
def sample_dpmpp_2m_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
1238 |
+
"""DPM-Solver++(2M)."""
|
1239 |
+
extra_args = {} if extra_args is None else extra_args
|
1240 |
+
s_in = x.new_ones([x.shape[0]])
|
1241 |
+
t_fn = lambda sigma: sigma.log().neg()
|
1242 |
+
|
1243 |
+
old_uncond_denoised = None
|
1244 |
+
uncond_denoised = None
|
1245 |
+
def post_cfg_function(args):
|
1246 |
+
nonlocal uncond_denoised
|
1247 |
+
uncond_denoised = args["uncond_denoised"]
|
1248 |
+
return args["denoised"]
|
1249 |
+
|
1250 |
+
model_options = extra_args.get("model_options", {}).copy()
|
1251 |
+
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
1252 |
+
|
1253 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
1254 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
1255 |
+
if callback is not None:
|
1256 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
1257 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
1258 |
+
h = t_next - t
|
1259 |
+
if old_uncond_denoised is None or sigmas[i + 1] == 0:
|
1260 |
+
denoised_mix = -torch.exp(-h) * uncond_denoised
|
1261 |
+
else:
|
1262 |
+
h_last = t - t_fn(sigmas[i - 1])
|
1263 |
+
r = h_last / h
|
1264 |
+
denoised_mix = -torch.exp(-h) * uncond_denoised - torch.expm1(-h) * (1 / (2 * r)) * (denoised - old_uncond_denoised)
|
1265 |
+
x = denoised + denoised_mix + torch.exp(-h) * x
|
1266 |
+
old_uncond_denoised = uncond_denoised
|
1267 |
+
return x
|
1268 |
+
|
1269 |
+
@torch.no_grad()
|
1270 |
+
def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None, cfg_pp=False):
|
1271 |
+
extra_args = {} if extra_args is None else extra_args
|
1272 |
+
seed = extra_args.get("seed", None)
|
1273 |
+
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
1274 |
+
s_in = x.new_ones([x.shape[0]])
|
1275 |
+
sigma_fn = lambda t: t.neg().exp()
|
1276 |
+
t_fn = lambda sigma: sigma.log().neg()
|
1277 |
+
phi1_fn = lambda t: torch.expm1(t) / t
|
1278 |
+
phi2_fn = lambda t: (phi1_fn(t) - 1.0) / t
|
1279 |
+
|
1280 |
+
old_denoised = None
|
1281 |
+
uncond_denoised = None
|
1282 |
+
def post_cfg_function(args):
|
1283 |
+
nonlocal uncond_denoised
|
1284 |
+
uncond_denoised = args["uncond_denoised"]
|
1285 |
+
return args["denoised"]
|
1286 |
+
|
1287 |
+
if cfg_pp:
|
1288 |
+
model_options = extra_args.get("model_options", {}).copy()
|
1289 |
+
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
1290 |
+
|
1291 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
1292 |
+
if s_churn > 0:
|
1293 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.0
|
1294 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
1295 |
+
else:
|
1296 |
+
gamma = 0
|
1297 |
+
sigma_hat = sigmas[i]
|
1298 |
+
|
1299 |
+
if gamma > 0:
|
1300 |
+
eps = torch.randn_like(x) * s_noise
|
1301 |
+
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
|
1302 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
1303 |
+
if callback is not None:
|
1304 |
+
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigma_hat, "denoised": denoised})
|
1305 |
+
if sigmas[i + 1] == 0 or old_denoised is None:
|
1306 |
+
# Euler method
|
1307 |
+
if cfg_pp:
|
1308 |
+
d = to_d(x, sigma_hat, uncond_denoised)
|
1309 |
+
x = denoised + d * sigmas[i + 1]
|
1310 |
+
else:
|
1311 |
+
d = to_d(x, sigma_hat, denoised)
|
1312 |
+
dt = sigmas[i + 1] - sigma_hat
|
1313 |
+
x = x + d * dt
|
1314 |
+
else:
|
1315 |
+
# Second order multistep method in https://arxiv.org/pdf/2308.02157
|
1316 |
+
t, t_next, t_prev = t_fn(sigmas[i]), t_fn(sigmas[i + 1]), t_fn(sigmas[i - 1])
|
1317 |
+
h = t_next - t
|
1318 |
+
c2 = (t_prev - t) / h
|
1319 |
+
|
1320 |
+
phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h)
|
1321 |
+
b1 = torch.nan_to_num(phi1_val - 1.0 / c2 * phi2_val, nan=0.0)
|
1322 |
+
b2 = torch.nan_to_num(1.0 / c2 * phi2_val, nan=0.0)
|
1323 |
+
|
1324 |
+
if cfg_pp:
|
1325 |
+
x = x + (denoised - uncond_denoised)
|
1326 |
+
|
1327 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x + h * (b1 * denoised + b2 * old_denoised)
|
1328 |
+
|
1329 |
+
old_denoised = denoised
|
1330 |
+
return x
|
1331 |
+
|
1332 |
+
@torch.no_grad()
|
1333 |
+
def sample_res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
1334 |
+
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfg_pp=False)
|
1335 |
+
|
1336 |
+
@torch.no_grad()
|
1337 |
+
def sample_res_multistep_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
1338 |
+
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfg_pp=True)
|
comfy/k_diffusion/utils.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import contextmanager
|
2 |
+
import hashlib
|
3 |
+
import math
|
4 |
+
from pathlib import Path
|
5 |
+
import shutil
|
6 |
+
import urllib
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
from PIL import Image
|
10 |
+
import torch
|
11 |
+
from torch import nn, optim
|
12 |
+
from torch.utils import data
|
13 |
+
|
14 |
+
|
15 |
+
def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'):
|
16 |
+
"""Apply passed in transforms for HuggingFace Datasets."""
|
17 |
+
images = [transform(image.convert(mode)) for image in examples[image_key]]
|
18 |
+
return {image_key: images}
|
19 |
+
|
20 |
+
|
21 |
+
def append_dims(x, target_dims):
|
22 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
23 |
+
dims_to_append = target_dims - x.ndim
|
24 |
+
if dims_to_append < 0:
|
25 |
+
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
26 |
+
expanded = x[(...,) + (None,) * dims_to_append]
|
27 |
+
# MPS will get inf values if it tries to index into the new axes, but detaching fixes this.
|
28 |
+
# https://github.com/pytorch/pytorch/issues/84364
|
29 |
+
return expanded.detach().clone() if expanded.device.type == 'mps' else expanded
|
30 |
+
|
31 |
+
|
32 |
+
def n_params(module):
|
33 |
+
"""Returns the number of trainable parameters in a module."""
|
34 |
+
return sum(p.numel() for p in module.parameters())
|
35 |
+
|
36 |
+
|
37 |
+
def download_file(path, url, digest=None):
|
38 |
+
"""Downloads a file if it does not exist, optionally checking its SHA-256 hash."""
|
39 |
+
path = Path(path)
|
40 |
+
path.parent.mkdir(parents=True, exist_ok=True)
|
41 |
+
if not path.exists():
|
42 |
+
with urllib.request.urlopen(url) as response, open(path, 'wb') as f:
|
43 |
+
shutil.copyfileobj(response, f)
|
44 |
+
if digest is not None:
|
45 |
+
file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest()
|
46 |
+
if digest != file_digest:
|
47 |
+
raise OSError(f'hash of {path} (url: {url}) failed to validate')
|
48 |
+
return path
|
49 |
+
|
50 |
+
|
51 |
+
@contextmanager
|
52 |
+
def train_mode(model, mode=True):
|
53 |
+
"""A context manager that places a model into training mode and restores
|
54 |
+
the previous mode on exit."""
|
55 |
+
modes = [module.training for module in model.modules()]
|
56 |
+
try:
|
57 |
+
yield model.train(mode)
|
58 |
+
finally:
|
59 |
+
for i, module in enumerate(model.modules()):
|
60 |
+
module.training = modes[i]
|
61 |
+
|
62 |
+
|
63 |
+
def eval_mode(model):
|
64 |
+
"""A context manager that places a model into evaluation mode and restores
|
65 |
+
the previous mode on exit."""
|
66 |
+
return train_mode(model, False)
|
67 |
+
|
68 |
+
|
69 |
+
@torch.no_grad()
|
70 |
+
def ema_update(model, averaged_model, decay):
|
71 |
+
"""Incorporates updated model parameters into an exponential moving averaged
|
72 |
+
version of a model. It should be called after each optimizer step."""
|
73 |
+
model_params = dict(model.named_parameters())
|
74 |
+
averaged_params = dict(averaged_model.named_parameters())
|
75 |
+
assert model_params.keys() == averaged_params.keys()
|
76 |
+
|
77 |
+
for name, param in model_params.items():
|
78 |
+
averaged_params[name].mul_(decay).add_(param, alpha=1 - decay)
|
79 |
+
|
80 |
+
model_buffers = dict(model.named_buffers())
|
81 |
+
averaged_buffers = dict(averaged_model.named_buffers())
|
82 |
+
assert model_buffers.keys() == averaged_buffers.keys()
|
83 |
+
|
84 |
+
for name, buf in model_buffers.items():
|
85 |
+
averaged_buffers[name].copy_(buf)
|
86 |
+
|
87 |
+
|
88 |
+
class EMAWarmup:
|
89 |
+
"""Implements an EMA warmup using an inverse decay schedule.
|
90 |
+
If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are
|
91 |
+
good values for models you plan to train for a million or more steps (reaches decay
|
92 |
+
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models
|
93 |
+
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
|
94 |
+
215.4k steps).
|
95 |
+
Args:
|
96 |
+
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
|
97 |
+
power (float): Exponential factor of EMA warmup. Default: 1.
|
98 |
+
min_value (float): The minimum EMA decay rate. Default: 0.
|
99 |
+
max_value (float): The maximum EMA decay rate. Default: 1.
|
100 |
+
start_at (int): The epoch to start averaging at. Default: 0.
|
101 |
+
last_epoch (int): The index of last epoch. Default: 0.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0,
|
105 |
+
last_epoch=0):
|
106 |
+
self.inv_gamma = inv_gamma
|
107 |
+
self.power = power
|
108 |
+
self.min_value = min_value
|
109 |
+
self.max_value = max_value
|
110 |
+
self.start_at = start_at
|
111 |
+
self.last_epoch = last_epoch
|
112 |
+
|
113 |
+
def state_dict(self):
|
114 |
+
"""Returns the state of the class as a :class:`dict`."""
|
115 |
+
return dict(self.__dict__.items())
|
116 |
+
|
117 |
+
def load_state_dict(self, state_dict):
|
118 |
+
"""Loads the class's state.
|
119 |
+
Args:
|
120 |
+
state_dict (dict): scaler state. Should be an object returned
|
121 |
+
from a call to :meth:`state_dict`.
|
122 |
+
"""
|
123 |
+
self.__dict__.update(state_dict)
|
124 |
+
|
125 |
+
def get_value(self):
|
126 |
+
"""Gets the current EMA decay rate."""
|
127 |
+
epoch = max(0, self.last_epoch - self.start_at)
|
128 |
+
value = 1 - (1 + epoch / self.inv_gamma) ** -self.power
|
129 |
+
return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value))
|
130 |
+
|
131 |
+
def step(self):
|
132 |
+
"""Updates the step count."""
|
133 |
+
self.last_epoch += 1
|
134 |
+
|
135 |
+
|
136 |
+
class InverseLR(optim.lr_scheduler._LRScheduler):
|
137 |
+
"""Implements an inverse decay learning rate schedule with an optional exponential
|
138 |
+
warmup. When last_epoch=-1, sets initial lr as lr.
|
139 |
+
inv_gamma is the number of steps/epochs required for the learning rate to decay to
|
140 |
+
(1 / 2)**power of its original value.
|
141 |
+
Args:
|
142 |
+
optimizer (Optimizer): Wrapped optimizer.
|
143 |
+
inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
|
144 |
+
power (float): Exponential factor of learning rate decay. Default: 1.
|
145 |
+
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
|
146 |
+
Default: 0.
|
147 |
+
min_lr (float): The minimum learning rate. Default: 0.
|
148 |
+
last_epoch (int): The index of last epoch. Default: -1.
|
149 |
+
verbose (bool): If ``True``, prints a message to stdout for
|
150 |
+
each update. Default: ``False``.
|
151 |
+
"""
|
152 |
+
|
153 |
+
def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0.,
|
154 |
+
last_epoch=-1, verbose=False):
|
155 |
+
self.inv_gamma = inv_gamma
|
156 |
+
self.power = power
|
157 |
+
if not 0. <= warmup < 1:
|
158 |
+
raise ValueError('Invalid value for warmup')
|
159 |
+
self.warmup = warmup
|
160 |
+
self.min_lr = min_lr
|
161 |
+
super().__init__(optimizer, last_epoch, verbose)
|
162 |
+
|
163 |
+
def get_lr(self):
|
164 |
+
if not self._get_lr_called_within_step:
|
165 |
+
warnings.warn("To get the last learning rate computed by the scheduler, "
|
166 |
+
"please use `get_last_lr()`.")
|
167 |
+
|
168 |
+
return self._get_closed_form_lr()
|
169 |
+
|
170 |
+
def _get_closed_form_lr(self):
|
171 |
+
warmup = 1 - self.warmup ** (self.last_epoch + 1)
|
172 |
+
lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
|
173 |
+
return [warmup * max(self.min_lr, base_lr * lr_mult)
|
174 |
+
for base_lr in self.base_lrs]
|
175 |
+
|
176 |
+
|
177 |
+
class ExponentialLR(optim.lr_scheduler._LRScheduler):
|
178 |
+
"""Implements an exponential learning rate schedule with an optional exponential
|
179 |
+
warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate
|
180 |
+
continuously by decay (default 0.5) every num_steps steps.
|
181 |
+
Args:
|
182 |
+
optimizer (Optimizer): Wrapped optimizer.
|
183 |
+
num_steps (float): The number of steps to decay the learning rate by decay in.
|
184 |
+
decay (float): The factor by which to decay the learning rate every num_steps
|
185 |
+
steps. Default: 0.5.
|
186 |
+
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
|
187 |
+
Default: 0.
|
188 |
+
min_lr (float): The minimum learning rate. Default: 0.
|
189 |
+
last_epoch (int): The index of last epoch. Default: -1.
|
190 |
+
verbose (bool): If ``True``, prints a message to stdout for
|
191 |
+
each update. Default: ``False``.
|
192 |
+
"""
|
193 |
+
|
194 |
+
def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0.,
|
195 |
+
last_epoch=-1, verbose=False):
|
196 |
+
self.num_steps = num_steps
|
197 |
+
self.decay = decay
|
198 |
+
if not 0. <= warmup < 1:
|
199 |
+
raise ValueError('Invalid value for warmup')
|
200 |
+
self.warmup = warmup
|
201 |
+
self.min_lr = min_lr
|
202 |
+
super().__init__(optimizer, last_epoch, verbose)
|
203 |
+
|
204 |
+
def get_lr(self):
|
205 |
+
if not self._get_lr_called_within_step:
|
206 |
+
warnings.warn("To get the last learning rate computed by the scheduler, "
|
207 |
+
"please use `get_last_lr()`.")
|
208 |
+
|
209 |
+
return self._get_closed_form_lr()
|
210 |
+
|
211 |
+
def _get_closed_form_lr(self):
|
212 |
+
warmup = 1 - self.warmup ** (self.last_epoch + 1)
|
213 |
+
lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch
|
214 |
+
return [warmup * max(self.min_lr, base_lr * lr_mult)
|
215 |
+
for base_lr in self.base_lrs]
|
216 |
+
|
217 |
+
|
218 |
+
def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
|
219 |
+
"""Draws samples from an lognormal distribution."""
|
220 |
+
return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp()
|
221 |
+
|
222 |
+
|
223 |
+
def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
|
224 |
+
"""Draws samples from an optionally truncated log-logistic distribution."""
|
225 |
+
min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64)
|
226 |
+
max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64)
|
227 |
+
min_cdf = min_value.log().sub(loc).div(scale).sigmoid()
|
228 |
+
max_cdf = max_value.log().sub(loc).div(scale).sigmoid()
|
229 |
+
u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf
|
230 |
+
return u.logit().mul(scale).add(loc).exp().to(dtype)
|
231 |
+
|
232 |
+
|
233 |
+
def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32):
|
234 |
+
"""Draws samples from an log-uniform distribution."""
|
235 |
+
min_value = math.log(min_value)
|
236 |
+
max_value = math.log(max_value)
|
237 |
+
return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp()
|
238 |
+
|
239 |
+
|
240 |
+
def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
|
241 |
+
"""Draws samples from a truncated v-diffusion training timestep distribution."""
|
242 |
+
min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi
|
243 |
+
max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi
|
244 |
+
u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf
|
245 |
+
return torch.tan(u * math.pi / 2) * sigma_data
|
246 |
+
|
247 |
+
|
248 |
+
def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32):
|
249 |
+
"""Draws samples from a split lognormal distribution."""
|
250 |
+
n = torch.randn(shape, device=device, dtype=dtype).abs()
|
251 |
+
u = torch.rand(shape, device=device, dtype=dtype)
|
252 |
+
n_left = n * -scale_1 + loc
|
253 |
+
n_right = n * scale_2 + loc
|
254 |
+
ratio = scale_1 / (scale_1 + scale_2)
|
255 |
+
return torch.where(u < ratio, n_left, n_right).exp()
|
256 |
+
|
257 |
+
|
258 |
+
class FolderOfImages(data.Dataset):
|
259 |
+
"""Recursively finds all images in a directory. It does not support
|
260 |
+
classes/targets."""
|
261 |
+
|
262 |
+
IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'}
|
263 |
+
|
264 |
+
def __init__(self, root, transform=None):
|
265 |
+
super().__init__()
|
266 |
+
self.root = Path(root)
|
267 |
+
self.transform = nn.Identity() if transform is None else transform
|
268 |
+
self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS)
|
269 |
+
|
270 |
+
def __repr__(self):
|
271 |
+
return f'FolderOfImages(root="{self.root}", len: {len(self)})'
|
272 |
+
|
273 |
+
def __len__(self):
|
274 |
+
return len(self.paths)
|
275 |
+
|
276 |
+
def __getitem__(self, key):
|
277 |
+
path = self.paths[key]
|
278 |
+
with open(path, 'rb') as f:
|
279 |
+
image = Image.open(f).convert('RGB')
|
280 |
+
image = self.transform(image)
|
281 |
+
return image,
|
282 |
+
|
283 |
+
|
284 |
+
class CSVLogger:
|
285 |
+
def __init__(self, filename, columns):
|
286 |
+
self.filename = Path(filename)
|
287 |
+
self.columns = columns
|
288 |
+
if self.filename.exists():
|
289 |
+
self.file = open(self.filename, 'a')
|
290 |
+
else:
|
291 |
+
self.file = open(self.filename, 'w')
|
292 |
+
self.write(*self.columns)
|
293 |
+
|
294 |
+
def write(self, *args):
|
295 |
+
print(*args, sep=',', file=self.file, flush=True)
|
296 |
+
|
297 |
+
|
298 |
+
@contextmanager
|
299 |
+
def tf32_mode(cudnn=None, matmul=None):
|
300 |
+
"""A context manager that sets whether TF32 is allowed on cuDNN or matmul."""
|
301 |
+
cudnn_old = torch.backends.cudnn.allow_tf32
|
302 |
+
matmul_old = torch.backends.cuda.matmul.allow_tf32
|
303 |
+
try:
|
304 |
+
if cudnn is not None:
|
305 |
+
torch.backends.cudnn.allow_tf32 = cudnn
|
306 |
+
if matmul is not None:
|
307 |
+
torch.backends.cuda.matmul.allow_tf32 = matmul
|
308 |
+
yield
|
309 |
+
finally:
|
310 |
+
if cudnn is not None:
|
311 |
+
torch.backends.cudnn.allow_tf32 = cudnn_old
|
312 |
+
if matmul is not None:
|
313 |
+
torch.backends.cuda.matmul.allow_tf32 = matmul_old
|
comfy/latent_formats.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
class LatentFormat:
|
4 |
+
scale_factor = 1.0
|
5 |
+
latent_channels = 4
|
6 |
+
latent_dimensions = 2
|
7 |
+
latent_rgb_factors = None
|
8 |
+
latent_rgb_factors_bias = None
|
9 |
+
taesd_decoder_name = None
|
10 |
+
|
11 |
+
def process_in(self, latent):
|
12 |
+
return latent * self.scale_factor
|
13 |
+
|
14 |
+
def process_out(self, latent):
|
15 |
+
return latent / self.scale_factor
|
16 |
+
|
17 |
+
class SD15(LatentFormat):
|
18 |
+
def __init__(self, scale_factor=0.18215):
|
19 |
+
self.scale_factor = scale_factor
|
20 |
+
self.latent_rgb_factors = [
|
21 |
+
# R G B
|
22 |
+
[ 0.3512, 0.2297, 0.3227],
|
23 |
+
[ 0.3250, 0.4974, 0.2350],
|
24 |
+
[-0.2829, 0.1762, 0.2721],
|
25 |
+
[-0.2120, -0.2616, -0.7177]
|
26 |
+
]
|
27 |
+
self.taesd_decoder_name = "taesd_decoder"
|
28 |
+
|
29 |
+
class SDXL(LatentFormat):
|
30 |
+
scale_factor = 0.13025
|
31 |
+
|
32 |
+
def __init__(self):
|
33 |
+
self.latent_rgb_factors = [
|
34 |
+
# R G B
|
35 |
+
[ 0.3651, 0.4232, 0.4341],
|
36 |
+
[-0.2533, -0.0042, 0.1068],
|
37 |
+
[ 0.1076, 0.1111, -0.0362],
|
38 |
+
[-0.3165, -0.2492, -0.2188]
|
39 |
+
]
|
40 |
+
self.latent_rgb_factors_bias = [ 0.1084, -0.0175, -0.0011]
|
41 |
+
|
42 |
+
self.taesd_decoder_name = "taesdxl_decoder"
|
43 |
+
|
44 |
+
class SDXL_Playground_2_5(LatentFormat):
|
45 |
+
def __init__(self):
|
46 |
+
self.scale_factor = 0.5
|
47 |
+
self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
|
48 |
+
self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)
|
49 |
+
|
50 |
+
self.latent_rgb_factors = [
|
51 |
+
# R G B
|
52 |
+
[ 0.3920, 0.4054, 0.4549],
|
53 |
+
[-0.2634, -0.0196, 0.0653],
|
54 |
+
[ 0.0568, 0.1687, -0.0755],
|
55 |
+
[-0.3112, -0.2359, -0.2076]
|
56 |
+
]
|
57 |
+
self.taesd_decoder_name = "taesdxl_decoder"
|
58 |
+
|
59 |
+
def process_in(self, latent):
|
60 |
+
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
61 |
+
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
62 |
+
return (latent - latents_mean) * self.scale_factor / latents_std
|
63 |
+
|
64 |
+
def process_out(self, latent):
|
65 |
+
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
66 |
+
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
67 |
+
return latent * latents_std / self.scale_factor + latents_mean
|
68 |
+
|
69 |
+
|
70 |
+
class SD_X4(LatentFormat):
|
71 |
+
def __init__(self):
|
72 |
+
self.scale_factor = 0.08333
|
73 |
+
self.latent_rgb_factors = [
|
74 |
+
[-0.2340, -0.3863, -0.3257],
|
75 |
+
[ 0.0994, 0.0885, -0.0908],
|
76 |
+
[-0.2833, -0.2349, -0.3741],
|
77 |
+
[ 0.2523, -0.0055, -0.1651]
|
78 |
+
]
|
79 |
+
|
80 |
+
class SC_Prior(LatentFormat):
|
81 |
+
latent_channels = 16
|
82 |
+
def __init__(self):
|
83 |
+
self.scale_factor = 1.0
|
84 |
+
self.latent_rgb_factors = [
|
85 |
+
[-0.0326, -0.0204, -0.0127],
|
86 |
+
[-0.1592, -0.0427, 0.0216],
|
87 |
+
[ 0.0873, 0.0638, -0.0020],
|
88 |
+
[-0.0602, 0.0442, 0.1304],
|
89 |
+
[ 0.0800, -0.0313, -0.1796],
|
90 |
+
[-0.0810, -0.0638, -0.1581],
|
91 |
+
[ 0.1791, 0.1180, 0.0967],
|
92 |
+
[ 0.0740, 0.1416, 0.0432],
|
93 |
+
[-0.1745, -0.1888, -0.1373],
|
94 |
+
[ 0.2412, 0.1577, 0.0928],
|
95 |
+
[ 0.1908, 0.0998, 0.0682],
|
96 |
+
[ 0.0209, 0.0365, -0.0092],
|
97 |
+
[ 0.0448, -0.0650, -0.1728],
|
98 |
+
[-0.1658, -0.1045, -0.1308],
|
99 |
+
[ 0.0542, 0.1545, 0.1325],
|
100 |
+
[-0.0352, -0.1672, -0.2541]
|
101 |
+
]
|
102 |
+
|
103 |
+
class SC_B(LatentFormat):
|
104 |
+
def __init__(self):
|
105 |
+
self.scale_factor = 1.0 / 0.43
|
106 |
+
self.latent_rgb_factors = [
|
107 |
+
[ 0.1121, 0.2006, 0.1023],
|
108 |
+
[-0.2093, -0.0222, -0.0195],
|
109 |
+
[-0.3087, -0.1535, 0.0366],
|
110 |
+
[ 0.0290, -0.1574, -0.4078]
|
111 |
+
]
|
112 |
+
|
113 |
+
class SD3(LatentFormat):
|
114 |
+
latent_channels = 16
|
115 |
+
def __init__(self):
|
116 |
+
self.scale_factor = 1.5305
|
117 |
+
self.shift_factor = 0.0609
|
118 |
+
self.latent_rgb_factors = [
|
119 |
+
[-0.0922, -0.0175, 0.0749],
|
120 |
+
[ 0.0311, 0.0633, 0.0954],
|
121 |
+
[ 0.1994, 0.0927, 0.0458],
|
122 |
+
[ 0.0856, 0.0339, 0.0902],
|
123 |
+
[ 0.0587, 0.0272, -0.0496],
|
124 |
+
[-0.0006, 0.1104, 0.0309],
|
125 |
+
[ 0.0978, 0.0306, 0.0427],
|
126 |
+
[-0.0042, 0.1038, 0.1358],
|
127 |
+
[-0.0194, 0.0020, 0.0669],
|
128 |
+
[-0.0488, 0.0130, -0.0268],
|
129 |
+
[ 0.0922, 0.0988, 0.0951],
|
130 |
+
[-0.0278, 0.0524, -0.0542],
|
131 |
+
[ 0.0332, 0.0456, 0.0895],
|
132 |
+
[-0.0069, -0.0030, -0.0810],
|
133 |
+
[-0.0596, -0.0465, -0.0293],
|
134 |
+
[-0.1448, -0.1463, -0.1189]
|
135 |
+
]
|
136 |
+
self.latent_rgb_factors_bias = [0.2394, 0.2135, 0.1925]
|
137 |
+
self.taesd_decoder_name = "taesd3_decoder"
|
138 |
+
|
139 |
+
def process_in(self, latent):
|
140 |
+
return (latent - self.shift_factor) * self.scale_factor
|
141 |
+
|
142 |
+
def process_out(self, latent):
|
143 |
+
return (latent / self.scale_factor) + self.shift_factor
|
144 |
+
|
145 |
+
class StableAudio1(LatentFormat):
|
146 |
+
latent_channels = 64
|
147 |
+
latent_dimensions = 1
|
148 |
+
|
149 |
+
class Flux(SD3):
|
150 |
+
latent_channels = 16
|
151 |
+
def __init__(self):
|
152 |
+
self.scale_factor = 0.3611
|
153 |
+
self.shift_factor = 0.1159
|
154 |
+
self.latent_rgb_factors =[
|
155 |
+
[-0.0346, 0.0244, 0.0681],
|
156 |
+
[ 0.0034, 0.0210, 0.0687],
|
157 |
+
[ 0.0275, -0.0668, -0.0433],
|
158 |
+
[-0.0174, 0.0160, 0.0617],
|
159 |
+
[ 0.0859, 0.0721, 0.0329],
|
160 |
+
[ 0.0004, 0.0383, 0.0115],
|
161 |
+
[ 0.0405, 0.0861, 0.0915],
|
162 |
+
[-0.0236, -0.0185, -0.0259],
|
163 |
+
[-0.0245, 0.0250, 0.1180],
|
164 |
+
[ 0.1008, 0.0755, -0.0421],
|
165 |
+
[-0.0515, 0.0201, 0.0011],
|
166 |
+
[ 0.0428, -0.0012, -0.0036],
|
167 |
+
[ 0.0817, 0.0765, 0.0749],
|
168 |
+
[-0.1264, -0.0522, -0.1103],
|
169 |
+
[-0.0280, -0.0881, -0.0499],
|
170 |
+
[-0.1262, -0.0982, -0.0778]
|
171 |
+
]
|
172 |
+
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
|
173 |
+
self.taesd_decoder_name = "taef1_decoder"
|
174 |
+
|
175 |
+
def process_in(self, latent):
|
176 |
+
return (latent - self.shift_factor) * self.scale_factor
|
177 |
+
|
178 |
+
def process_out(self, latent):
|
179 |
+
return (latent / self.scale_factor) + self.shift_factor
|
180 |
+
|
181 |
+
class Mochi(LatentFormat):
|
182 |
+
latent_channels = 12
|
183 |
+
latent_dimensions = 3
|
184 |
+
|
185 |
+
def __init__(self):
|
186 |
+
self.scale_factor = 1.0
|
187 |
+
self.latents_mean = torch.tensor([-0.06730895953510081, -0.038011381506090416, -0.07477820912866141,
|
188 |
+
-0.05565264470995561, 0.012767231469026969, -0.04703542746246419,
|
189 |
+
0.043896967884726704, -0.09346305707025976, -0.09918314763016893,
|
190 |
+
-0.008729793427399178, -0.011931556316503654, -0.0321993391887285]).view(1, self.latent_channels, 1, 1, 1)
|
191 |
+
self.latents_std = torch.tensor([0.9263795028493863, 0.9248894543193766, 0.9393059390890617,
|
192 |
+
0.959253732819592, 0.8244560132752793, 0.917259975397747,
|
193 |
+
0.9294154431013696, 1.3720942357788521, 0.881393668867029,
|
194 |
+
0.9168315692124348, 0.9185249279345552, 0.9274757570805041]).view(1, self.latent_channels, 1, 1, 1)
|
195 |
+
|
196 |
+
self.latent_rgb_factors =[
|
197 |
+
[-0.0069, -0.0045, 0.0018],
|
198 |
+
[ 0.0154, -0.0692, -0.0274],
|
199 |
+
[ 0.0333, 0.0019, 0.0206],
|
200 |
+
[-0.1390, 0.0628, 0.1678],
|
201 |
+
[-0.0725, 0.0134, -0.1898],
|
202 |
+
[ 0.0074, -0.0270, -0.0209],
|
203 |
+
[-0.0176, -0.0277, -0.0221],
|
204 |
+
[ 0.5294, 0.5204, 0.3852],
|
205 |
+
[-0.0326, -0.0446, -0.0143],
|
206 |
+
[-0.0659, 0.0153, -0.0153],
|
207 |
+
[ 0.0185, -0.0217, 0.0014],
|
208 |
+
[-0.0396, -0.0495, -0.0281]
|
209 |
+
]
|
210 |
+
self.latent_rgb_factors_bias = [-0.0940, -0.1418, -0.1453]
|
211 |
+
self.taesd_decoder_name = None #TODO
|
212 |
+
|
213 |
+
def process_in(self, latent):
|
214 |
+
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
215 |
+
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
216 |
+
return (latent - latents_mean) * self.scale_factor / latents_std
|
217 |
+
|
218 |
+
def process_out(self, latent):
|
219 |
+
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
220 |
+
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
221 |
+
return latent * latents_std / self.scale_factor + latents_mean
|
222 |
+
|
223 |
+
class LTXV(LatentFormat):
|
224 |
+
latent_channels = 128
|
225 |
+
latent_dimensions = 3
|
226 |
+
|
227 |
+
def __init__(self):
|
228 |
+
self.latent_rgb_factors = [
|
229 |
+
[ 1.1202e-02, -6.3815e-04, -1.0021e-02],
|
230 |
+
[ 8.6031e-02, 6.5813e-02, 9.5409e-04],
|
231 |
+
[-1.2576e-02, -7.5734e-03, -4.0528e-03],
|
232 |
+
[ 9.4063e-03, -2.1688e-03, 2.6093e-03],
|
233 |
+
[ 3.7636e-03, 1.2765e-02, 9.1548e-03],
|
234 |
+
[ 2.1024e-02, -5.2973e-03, 3.4373e-03],
|
235 |
+
[-8.8896e-03, -1.9703e-02, -1.8761e-02],
|
236 |
+
[-1.3160e-02, -1.0523e-02, 1.9709e-03],
|
237 |
+
[-1.5152e-03, -6.9891e-03, -7.5810e-03],
|
238 |
+
[-1.7247e-03, 4.6560e-04, -3.3839e-03],
|
239 |
+
[ 1.3617e-02, 4.7077e-03, -2.0045e-03],
|
240 |
+
[ 1.0256e-02, 7.7318e-03, 1.3948e-02],
|
241 |
+
[-1.6108e-02, -6.2151e-03, 1.1561e-03],
|
242 |
+
[ 7.3407e-03, 1.5628e-02, 4.4865e-04],
|
243 |
+
[ 9.5357e-04, -2.9518e-03, -1.4760e-02],
|
244 |
+
[ 1.9143e-02, 1.0868e-02, 1.2264e-02],
|
245 |
+
[ 4.4575e-03, 3.6682e-05, -6.8508e-03],
|
246 |
+
[-4.5681e-04, 3.2570e-03, 7.7929e-03],
|
247 |
+
[ 3.3902e-02, 3.3405e-02, 3.7454e-02],
|
248 |
+
[-2.3001e-02, -2.4877e-03, -3.1033e-03],
|
249 |
+
[ 5.0265e-02, 3.8841e-02, 3.3539e-02],
|
250 |
+
[-4.1018e-03, -1.1095e-03, 1.5859e-03],
|
251 |
+
[-1.2689e-01, -1.3107e-01, -2.1005e-01],
|
252 |
+
[ 2.6276e-02, 1.4189e-02, -3.5963e-03],
|
253 |
+
[-4.8679e-03, 8.8486e-03, 7.8029e-03],
|
254 |
+
[-1.6610e-03, -4.8597e-03, -5.2060e-03],
|
255 |
+
[-2.1010e-03, 2.3610e-03, 9.3796e-03],
|
256 |
+
[-2.2482e-02, -2.1305e-02, -1.5087e-02],
|
257 |
+
[-1.5753e-02, -1.0646e-02, -6.5083e-03],
|
258 |
+
[-4.6975e-03, 5.0288e-03, -6.7390e-03],
|
259 |
+
[ 1.1951e-02, 2.0712e-02, 1.6191e-02],
|
260 |
+
[-6.3704e-03, -8.4827e-03, -9.5483e-03],
|
261 |
+
[ 7.2610e-03, -9.9326e-03, -2.2978e-02],
|
262 |
+
[-9.1904e-04, 6.2882e-03, 9.5720e-03],
|
263 |
+
[-3.7178e-02, -3.7123e-02, -5.6713e-02],
|
264 |
+
[-1.3373e-01, -1.0720e-01, -5.3801e-02],
|
265 |
+
[-5.3702e-03, 8.1256e-03, 8.8397e-03],
|
266 |
+
[-1.5247e-01, -2.1437e-01, -2.1843e-01],
|
267 |
+
[ 3.1441e-02, 7.0335e-03, -9.7541e-03],
|
268 |
+
[ 2.1528e-03, -8.9817e-03, -2.1023e-02],
|
269 |
+
[ 3.8461e-03, -5.8957e-03, -1.5014e-02],
|
270 |
+
[-4.3470e-03, -1.2940e-02, -1.5972e-02],
|
271 |
+
[-5.4781e-03, -1.0842e-02, -3.0204e-03],
|
272 |
+
[-6.5347e-03, 3.0806e-03, -1.0163e-02],
|
273 |
+
[-5.0414e-03, -7.1503e-03, -8.9686e-04],
|
274 |
+
[-8.5851e-03, -2.4351e-03, 1.0674e-03],
|
275 |
+
[-9.0016e-03, -9.6493e-03, 1.5692e-03],
|
276 |
+
[ 5.0914e-03, 1.2099e-02, 1.9968e-02],
|
277 |
+
[ 1.3758e-02, 1.1669e-02, 8.1958e-03],
|
278 |
+
[-1.0518e-02, -1.1575e-02, -4.1307e-03],
|
279 |
+
[-2.8410e-02, -3.1266e-02, -2.2149e-02],
|
280 |
+
[ 2.9336e-03, 3.6511e-02, 1.8717e-02],
|
281 |
+
[-1.6703e-02, -1.6696e-02, -4.4529e-03],
|
282 |
+
[ 4.8818e-02, 4.0063e-02, 8.7410e-03],
|
283 |
+
[-1.5066e-02, -5.7328e-04, 2.9785e-03],
|
284 |
+
[-1.7613e-02, -8.1034e-03, 1.3086e-02],
|
285 |
+
[-9.2633e-03, 1.0803e-02, -6.3489e-03],
|
286 |
+
[ 3.0851e-03, 4.7750e-04, 1.2347e-02],
|
287 |
+
[-2.2785e-02, -2.3043e-02, -2.6005e-02],
|
288 |
+
[-2.4787e-02, -1.5389e-02, -2.2104e-02],
|
289 |
+
[-2.3572e-02, 1.0544e-03, 1.2361e-02],
|
290 |
+
[-7.8915e-03, -1.2271e-03, -6.0968e-03],
|
291 |
+
[-1.1478e-02, -1.2543e-03, 6.2679e-03],
|
292 |
+
[-5.4229e-02, 2.6644e-02, 6.3394e-03],
|
293 |
+
[ 4.4216e-03, -7.3338e-03, -1.0464e-02],
|
294 |
+
[-4.5013e-03, 1.6082e-03, 1.4420e-02],
|
295 |
+
[ 1.3673e-02, 8.8877e-03, 4.1253e-03],
|
296 |
+
[-1.0145e-02, 9.0072e-03, 1.5695e-02],
|
297 |
+
[-5.6234e-03, 1.1847e-03, 8.1261e-03],
|
298 |
+
[-3.7171e-03, -5.3538e-03, 1.2590e-03],
|
299 |
+
[ 2.9476e-02, 2.1424e-02, 3.0424e-02],
|
300 |
+
[-3.4925e-02, -2.4340e-02, -2.5316e-02],
|
301 |
+
[-3.4127e-02, -2.2406e-02, -1.0589e-02],
|
302 |
+
[-1.7342e-02, -1.3249e-02, -1.0719e-02],
|
303 |
+
[-2.1478e-03, -8.6051e-03, -2.9878e-03],
|
304 |
+
[ 1.2089e-03, -4.2391e-03, -6.8569e-03],
|
305 |
+
[ 9.0411e-04, -6.6886e-03, -6.7547e-05],
|
306 |
+
[ 1.6048e-02, -1.0057e-02, -2.8929e-02],
|
307 |
+
[ 1.2290e-03, 1.0163e-02, 1.8861e-02],
|
308 |
+
[ 1.7264e-02, 2.7257e-04, 1.3785e-02],
|
309 |
+
[-1.3482e-02, -3.6427e-03, 6.7481e-04],
|
310 |
+
[ 4.6782e-03, -5.2423e-03, 2.4467e-03],
|
311 |
+
[-5.9113e-03, -6.2244e-03, -1.8162e-03],
|
312 |
+
[ 1.5496e-02, 1.4582e-02, 1.9514e-03],
|
313 |
+
[ 7.4958e-03, 1.5886e-03, -8.2305e-03],
|
314 |
+
[ 1.9086e-02, 1.6360e-03, -3.9674e-03],
|
315 |
+
[-5.7021e-03, -2.7307e-03, -4.1066e-03],
|
316 |
+
[ 1.7450e-03, 1.4602e-02, 2.5794e-02],
|
317 |
+
[-8.2788e-04, 2.2902e-03, 4.5161e-03],
|
318 |
+
[ 1.1632e-02, 8.9193e-03, -7.2813e-03],
|
319 |
+
[ 7.5721e-03, 2.6784e-03, 1.1393e-02],
|
320 |
+
[ 5.1939e-03, 3.6903e-03, 1.4049e-02],
|
321 |
+
[-1.8383e-02, -2.2529e-02, -2.4477e-02],
|
322 |
+
[ 5.8842e-04, -5.7874e-03, -1.4770e-02],
|
323 |
+
[-1.6125e-02, -8.6101e-03, -1.4533e-02],
|
324 |
+
[ 2.0540e-02, 2.0729e-02, 6.4338e-03],
|
325 |
+
[ 3.3587e-03, -1.1226e-02, -1.6444e-02],
|
326 |
+
[-1.4742e-03, -1.0489e-02, 1.7097e-03],
|
327 |
+
[ 2.8130e-02, 2.3546e-02, 3.2791e-02],
|
328 |
+
[-1.8532e-02, -1.2842e-02, -8.7756e-03],
|
329 |
+
[-8.0533e-03, -1.0771e-02, -1.7536e-02],
|
330 |
+
[-3.9009e-03, 1.6150e-02, 3.3359e-02],
|
331 |
+
[-7.4554e-03, -1.4154e-02, -6.1910e-03],
|
332 |
+
[ 3.4734e-03, -1.1370e-02, -1.0581e-02],
|
333 |
+
[ 1.1476e-02, 3.9281e-03, 2.8231e-03],
|
334 |
+
[ 7.1639e-03, -1.4741e-03, -3.8066e-03],
|
335 |
+
[ 2.2250e-03, -8.7552e-03, -9.5719e-03],
|
336 |
+
[ 2.4146e-02, 2.1696e-02, 2.8056e-02],
|
337 |
+
[-5.4365e-03, -2.4291e-02, -1.7802e-02],
|
338 |
+
[ 7.4263e-03, 1.0510e-02, 1.2705e-02],
|
339 |
+
[ 6.2669e-03, 6.2658e-03, 1.9211e-02],
|
340 |
+
[ 1.6378e-02, 9.4933e-03, 6.6971e-03],
|
341 |
+
[ 1.7173e-02, 2.3601e-02, 2.3296e-02],
|
342 |
+
[-1.4568e-02, -9.8279e-03, -1.1556e-02],
|
343 |
+
[ 1.4431e-02, 1.4430e-02, 6.6362e-03],
|
344 |
+
[-6.8230e-03, 1.8863e-02, 1.4555e-02],
|
345 |
+
[ 6.1156e-03, 3.4700e-03, -2.6662e-03],
|
346 |
+
[-2.6983e-03, -5.9402e-03, -9.2276e-03],
|
347 |
+
[ 1.0235e-02, 7.4173e-03, -7.6243e-03],
|
348 |
+
[-1.3255e-02, 1.9322e-02, -9.2153e-04],
|
349 |
+
[ 2.4222e-03, -4.8039e-03, -1.5759e-02],
|
350 |
+
[ 2.6244e-02, 2.5951e-02, 2.0249e-02],
|
351 |
+
[ 1.5711e-02, 1.8498e-02, 2.7407e-03],
|
352 |
+
[-2.1714e-03, 4.7214e-03, -2.2443e-02],
|
353 |
+
[-7.4747e-03, 7.4166e-03, 1.4430e-02],
|
354 |
+
[-8.3906e-03, -7.9776e-03, 9.7927e-03],
|
355 |
+
[ 3.8321e-02, 9.6622e-03, -1.9268e-02],
|
356 |
+
[-1.4605e-02, -6.7032e-03, 3.9675e-03]
|
357 |
+
]
|
358 |
+
|
359 |
+
self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]
|
360 |
+
|
361 |
+
class HunyuanVideo(LatentFormat):
|
362 |
+
latent_channels = 16
|
363 |
+
latent_dimensions = 3
|
364 |
+
scale_factor = 0.476986
|
365 |
+
latent_rgb_factors = [
|
366 |
+
[-0.0395, -0.0331, 0.0445],
|
367 |
+
[ 0.0696, 0.0795, 0.0518],
|
368 |
+
[ 0.0135, -0.0945, -0.0282],
|
369 |
+
[ 0.0108, -0.0250, -0.0765],
|
370 |
+
[-0.0209, 0.0032, 0.0224],
|
371 |
+
[-0.0804, -0.0254, -0.0639],
|
372 |
+
[-0.0991, 0.0271, -0.0669],
|
373 |
+
[-0.0646, -0.0422, -0.0400],
|
374 |
+
[-0.0696, -0.0595, -0.0894],
|
375 |
+
[-0.0799, -0.0208, -0.0375],
|
376 |
+
[ 0.1166, 0.1627, 0.0962],
|
377 |
+
[ 0.1165, 0.0432, 0.0407],
|
378 |
+
[-0.2315, -0.1920, -0.1355],
|
379 |
+
[-0.0270, 0.0401, -0.0821],
|
380 |
+
[-0.0616, -0.0997, -0.0727],
|
381 |
+
[ 0.0249, -0.0469, -0.1703]
|
382 |
+
]
|
383 |
+
|
384 |
+
latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]
|
385 |
+
|
386 |
+
class Cosmos1CV8x8x8(LatentFormat):
|
387 |
+
latent_channels = 16
|
388 |
+
latent_dimensions = 3
|
389 |
+
|
390 |
+
latent_rgb_factors = [
|
391 |
+
[ 0.1817, 0.2284, 0.2423],
|
392 |
+
[-0.0586, -0.0862, -0.3108],
|
393 |
+
[-0.4703, -0.4255, -0.3995],
|
394 |
+
[ 0.0803, 0.1963, 0.1001],
|
395 |
+
[-0.0820, -0.1050, 0.0400],
|
396 |
+
[ 0.2511, 0.3098, 0.2787],
|
397 |
+
[-0.1830, -0.2117, -0.0040],
|
398 |
+
[-0.0621, -0.2187, -0.0939],
|
399 |
+
[ 0.3619, 0.1082, 0.1455],
|
400 |
+
[ 0.3164, 0.3922, 0.2575],
|
401 |
+
[ 0.1152, 0.0231, -0.0462],
|
402 |
+
[-0.1434, -0.3609, -0.3665],
|
403 |
+
[ 0.0635, 0.1471, 0.1680],
|
404 |
+
[-0.3635, -0.1963, -0.3248],
|
405 |
+
[-0.1865, 0.0365, 0.2346],
|
406 |
+
[ 0.0447, 0.0994, 0.0881]
|
407 |
+
]
|
408 |
+
|
409 |
+
latent_rgb_factors_bias = [-0.1223, -0.1889, -0.1976]
|
comfy/ldm/audio/autoencoder.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# code adapted from: https://github.com/Stability-AI/stable-audio-tools
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from typing import Literal
|
6 |
+
import math
|
7 |
+
import comfy.ops
|
8 |
+
ops = comfy.ops.disable_weight_init
|
9 |
+
|
10 |
+
def vae_sample(mean, scale):
|
11 |
+
stdev = nn.functional.softplus(scale) + 1e-4
|
12 |
+
var = stdev * stdev
|
13 |
+
logvar = torch.log(var)
|
14 |
+
latents = torch.randn_like(mean) * stdev + mean
|
15 |
+
|
16 |
+
kl = (mean * mean + var - logvar - 1).sum(1).mean()
|
17 |
+
|
18 |
+
return latents, kl
|
19 |
+
|
20 |
+
class VAEBottleneck(nn.Module):
|
21 |
+
def __init__(self):
|
22 |
+
super().__init__()
|
23 |
+
self.is_discrete = False
|
24 |
+
|
25 |
+
def encode(self, x, return_info=False, **kwargs):
|
26 |
+
info = {}
|
27 |
+
|
28 |
+
mean, scale = x.chunk(2, dim=1)
|
29 |
+
|
30 |
+
x, kl = vae_sample(mean, scale)
|
31 |
+
|
32 |
+
info["kl"] = kl
|
33 |
+
|
34 |
+
if return_info:
|
35 |
+
return x, info
|
36 |
+
else:
|
37 |
+
return x
|
38 |
+
|
39 |
+
def decode(self, x):
|
40 |
+
return x
|
41 |
+
|
42 |
+
|
43 |
+
def snake_beta(x, alpha, beta):
|
44 |
+
return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2)
|
45 |
+
|
46 |
+
# Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license
|
47 |
+
class SnakeBeta(nn.Module):
|
48 |
+
|
49 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
|
50 |
+
super(SnakeBeta, self).__init__()
|
51 |
+
self.in_features = in_features
|
52 |
+
|
53 |
+
# initialize alpha
|
54 |
+
self.alpha_logscale = alpha_logscale
|
55 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
56 |
+
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
|
57 |
+
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
|
58 |
+
else: # linear scale alphas initialized to ones
|
59 |
+
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
|
60 |
+
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
|
61 |
+
|
62 |
+
# self.alpha.requires_grad = alpha_trainable
|
63 |
+
# self.beta.requires_grad = alpha_trainable
|
64 |
+
|
65 |
+
self.no_div_by_zero = 0.000000001
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1).to(x.device) # line up with x to [B, C, T]
|
69 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1).to(x.device)
|
70 |
+
if self.alpha_logscale:
|
71 |
+
alpha = torch.exp(alpha)
|
72 |
+
beta = torch.exp(beta)
|
73 |
+
x = snake_beta(x, alpha, beta)
|
74 |
+
|
75 |
+
return x
|
76 |
+
|
77 |
+
def WNConv1d(*args, **kwargs):
|
78 |
+
try:
|
79 |
+
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
|
80 |
+
except:
|
81 |
+
return torch.nn.utils.weight_norm(ops.Conv1d(*args, **kwargs)) #support pytorch 2.1 and older
|
82 |
+
|
83 |
+
def WNConvTranspose1d(*args, **kwargs):
|
84 |
+
try:
|
85 |
+
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
|
86 |
+
except:
|
87 |
+
return torch.nn.utils.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) #support pytorch 2.1 and older
|
88 |
+
|
89 |
+
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
|
90 |
+
if activation == "elu":
|
91 |
+
act = torch.nn.ELU()
|
92 |
+
elif activation == "snake":
|
93 |
+
act = SnakeBeta(channels)
|
94 |
+
elif activation == "none":
|
95 |
+
act = torch.nn.Identity()
|
96 |
+
else:
|
97 |
+
raise ValueError(f"Unknown activation {activation}")
|
98 |
+
|
99 |
+
if antialias:
|
100 |
+
act = Activation1d(act) # noqa: F821 Activation1d is not defined
|
101 |
+
|
102 |
+
return act
|
103 |
+
|
104 |
+
|
105 |
+
class ResidualUnit(nn.Module):
|
106 |
+
def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False):
|
107 |
+
super().__init__()
|
108 |
+
|
109 |
+
self.dilation = dilation
|
110 |
+
|
111 |
+
padding = (dilation * (7-1)) // 2
|
112 |
+
|
113 |
+
self.layers = nn.Sequential(
|
114 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
|
115 |
+
WNConv1d(in_channels=in_channels, out_channels=out_channels,
|
116 |
+
kernel_size=7, dilation=dilation, padding=padding),
|
117 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
|
118 |
+
WNConv1d(in_channels=out_channels, out_channels=out_channels,
|
119 |
+
kernel_size=1)
|
120 |
+
)
|
121 |
+
|
122 |
+
def forward(self, x):
|
123 |
+
res = x
|
124 |
+
|
125 |
+
#x = checkpoint(self.layers, x)
|
126 |
+
x = self.layers(x)
|
127 |
+
|
128 |
+
return x + res
|
129 |
+
|
130 |
+
class EncoderBlock(nn.Module):
|
131 |
+
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False):
|
132 |
+
super().__init__()
|
133 |
+
|
134 |
+
self.layers = nn.Sequential(
|
135 |
+
ResidualUnit(in_channels=in_channels,
|
136 |
+
out_channels=in_channels, dilation=1, use_snake=use_snake),
|
137 |
+
ResidualUnit(in_channels=in_channels,
|
138 |
+
out_channels=in_channels, dilation=3, use_snake=use_snake),
|
139 |
+
ResidualUnit(in_channels=in_channels,
|
140 |
+
out_channels=in_channels, dilation=9, use_snake=use_snake),
|
141 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
|
142 |
+
WNConv1d(in_channels=in_channels, out_channels=out_channels,
|
143 |
+
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)),
|
144 |
+
)
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
return self.layers(x)
|
148 |
+
|
149 |
+
class DecoderBlock(nn.Module):
|
150 |
+
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False):
|
151 |
+
super().__init__()
|
152 |
+
|
153 |
+
if use_nearest_upsample:
|
154 |
+
upsample_layer = nn.Sequential(
|
155 |
+
nn.Upsample(scale_factor=stride, mode="nearest"),
|
156 |
+
WNConv1d(in_channels=in_channels,
|
157 |
+
out_channels=out_channels,
|
158 |
+
kernel_size=2*stride,
|
159 |
+
stride=1,
|
160 |
+
bias=False,
|
161 |
+
padding='same')
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
upsample_layer = WNConvTranspose1d(in_channels=in_channels,
|
165 |
+
out_channels=out_channels,
|
166 |
+
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2))
|
167 |
+
|
168 |
+
self.layers = nn.Sequential(
|
169 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
|
170 |
+
upsample_layer,
|
171 |
+
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
172 |
+
dilation=1, use_snake=use_snake),
|
173 |
+
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
174 |
+
dilation=3, use_snake=use_snake),
|
175 |
+
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
176 |
+
dilation=9, use_snake=use_snake),
|
177 |
+
)
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
return self.layers(x)
|
181 |
+
|
182 |
+
class OobleckEncoder(nn.Module):
|
183 |
+
def __init__(self,
|
184 |
+
in_channels=2,
|
185 |
+
channels=128,
|
186 |
+
latent_dim=32,
|
187 |
+
c_mults = [1, 2, 4, 8],
|
188 |
+
strides = [2, 4, 8, 8],
|
189 |
+
use_snake=False,
|
190 |
+
antialias_activation=False
|
191 |
+
):
|
192 |
+
super().__init__()
|
193 |
+
|
194 |
+
c_mults = [1] + c_mults
|
195 |
+
|
196 |
+
self.depth = len(c_mults)
|
197 |
+
|
198 |
+
layers = [
|
199 |
+
WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3)
|
200 |
+
]
|
201 |
+
|
202 |
+
for i in range(self.depth-1):
|
203 |
+
layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)]
|
204 |
+
|
205 |
+
layers += [
|
206 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels),
|
207 |
+
WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1)
|
208 |
+
]
|
209 |
+
|
210 |
+
self.layers = nn.Sequential(*layers)
|
211 |
+
|
212 |
+
def forward(self, x):
|
213 |
+
return self.layers(x)
|
214 |
+
|
215 |
+
|
216 |
+
class OobleckDecoder(nn.Module):
|
217 |
+
def __init__(self,
|
218 |
+
out_channels=2,
|
219 |
+
channels=128,
|
220 |
+
latent_dim=32,
|
221 |
+
c_mults = [1, 2, 4, 8],
|
222 |
+
strides = [2, 4, 8, 8],
|
223 |
+
use_snake=False,
|
224 |
+
antialias_activation=False,
|
225 |
+
use_nearest_upsample=False,
|
226 |
+
final_tanh=True):
|
227 |
+
super().__init__()
|
228 |
+
|
229 |
+
c_mults = [1] + c_mults
|
230 |
+
|
231 |
+
self.depth = len(c_mults)
|
232 |
+
|
233 |
+
layers = [
|
234 |
+
WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3),
|
235 |
+
]
|
236 |
+
|
237 |
+
for i in range(self.depth-1, 0, -1):
|
238 |
+
layers += [DecoderBlock(
|
239 |
+
in_channels=c_mults[i]*channels,
|
240 |
+
out_channels=c_mults[i-1]*channels,
|
241 |
+
stride=strides[i-1],
|
242 |
+
use_snake=use_snake,
|
243 |
+
antialias_activation=antialias_activation,
|
244 |
+
use_nearest_upsample=use_nearest_upsample
|
245 |
+
)
|
246 |
+
]
|
247 |
+
|
248 |
+
layers += [
|
249 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels),
|
250 |
+
WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False),
|
251 |
+
nn.Tanh() if final_tanh else nn.Identity()
|
252 |
+
]
|
253 |
+
|
254 |
+
self.layers = nn.Sequential(*layers)
|
255 |
+
|
256 |
+
def forward(self, x):
|
257 |
+
return self.layers(x)
|
258 |
+
|
259 |
+
|
260 |
+
class AudioOobleckVAE(nn.Module):
|
261 |
+
def __init__(self,
|
262 |
+
in_channels=2,
|
263 |
+
channels=128,
|
264 |
+
latent_dim=64,
|
265 |
+
c_mults = [1, 2, 4, 8, 16],
|
266 |
+
strides = [2, 4, 4, 8, 8],
|
267 |
+
use_snake=True,
|
268 |
+
antialias_activation=False,
|
269 |
+
use_nearest_upsample=False,
|
270 |
+
final_tanh=False):
|
271 |
+
super().__init__()
|
272 |
+
self.encoder = OobleckEncoder(in_channels, channels, latent_dim * 2, c_mults, strides, use_snake, antialias_activation)
|
273 |
+
self.decoder = OobleckDecoder(in_channels, channels, latent_dim, c_mults, strides, use_snake, antialias_activation,
|
274 |
+
use_nearest_upsample=use_nearest_upsample, final_tanh=final_tanh)
|
275 |
+
self.bottleneck = VAEBottleneck()
|
276 |
+
|
277 |
+
def encode(self, x):
|
278 |
+
return self.bottleneck.encode(self.encoder(x))
|
279 |
+
|
280 |
+
def decode(self, x):
|
281 |
+
return self.decoder(self.bottleneck.decode(x))
|
282 |
+
|
comfy/ldm/audio/dit.py
ADDED
@@ -0,0 +1,896 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# code adapted from: https://github.com/Stability-AI/stable-audio-tools
|
2 |
+
|
3 |
+
from comfy.ldm.modules.attention import optimized_attention
|
4 |
+
import typing as tp
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from einops import rearrange
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
import math
|
12 |
+
import comfy.ops
|
13 |
+
|
14 |
+
class FourierFeatures(nn.Module):
|
15 |
+
def __init__(self, in_features, out_features, std=1., dtype=None, device=None):
|
16 |
+
super().__init__()
|
17 |
+
assert out_features % 2 == 0
|
18 |
+
self.weight = nn.Parameter(torch.empty(
|
19 |
+
[out_features // 2, in_features], dtype=dtype, device=device))
|
20 |
+
|
21 |
+
def forward(self, input):
|
22 |
+
f = 2 * math.pi * input @ comfy.ops.cast_to_input(self.weight.T, input)
|
23 |
+
return torch.cat([f.cos(), f.sin()], dim=-1)
|
24 |
+
|
25 |
+
# norms
|
26 |
+
class LayerNorm(nn.Module):
|
27 |
+
def __init__(self, dim, bias=False, fix_scale=False, dtype=None, device=None):
|
28 |
+
"""
|
29 |
+
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
|
30 |
+
"""
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.gamma = nn.Parameter(torch.empty(dim, dtype=dtype, device=device))
|
34 |
+
|
35 |
+
if bias:
|
36 |
+
self.beta = nn.Parameter(torch.empty(dim, dtype=dtype, device=device))
|
37 |
+
else:
|
38 |
+
self.beta = None
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
beta = self.beta
|
42 |
+
if beta is not None:
|
43 |
+
beta = comfy.ops.cast_to_input(beta, x)
|
44 |
+
return F.layer_norm(x, x.shape[-1:], weight=comfy.ops.cast_to_input(self.gamma, x), bias=beta)
|
45 |
+
|
46 |
+
class GLU(nn.Module):
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
dim_in,
|
50 |
+
dim_out,
|
51 |
+
activation,
|
52 |
+
use_conv = False,
|
53 |
+
conv_kernel_size = 3,
|
54 |
+
dtype=None,
|
55 |
+
device=None,
|
56 |
+
operations=None,
|
57 |
+
):
|
58 |
+
super().__init__()
|
59 |
+
self.act = activation
|
60 |
+
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2), dtype=dtype, device=device)
|
61 |
+
self.use_conv = use_conv
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
if self.use_conv:
|
65 |
+
x = rearrange(x, 'b n d -> b d n')
|
66 |
+
x = self.proj(x)
|
67 |
+
x = rearrange(x, 'b d n -> b n d')
|
68 |
+
else:
|
69 |
+
x = self.proj(x)
|
70 |
+
|
71 |
+
x, gate = x.chunk(2, dim = -1)
|
72 |
+
return x * self.act(gate)
|
73 |
+
|
74 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
75 |
+
def __init__(self, dim, max_seq_len):
|
76 |
+
super().__init__()
|
77 |
+
self.scale = dim ** -0.5
|
78 |
+
self.max_seq_len = max_seq_len
|
79 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
80 |
+
|
81 |
+
def forward(self, x, pos = None, seq_start_pos = None):
|
82 |
+
seq_len, device = x.shape[1], x.device
|
83 |
+
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
|
84 |
+
|
85 |
+
if pos is None:
|
86 |
+
pos = torch.arange(seq_len, device = device)
|
87 |
+
|
88 |
+
if seq_start_pos is not None:
|
89 |
+
pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
|
90 |
+
|
91 |
+
pos_emb = self.emb(pos)
|
92 |
+
pos_emb = pos_emb * self.scale
|
93 |
+
return pos_emb
|
94 |
+
|
95 |
+
class ScaledSinusoidalEmbedding(nn.Module):
|
96 |
+
def __init__(self, dim, theta = 10000):
|
97 |
+
super().__init__()
|
98 |
+
assert (dim % 2) == 0, 'dimension must be divisible by 2'
|
99 |
+
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
|
100 |
+
|
101 |
+
half_dim = dim // 2
|
102 |
+
freq_seq = torch.arange(half_dim).float() / half_dim
|
103 |
+
inv_freq = theta ** -freq_seq
|
104 |
+
self.register_buffer('inv_freq', inv_freq, persistent = False)
|
105 |
+
|
106 |
+
def forward(self, x, pos = None, seq_start_pos = None):
|
107 |
+
seq_len, device = x.shape[1], x.device
|
108 |
+
|
109 |
+
if pos is None:
|
110 |
+
pos = torch.arange(seq_len, device = device)
|
111 |
+
|
112 |
+
if seq_start_pos is not None:
|
113 |
+
pos = pos - seq_start_pos[..., None]
|
114 |
+
|
115 |
+
emb = torch.einsum('i, j -> i j', pos, self.inv_freq)
|
116 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
|
117 |
+
return emb * self.scale
|
118 |
+
|
119 |
+
class RotaryEmbedding(nn.Module):
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
dim,
|
123 |
+
use_xpos = False,
|
124 |
+
scale_base = 512,
|
125 |
+
interpolation_factor = 1.,
|
126 |
+
base = 10000,
|
127 |
+
base_rescale_factor = 1.,
|
128 |
+
dtype=None,
|
129 |
+
device=None,
|
130 |
+
):
|
131 |
+
super().__init__()
|
132 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
133 |
+
# has some connection to NTK literature
|
134 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
135 |
+
base *= base_rescale_factor ** (dim / (dim - 2))
|
136 |
+
|
137 |
+
# inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
138 |
+
self.register_buffer('inv_freq', torch.empty((dim // 2,), device=device, dtype=dtype))
|
139 |
+
|
140 |
+
assert interpolation_factor >= 1.
|
141 |
+
self.interpolation_factor = interpolation_factor
|
142 |
+
|
143 |
+
if not use_xpos:
|
144 |
+
self.register_buffer('scale', None)
|
145 |
+
return
|
146 |
+
|
147 |
+
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
148 |
+
|
149 |
+
self.scale_base = scale_base
|
150 |
+
self.register_buffer('scale', scale)
|
151 |
+
|
152 |
+
def forward_from_seq_len(self, seq_len, device, dtype):
|
153 |
+
# device = self.inv_freq.device
|
154 |
+
|
155 |
+
t = torch.arange(seq_len, device=device, dtype=dtype)
|
156 |
+
return self.forward(t)
|
157 |
+
|
158 |
+
def forward(self, t):
|
159 |
+
# device = self.inv_freq.device
|
160 |
+
device = t.device
|
161 |
+
|
162 |
+
# t = t.to(torch.float32)
|
163 |
+
|
164 |
+
t = t / self.interpolation_factor
|
165 |
+
|
166 |
+
freqs = torch.einsum('i , j -> i j', t, comfy.ops.cast_to_input(self.inv_freq, t))
|
167 |
+
freqs = torch.cat((freqs, freqs), dim = -1)
|
168 |
+
|
169 |
+
if self.scale is None:
|
170 |
+
return freqs, 1.
|
171 |
+
|
172 |
+
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base # noqa: F821 seq_len is not defined
|
173 |
+
scale = comfy.ops.cast_to_input(self.scale, t) ** rearrange(power, 'n -> n 1')
|
174 |
+
scale = torch.cat((scale, scale), dim = -1)
|
175 |
+
|
176 |
+
return freqs, scale
|
177 |
+
|
178 |
+
def rotate_half(x):
|
179 |
+
x = rearrange(x, '... (j d) -> ... j d', j = 2)
|
180 |
+
x1, x2 = x.unbind(dim = -2)
|
181 |
+
return torch.cat((-x2, x1), dim = -1)
|
182 |
+
|
183 |
+
def apply_rotary_pos_emb(t, freqs, scale = 1):
|
184 |
+
out_dtype = t.dtype
|
185 |
+
|
186 |
+
# cast to float32 if necessary for numerical stability
|
187 |
+
dtype = t.dtype #reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
|
188 |
+
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
|
189 |
+
freqs, t = freqs.to(dtype), t.to(dtype)
|
190 |
+
freqs = freqs[-seq_len:, :]
|
191 |
+
|
192 |
+
if t.ndim == 4 and freqs.ndim == 3:
|
193 |
+
freqs = rearrange(freqs, 'b n d -> b 1 n d')
|
194 |
+
|
195 |
+
# partial rotary embeddings, Wang et al. GPT-J
|
196 |
+
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
|
197 |
+
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
|
198 |
+
|
199 |
+
t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)
|
200 |
+
|
201 |
+
return torch.cat((t, t_unrotated), dim = -1)
|
202 |
+
|
203 |
+
class FeedForward(nn.Module):
|
204 |
+
def __init__(
|
205 |
+
self,
|
206 |
+
dim,
|
207 |
+
dim_out = None,
|
208 |
+
mult = 4,
|
209 |
+
no_bias = False,
|
210 |
+
glu = True,
|
211 |
+
use_conv = False,
|
212 |
+
conv_kernel_size = 3,
|
213 |
+
zero_init_output = True,
|
214 |
+
dtype=None,
|
215 |
+
device=None,
|
216 |
+
operations=None,
|
217 |
+
):
|
218 |
+
super().__init__()
|
219 |
+
inner_dim = int(dim * mult)
|
220 |
+
|
221 |
+
# Default to SwiGLU
|
222 |
+
|
223 |
+
activation = nn.SiLU()
|
224 |
+
|
225 |
+
dim_out = dim if dim_out is None else dim_out
|
226 |
+
|
227 |
+
if glu:
|
228 |
+
linear_in = GLU(dim, inner_dim, activation, dtype=dtype, device=device, operations=operations)
|
229 |
+
else:
|
230 |
+
linear_in = nn.Sequential(
|
231 |
+
rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
232 |
+
operations.Linear(dim, inner_dim, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device),
|
233 |
+
rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
234 |
+
activation
|
235 |
+
)
|
236 |
+
|
237 |
+
linear_out = operations.Linear(inner_dim, dim_out, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device)
|
238 |
+
|
239 |
+
# # init last linear layer to 0
|
240 |
+
# if zero_init_output:
|
241 |
+
# nn.init.zeros_(linear_out.weight)
|
242 |
+
# if not no_bias:
|
243 |
+
# nn.init.zeros_(linear_out.bias)
|
244 |
+
|
245 |
+
|
246 |
+
self.ff = nn.Sequential(
|
247 |
+
linear_in,
|
248 |
+
rearrange('b d n -> b n d') if use_conv else nn.Identity(),
|
249 |
+
linear_out,
|
250 |
+
rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
251 |
+
)
|
252 |
+
|
253 |
+
def forward(self, x):
|
254 |
+
return self.ff(x)
|
255 |
+
|
256 |
+
class Attention(nn.Module):
|
257 |
+
def __init__(
|
258 |
+
self,
|
259 |
+
dim,
|
260 |
+
dim_heads = 64,
|
261 |
+
dim_context = None,
|
262 |
+
causal = False,
|
263 |
+
zero_init_output=True,
|
264 |
+
qk_norm = False,
|
265 |
+
natten_kernel_size = None,
|
266 |
+
dtype=None,
|
267 |
+
device=None,
|
268 |
+
operations=None,
|
269 |
+
):
|
270 |
+
super().__init__()
|
271 |
+
self.dim = dim
|
272 |
+
self.dim_heads = dim_heads
|
273 |
+
self.causal = causal
|
274 |
+
|
275 |
+
dim_kv = dim_context if dim_context is not None else dim
|
276 |
+
|
277 |
+
self.num_heads = dim // dim_heads
|
278 |
+
self.kv_heads = dim_kv // dim_heads
|
279 |
+
|
280 |
+
if dim_context is not None:
|
281 |
+
self.to_q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
282 |
+
self.to_kv = operations.Linear(dim_kv, dim_kv * 2, bias=False, dtype=dtype, device=device)
|
283 |
+
else:
|
284 |
+
self.to_qkv = operations.Linear(dim, dim * 3, bias=False, dtype=dtype, device=device)
|
285 |
+
|
286 |
+
self.to_out = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
287 |
+
|
288 |
+
# if zero_init_output:
|
289 |
+
# nn.init.zeros_(self.to_out.weight)
|
290 |
+
|
291 |
+
self.qk_norm = qk_norm
|
292 |
+
|
293 |
+
|
294 |
+
def forward(
|
295 |
+
self,
|
296 |
+
x,
|
297 |
+
context = None,
|
298 |
+
mask = None,
|
299 |
+
context_mask = None,
|
300 |
+
rotary_pos_emb = None,
|
301 |
+
causal = None
|
302 |
+
):
|
303 |
+
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
|
304 |
+
|
305 |
+
kv_input = context if has_context else x
|
306 |
+
|
307 |
+
if hasattr(self, 'to_q'):
|
308 |
+
# Use separate linear projections for q and k/v
|
309 |
+
q = self.to_q(x)
|
310 |
+
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
|
311 |
+
|
312 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
313 |
+
|
314 |
+
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v))
|
315 |
+
else:
|
316 |
+
# Use fused linear projection
|
317 |
+
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
|
318 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
319 |
+
|
320 |
+
# Normalize q and k for cosine sim attention
|
321 |
+
if self.qk_norm:
|
322 |
+
q = F.normalize(q, dim=-1)
|
323 |
+
k = F.normalize(k, dim=-1)
|
324 |
+
|
325 |
+
if rotary_pos_emb is not None and not has_context:
|
326 |
+
freqs, _ = rotary_pos_emb
|
327 |
+
|
328 |
+
q_dtype = q.dtype
|
329 |
+
k_dtype = k.dtype
|
330 |
+
|
331 |
+
q = q.to(torch.float32)
|
332 |
+
k = k.to(torch.float32)
|
333 |
+
freqs = freqs.to(torch.float32)
|
334 |
+
|
335 |
+
q = apply_rotary_pos_emb(q, freqs)
|
336 |
+
k = apply_rotary_pos_emb(k, freqs)
|
337 |
+
|
338 |
+
q = q.to(q_dtype)
|
339 |
+
k = k.to(k_dtype)
|
340 |
+
|
341 |
+
input_mask = context_mask
|
342 |
+
|
343 |
+
if input_mask is None and not has_context:
|
344 |
+
input_mask = mask
|
345 |
+
|
346 |
+
# determine masking
|
347 |
+
masks = []
|
348 |
+
|
349 |
+
if input_mask is not None:
|
350 |
+
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
|
351 |
+
masks.append(~input_mask)
|
352 |
+
|
353 |
+
# Other masks will be added here later
|
354 |
+
n = q.shape[-2]
|
355 |
+
|
356 |
+
causal = self.causal if causal is None else causal
|
357 |
+
|
358 |
+
if n == 1 and causal:
|
359 |
+
causal = False
|
360 |
+
|
361 |
+
if h != kv_h:
|
362 |
+
# Repeat interleave kv_heads to match q_heads
|
363 |
+
heads_per_kv_head = h // kv_h
|
364 |
+
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
|
365 |
+
|
366 |
+
out = optimized_attention(q, k, v, h, skip_reshape=True)
|
367 |
+
out = self.to_out(out)
|
368 |
+
|
369 |
+
if mask is not None:
|
370 |
+
mask = rearrange(mask, 'b n -> b n 1')
|
371 |
+
out = out.masked_fill(~mask, 0.)
|
372 |
+
|
373 |
+
return out
|
374 |
+
|
375 |
+
class ConformerModule(nn.Module):
|
376 |
+
def __init__(
|
377 |
+
self,
|
378 |
+
dim,
|
379 |
+
norm_kwargs = {},
|
380 |
+
):
|
381 |
+
|
382 |
+
super().__init__()
|
383 |
+
|
384 |
+
self.dim = dim
|
385 |
+
|
386 |
+
self.in_norm = LayerNorm(dim, **norm_kwargs)
|
387 |
+
self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
|
388 |
+
self.glu = GLU(dim, dim, nn.SiLU())
|
389 |
+
self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
|
390 |
+
self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm
|
391 |
+
self.swish = nn.SiLU()
|
392 |
+
self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
|
393 |
+
|
394 |
+
def forward(self, x):
|
395 |
+
x = self.in_norm(x)
|
396 |
+
x = rearrange(x, 'b n d -> b d n')
|
397 |
+
x = self.pointwise_conv(x)
|
398 |
+
x = rearrange(x, 'b d n -> b n d')
|
399 |
+
x = self.glu(x)
|
400 |
+
x = rearrange(x, 'b n d -> b d n')
|
401 |
+
x = self.depthwise_conv(x)
|
402 |
+
x = rearrange(x, 'b d n -> b n d')
|
403 |
+
x = self.mid_norm(x)
|
404 |
+
x = self.swish(x)
|
405 |
+
x = rearrange(x, 'b n d -> b d n')
|
406 |
+
x = self.pointwise_conv_2(x)
|
407 |
+
x = rearrange(x, 'b d n -> b n d')
|
408 |
+
|
409 |
+
return x
|
410 |
+
|
411 |
+
class TransformerBlock(nn.Module):
|
412 |
+
def __init__(
|
413 |
+
self,
|
414 |
+
dim,
|
415 |
+
dim_heads = 64,
|
416 |
+
cross_attend = False,
|
417 |
+
dim_context = None,
|
418 |
+
global_cond_dim = None,
|
419 |
+
causal = False,
|
420 |
+
zero_init_branch_outputs = True,
|
421 |
+
conformer = False,
|
422 |
+
layer_ix = -1,
|
423 |
+
remove_norms = False,
|
424 |
+
attn_kwargs = {},
|
425 |
+
ff_kwargs = {},
|
426 |
+
norm_kwargs = {},
|
427 |
+
dtype=None,
|
428 |
+
device=None,
|
429 |
+
operations=None,
|
430 |
+
):
|
431 |
+
|
432 |
+
super().__init__()
|
433 |
+
self.dim = dim
|
434 |
+
self.dim_heads = dim_heads
|
435 |
+
self.cross_attend = cross_attend
|
436 |
+
self.dim_context = dim_context
|
437 |
+
self.causal = causal
|
438 |
+
|
439 |
+
self.pre_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
|
440 |
+
|
441 |
+
self.self_attn = Attention(
|
442 |
+
dim,
|
443 |
+
dim_heads = dim_heads,
|
444 |
+
causal = causal,
|
445 |
+
zero_init_output=zero_init_branch_outputs,
|
446 |
+
dtype=dtype,
|
447 |
+
device=device,
|
448 |
+
operations=operations,
|
449 |
+
**attn_kwargs
|
450 |
+
)
|
451 |
+
|
452 |
+
if cross_attend:
|
453 |
+
self.cross_attend_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
|
454 |
+
self.cross_attn = Attention(
|
455 |
+
dim,
|
456 |
+
dim_heads = dim_heads,
|
457 |
+
dim_context=dim_context,
|
458 |
+
causal = causal,
|
459 |
+
zero_init_output=zero_init_branch_outputs,
|
460 |
+
dtype=dtype,
|
461 |
+
device=device,
|
462 |
+
operations=operations,
|
463 |
+
**attn_kwargs
|
464 |
+
)
|
465 |
+
|
466 |
+
self.ff_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
|
467 |
+
self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, dtype=dtype, device=device, operations=operations,**ff_kwargs)
|
468 |
+
|
469 |
+
self.layer_ix = layer_ix
|
470 |
+
|
471 |
+
self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None
|
472 |
+
|
473 |
+
self.global_cond_dim = global_cond_dim
|
474 |
+
|
475 |
+
if global_cond_dim is not None:
|
476 |
+
self.to_scale_shift_gate = nn.Sequential(
|
477 |
+
nn.SiLU(),
|
478 |
+
nn.Linear(global_cond_dim, dim * 6, bias=False)
|
479 |
+
)
|
480 |
+
|
481 |
+
nn.init.zeros_(self.to_scale_shift_gate[1].weight)
|
482 |
+
#nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
|
483 |
+
|
484 |
+
def forward(
|
485 |
+
self,
|
486 |
+
x,
|
487 |
+
context = None,
|
488 |
+
global_cond=None,
|
489 |
+
mask = None,
|
490 |
+
context_mask = None,
|
491 |
+
rotary_pos_emb = None
|
492 |
+
):
|
493 |
+
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
|
494 |
+
|
495 |
+
scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1)
|
496 |
+
|
497 |
+
# self-attention with adaLN
|
498 |
+
residual = x
|
499 |
+
x = self.pre_norm(x)
|
500 |
+
x = x * (1 + scale_self) + shift_self
|
501 |
+
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
|
502 |
+
x = x * torch.sigmoid(1 - gate_self)
|
503 |
+
x = x + residual
|
504 |
+
|
505 |
+
if context is not None:
|
506 |
+
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
|
507 |
+
|
508 |
+
if self.conformer is not None:
|
509 |
+
x = x + self.conformer(x)
|
510 |
+
|
511 |
+
# feedforward with adaLN
|
512 |
+
residual = x
|
513 |
+
x = self.ff_norm(x)
|
514 |
+
x = x * (1 + scale_ff) + shift_ff
|
515 |
+
x = self.ff(x)
|
516 |
+
x = x * torch.sigmoid(1 - gate_ff)
|
517 |
+
x = x + residual
|
518 |
+
|
519 |
+
else:
|
520 |
+
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
|
521 |
+
|
522 |
+
if context is not None:
|
523 |
+
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
|
524 |
+
|
525 |
+
if self.conformer is not None:
|
526 |
+
x = x + self.conformer(x)
|
527 |
+
|
528 |
+
x = x + self.ff(self.ff_norm(x))
|
529 |
+
|
530 |
+
return x
|
531 |
+
|
532 |
+
class ContinuousTransformer(nn.Module):
|
533 |
+
def __init__(
|
534 |
+
self,
|
535 |
+
dim,
|
536 |
+
depth,
|
537 |
+
*,
|
538 |
+
dim_in = None,
|
539 |
+
dim_out = None,
|
540 |
+
dim_heads = 64,
|
541 |
+
cross_attend=False,
|
542 |
+
cond_token_dim=None,
|
543 |
+
global_cond_dim=None,
|
544 |
+
causal=False,
|
545 |
+
rotary_pos_emb=True,
|
546 |
+
zero_init_branch_outputs=True,
|
547 |
+
conformer=False,
|
548 |
+
use_sinusoidal_emb=False,
|
549 |
+
use_abs_pos_emb=False,
|
550 |
+
abs_pos_emb_max_length=10000,
|
551 |
+
dtype=None,
|
552 |
+
device=None,
|
553 |
+
operations=None,
|
554 |
+
**kwargs
|
555 |
+
):
|
556 |
+
|
557 |
+
super().__init__()
|
558 |
+
|
559 |
+
self.dim = dim
|
560 |
+
self.depth = depth
|
561 |
+
self.causal = causal
|
562 |
+
self.layers = nn.ModuleList([])
|
563 |
+
|
564 |
+
self.project_in = operations.Linear(dim_in, dim, bias=False, dtype=dtype, device=device) if dim_in is not None else nn.Identity()
|
565 |
+
self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity()
|
566 |
+
|
567 |
+
if rotary_pos_emb:
|
568 |
+
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32), device=device, dtype=dtype)
|
569 |
+
else:
|
570 |
+
self.rotary_pos_emb = None
|
571 |
+
|
572 |
+
self.use_sinusoidal_emb = use_sinusoidal_emb
|
573 |
+
if use_sinusoidal_emb:
|
574 |
+
self.pos_emb = ScaledSinusoidalEmbedding(dim)
|
575 |
+
|
576 |
+
self.use_abs_pos_emb = use_abs_pos_emb
|
577 |
+
if use_abs_pos_emb:
|
578 |
+
self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)
|
579 |
+
|
580 |
+
for i in range(depth):
|
581 |
+
self.layers.append(
|
582 |
+
TransformerBlock(
|
583 |
+
dim,
|
584 |
+
dim_heads = dim_heads,
|
585 |
+
cross_attend = cross_attend,
|
586 |
+
dim_context = cond_token_dim,
|
587 |
+
global_cond_dim = global_cond_dim,
|
588 |
+
causal = causal,
|
589 |
+
zero_init_branch_outputs = zero_init_branch_outputs,
|
590 |
+
conformer=conformer,
|
591 |
+
layer_ix=i,
|
592 |
+
dtype=dtype,
|
593 |
+
device=device,
|
594 |
+
operations=operations,
|
595 |
+
**kwargs
|
596 |
+
)
|
597 |
+
)
|
598 |
+
|
599 |
+
def forward(
|
600 |
+
self,
|
601 |
+
x,
|
602 |
+
mask = None,
|
603 |
+
prepend_embeds = None,
|
604 |
+
prepend_mask = None,
|
605 |
+
global_cond = None,
|
606 |
+
return_info = False,
|
607 |
+
**kwargs
|
608 |
+
):
|
609 |
+
patches_replace = kwargs.get("transformer_options", {}).get("patches_replace", {})
|
610 |
+
batch, seq, device = *x.shape[:2], x.device
|
611 |
+
context = kwargs["context"]
|
612 |
+
|
613 |
+
info = {
|
614 |
+
"hidden_states": [],
|
615 |
+
}
|
616 |
+
|
617 |
+
x = self.project_in(x)
|
618 |
+
|
619 |
+
if prepend_embeds is not None:
|
620 |
+
prepend_length, prepend_dim = prepend_embeds.shape[1:]
|
621 |
+
|
622 |
+
assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'
|
623 |
+
|
624 |
+
x = torch.cat((prepend_embeds, x), dim = -2)
|
625 |
+
|
626 |
+
if prepend_mask is not None or mask is not None:
|
627 |
+
mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool)
|
628 |
+
prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool)
|
629 |
+
|
630 |
+
mask = torch.cat((prepend_mask, mask), dim = -1)
|
631 |
+
|
632 |
+
# Attention layers
|
633 |
+
|
634 |
+
if self.rotary_pos_emb is not None:
|
635 |
+
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device)
|
636 |
+
else:
|
637 |
+
rotary_pos_emb = None
|
638 |
+
|
639 |
+
if self.use_sinusoidal_emb or self.use_abs_pos_emb:
|
640 |
+
x = x + self.pos_emb(x)
|
641 |
+
|
642 |
+
blocks_replace = patches_replace.get("dit", {})
|
643 |
+
# Iterate over the transformer layers
|
644 |
+
for i, layer in enumerate(self.layers):
|
645 |
+
if ("double_block", i) in blocks_replace:
|
646 |
+
def block_wrap(args):
|
647 |
+
out = {}
|
648 |
+
out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"])
|
649 |
+
return out
|
650 |
+
|
651 |
+
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb}, {"original_block": block_wrap})
|
652 |
+
x = out["img"]
|
653 |
+
else:
|
654 |
+
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context)
|
655 |
+
# x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
656 |
+
|
657 |
+
if return_info:
|
658 |
+
info["hidden_states"].append(x)
|
659 |
+
|
660 |
+
x = self.project_out(x)
|
661 |
+
|
662 |
+
if return_info:
|
663 |
+
return x, info
|
664 |
+
|
665 |
+
return x
|
666 |
+
|
667 |
+
class AudioDiffusionTransformer(nn.Module):
|
668 |
+
def __init__(self,
|
669 |
+
io_channels=64,
|
670 |
+
patch_size=1,
|
671 |
+
embed_dim=1536,
|
672 |
+
cond_token_dim=768,
|
673 |
+
project_cond_tokens=False,
|
674 |
+
global_cond_dim=1536,
|
675 |
+
project_global_cond=True,
|
676 |
+
input_concat_dim=0,
|
677 |
+
prepend_cond_dim=0,
|
678 |
+
depth=24,
|
679 |
+
num_heads=24,
|
680 |
+
transformer_type: tp.Literal["continuous_transformer"] = "continuous_transformer",
|
681 |
+
global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend",
|
682 |
+
audio_model="",
|
683 |
+
dtype=None,
|
684 |
+
device=None,
|
685 |
+
operations=None,
|
686 |
+
**kwargs):
|
687 |
+
|
688 |
+
super().__init__()
|
689 |
+
|
690 |
+
self.dtype = dtype
|
691 |
+
self.cond_token_dim = cond_token_dim
|
692 |
+
|
693 |
+
# Timestep embeddings
|
694 |
+
timestep_features_dim = 256
|
695 |
+
|
696 |
+
self.timestep_features = FourierFeatures(1, timestep_features_dim, dtype=dtype, device=device)
|
697 |
+
|
698 |
+
self.to_timestep_embed = nn.Sequential(
|
699 |
+
operations.Linear(timestep_features_dim, embed_dim, bias=True, dtype=dtype, device=device),
|
700 |
+
nn.SiLU(),
|
701 |
+
operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device),
|
702 |
+
)
|
703 |
+
|
704 |
+
if cond_token_dim > 0:
|
705 |
+
# Conditioning tokens
|
706 |
+
|
707 |
+
cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim
|
708 |
+
self.to_cond_embed = nn.Sequential(
|
709 |
+
operations.Linear(cond_token_dim, cond_embed_dim, bias=False, dtype=dtype, device=device),
|
710 |
+
nn.SiLU(),
|
711 |
+
operations.Linear(cond_embed_dim, cond_embed_dim, bias=False, dtype=dtype, device=device)
|
712 |
+
)
|
713 |
+
else:
|
714 |
+
cond_embed_dim = 0
|
715 |
+
|
716 |
+
if global_cond_dim > 0:
|
717 |
+
# Global conditioning
|
718 |
+
global_embed_dim = global_cond_dim if not project_global_cond else embed_dim
|
719 |
+
self.to_global_embed = nn.Sequential(
|
720 |
+
operations.Linear(global_cond_dim, global_embed_dim, bias=False, dtype=dtype, device=device),
|
721 |
+
nn.SiLU(),
|
722 |
+
operations.Linear(global_embed_dim, global_embed_dim, bias=False, dtype=dtype, device=device)
|
723 |
+
)
|
724 |
+
|
725 |
+
if prepend_cond_dim > 0:
|
726 |
+
# Prepend conditioning
|
727 |
+
self.to_prepend_embed = nn.Sequential(
|
728 |
+
operations.Linear(prepend_cond_dim, embed_dim, bias=False, dtype=dtype, device=device),
|
729 |
+
nn.SiLU(),
|
730 |
+
operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
731 |
+
)
|
732 |
+
|
733 |
+
self.input_concat_dim = input_concat_dim
|
734 |
+
|
735 |
+
dim_in = io_channels + self.input_concat_dim
|
736 |
+
|
737 |
+
self.patch_size = patch_size
|
738 |
+
|
739 |
+
# Transformer
|
740 |
+
|
741 |
+
self.transformer_type = transformer_type
|
742 |
+
|
743 |
+
self.global_cond_type = global_cond_type
|
744 |
+
|
745 |
+
if self.transformer_type == "continuous_transformer":
|
746 |
+
|
747 |
+
global_dim = None
|
748 |
+
|
749 |
+
if self.global_cond_type == "adaLN":
|
750 |
+
# The global conditioning is projected to the embed_dim already at this point
|
751 |
+
global_dim = embed_dim
|
752 |
+
|
753 |
+
self.transformer = ContinuousTransformer(
|
754 |
+
dim=embed_dim,
|
755 |
+
depth=depth,
|
756 |
+
dim_heads=embed_dim // num_heads,
|
757 |
+
dim_in=dim_in * patch_size,
|
758 |
+
dim_out=io_channels * patch_size,
|
759 |
+
cross_attend = cond_token_dim > 0,
|
760 |
+
cond_token_dim = cond_embed_dim,
|
761 |
+
global_cond_dim=global_dim,
|
762 |
+
dtype=dtype,
|
763 |
+
device=device,
|
764 |
+
operations=operations,
|
765 |
+
**kwargs
|
766 |
+
)
|
767 |
+
else:
|
768 |
+
raise ValueError(f"Unknown transformer type: {self.transformer_type}")
|
769 |
+
|
770 |
+
self.preprocess_conv = operations.Conv1d(dim_in, dim_in, 1, bias=False, dtype=dtype, device=device)
|
771 |
+
self.postprocess_conv = operations.Conv1d(io_channels, io_channels, 1, bias=False, dtype=dtype, device=device)
|
772 |
+
|
773 |
+
def _forward(
|
774 |
+
self,
|
775 |
+
x,
|
776 |
+
t,
|
777 |
+
mask=None,
|
778 |
+
cross_attn_cond=None,
|
779 |
+
cross_attn_cond_mask=None,
|
780 |
+
input_concat_cond=None,
|
781 |
+
global_embed=None,
|
782 |
+
prepend_cond=None,
|
783 |
+
prepend_cond_mask=None,
|
784 |
+
return_info=False,
|
785 |
+
**kwargs):
|
786 |
+
|
787 |
+
if cross_attn_cond is not None:
|
788 |
+
cross_attn_cond = self.to_cond_embed(cross_attn_cond)
|
789 |
+
|
790 |
+
if global_embed is not None:
|
791 |
+
# Project the global conditioning to the embedding dimension
|
792 |
+
global_embed = self.to_global_embed(global_embed)
|
793 |
+
|
794 |
+
prepend_inputs = None
|
795 |
+
prepend_mask = None
|
796 |
+
prepend_length = 0
|
797 |
+
if prepend_cond is not None:
|
798 |
+
# Project the prepend conditioning to the embedding dimension
|
799 |
+
prepend_cond = self.to_prepend_embed(prepend_cond)
|
800 |
+
|
801 |
+
prepend_inputs = prepend_cond
|
802 |
+
if prepend_cond_mask is not None:
|
803 |
+
prepend_mask = prepend_cond_mask
|
804 |
+
|
805 |
+
if input_concat_cond is not None:
|
806 |
+
|
807 |
+
# Interpolate input_concat_cond to the same length as x
|
808 |
+
if input_concat_cond.shape[2] != x.shape[2]:
|
809 |
+
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest')
|
810 |
+
|
811 |
+
x = torch.cat([x, input_concat_cond], dim=1)
|
812 |
+
|
813 |
+
# Get the batch of timestep embeddings
|
814 |
+
timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None]).to(x.dtype)) # (b, embed_dim)
|
815 |
+
|
816 |
+
# Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
|
817 |
+
if global_embed is not None:
|
818 |
+
global_embed = global_embed + timestep_embed
|
819 |
+
else:
|
820 |
+
global_embed = timestep_embed
|
821 |
+
|
822 |
+
# Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
|
823 |
+
if self.global_cond_type == "prepend":
|
824 |
+
if prepend_inputs is None:
|
825 |
+
# Prepend inputs are just the global embed, and the mask is all ones
|
826 |
+
prepend_inputs = global_embed.unsqueeze(1)
|
827 |
+
prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
|
828 |
+
else:
|
829 |
+
# Prepend inputs are the prepend conditioning + the global embed
|
830 |
+
prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1)
|
831 |
+
prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], dim=1)
|
832 |
+
|
833 |
+
prepend_length = prepend_inputs.shape[1]
|
834 |
+
|
835 |
+
x = self.preprocess_conv(x) + x
|
836 |
+
|
837 |
+
x = rearrange(x, "b c t -> b t c")
|
838 |
+
|
839 |
+
extra_args = {}
|
840 |
+
|
841 |
+
if self.global_cond_type == "adaLN":
|
842 |
+
extra_args["global_cond"] = global_embed
|
843 |
+
|
844 |
+
if self.patch_size > 1:
|
845 |
+
x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size)
|
846 |
+
|
847 |
+
if self.transformer_type == "x-transformers":
|
848 |
+
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, **extra_args, **kwargs)
|
849 |
+
elif self.transformer_type == "continuous_transformer":
|
850 |
+
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, return_info=return_info, **extra_args, **kwargs)
|
851 |
+
|
852 |
+
if return_info:
|
853 |
+
output, info = output
|
854 |
+
elif self.transformer_type == "mm_transformer":
|
855 |
+
output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask, **extra_args, **kwargs)
|
856 |
+
|
857 |
+
output = rearrange(output, "b t c -> b c t")[:,:,prepend_length:]
|
858 |
+
|
859 |
+
if self.patch_size > 1:
|
860 |
+
output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size)
|
861 |
+
|
862 |
+
output = self.postprocess_conv(output) + output
|
863 |
+
|
864 |
+
if return_info:
|
865 |
+
return output, info
|
866 |
+
|
867 |
+
return output
|
868 |
+
|
869 |
+
def forward(
|
870 |
+
self,
|
871 |
+
x,
|
872 |
+
timestep,
|
873 |
+
context=None,
|
874 |
+
context_mask=None,
|
875 |
+
input_concat_cond=None,
|
876 |
+
global_embed=None,
|
877 |
+
negative_global_embed=None,
|
878 |
+
prepend_cond=None,
|
879 |
+
prepend_cond_mask=None,
|
880 |
+
mask=None,
|
881 |
+
return_info=False,
|
882 |
+
control=None,
|
883 |
+
**kwargs):
|
884 |
+
return self._forward(
|
885 |
+
x,
|
886 |
+
timestep,
|
887 |
+
cross_attn_cond=context,
|
888 |
+
cross_attn_cond_mask=context_mask,
|
889 |
+
input_concat_cond=input_concat_cond,
|
890 |
+
global_embed=global_embed,
|
891 |
+
prepend_cond=prepend_cond,
|
892 |
+
prepend_cond_mask=prepend_cond_mask,
|
893 |
+
mask=mask,
|
894 |
+
return_info=return_info,
|
895 |
+
**kwargs
|
896 |
+
)
|
comfy/ldm/audio/embedders.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# code adapted from: https://github.com/Stability-AI/stable-audio-tools
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch import Tensor
|
6 |
+
from typing import List, Union
|
7 |
+
from einops import rearrange
|
8 |
+
import math
|
9 |
+
import comfy.ops
|
10 |
+
|
11 |
+
class LearnedPositionalEmbedding(nn.Module):
|
12 |
+
"""Used for continuous time"""
|
13 |
+
|
14 |
+
def __init__(self, dim: int):
|
15 |
+
super().__init__()
|
16 |
+
assert (dim % 2) == 0
|
17 |
+
half_dim = dim // 2
|
18 |
+
self.weights = nn.Parameter(torch.empty(half_dim))
|
19 |
+
|
20 |
+
def forward(self, x: Tensor) -> Tensor:
|
21 |
+
x = rearrange(x, "b -> b 1")
|
22 |
+
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * math.pi
|
23 |
+
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
24 |
+
fouriered = torch.cat((x, fouriered), dim=-1)
|
25 |
+
return fouriered
|
26 |
+
|
27 |
+
def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
|
28 |
+
return nn.Sequential(
|
29 |
+
LearnedPositionalEmbedding(dim),
|
30 |
+
comfy.ops.manual_cast.Linear(in_features=dim + 1, out_features=out_features),
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
class NumberEmbedder(nn.Module):
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
features: int,
|
38 |
+
dim: int = 256,
|
39 |
+
):
|
40 |
+
super().__init__()
|
41 |
+
self.features = features
|
42 |
+
self.embedding = TimePositionalEmbedding(dim=dim, out_features=features)
|
43 |
+
|
44 |
+
def forward(self, x: Union[List[float], Tensor]) -> Tensor:
|
45 |
+
if not torch.is_tensor(x):
|
46 |
+
device = next(self.embedding.parameters()).device
|
47 |
+
x = torch.tensor(x, device=device)
|
48 |
+
assert isinstance(x, Tensor)
|
49 |
+
shape = x.shape
|
50 |
+
x = rearrange(x, "... -> (...)")
|
51 |
+
embedding = self.embedding(x)
|
52 |
+
x = embedding.view(*shape, self.features)
|
53 |
+
return x # type: ignore
|
54 |
+
|
55 |
+
|
56 |
+
class Conditioner(nn.Module):
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
dim: int,
|
60 |
+
output_dim: int,
|
61 |
+
project_out: bool = False
|
62 |
+
):
|
63 |
+
|
64 |
+
super().__init__()
|
65 |
+
|
66 |
+
self.dim = dim
|
67 |
+
self.output_dim = output_dim
|
68 |
+
self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity()
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
raise NotImplementedError()
|
72 |
+
|
73 |
+
class NumberConditioner(Conditioner):
|
74 |
+
'''
|
75 |
+
Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings
|
76 |
+
'''
|
77 |
+
def __init__(self,
|
78 |
+
output_dim: int,
|
79 |
+
min_val: float=0,
|
80 |
+
max_val: float=1
|
81 |
+
):
|
82 |
+
super().__init__(output_dim, output_dim)
|
83 |
+
|
84 |
+
self.min_val = min_val
|
85 |
+
self.max_val = max_val
|
86 |
+
|
87 |
+
self.embedder = NumberEmbedder(features=output_dim)
|
88 |
+
|
89 |
+
def forward(self, floats, device=None):
|
90 |
+
# Cast the inputs to floats
|
91 |
+
floats = [float(x) for x in floats]
|
92 |
+
|
93 |
+
if device is None:
|
94 |
+
device = next(self.embedder.parameters()).device
|
95 |
+
|
96 |
+
floats = torch.tensor(floats).to(device)
|
97 |
+
|
98 |
+
floats = floats.clamp(self.min_val, self.max_val)
|
99 |
+
|
100 |
+
normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val)
|
101 |
+
|
102 |
+
# Cast floats to same type as embedder
|
103 |
+
embedder_dtype = next(self.embedder.parameters()).dtype
|
104 |
+
normalized_floats = normalized_floats.to(embedder_dtype)
|
105 |
+
|
106 |
+
float_embeds = self.embedder(normalized_floats).unsqueeze(1)
|
107 |
+
|
108 |
+
return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)]
|
comfy/ldm/aura/mmdit.py
ADDED
@@ -0,0 +1,498 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#AuraFlow MMDiT
|
2 |
+
#Originally written by the AuraFlow Authors
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from comfy.ldm.modules.attention import optimized_attention
|
11 |
+
import comfy.ops
|
12 |
+
import comfy.ldm.common_dit
|
13 |
+
|
14 |
+
def modulate(x, shift, scale):
|
15 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
16 |
+
|
17 |
+
|
18 |
+
def find_multiple(n: int, k: int) -> int:
|
19 |
+
if n % k == 0:
|
20 |
+
return n
|
21 |
+
return n + k - (n % k)
|
22 |
+
|
23 |
+
|
24 |
+
class MLP(nn.Module):
|
25 |
+
def __init__(self, dim, hidden_dim=None, dtype=None, device=None, operations=None) -> None:
|
26 |
+
super().__init__()
|
27 |
+
if hidden_dim is None:
|
28 |
+
hidden_dim = 4 * dim
|
29 |
+
|
30 |
+
n_hidden = int(2 * hidden_dim / 3)
|
31 |
+
n_hidden = find_multiple(n_hidden, 256)
|
32 |
+
|
33 |
+
self.c_fc1 = operations.Linear(dim, n_hidden, bias=False, dtype=dtype, device=device)
|
34 |
+
self.c_fc2 = operations.Linear(dim, n_hidden, bias=False, dtype=dtype, device=device)
|
35 |
+
self.c_proj = operations.Linear(n_hidden, dim, bias=False, dtype=dtype, device=device)
|
36 |
+
|
37 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
38 |
+
x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
|
39 |
+
x = self.c_proj(x)
|
40 |
+
return x
|
41 |
+
|
42 |
+
|
43 |
+
class MultiHeadLayerNorm(nn.Module):
|
44 |
+
def __init__(self, hidden_size=None, eps=1e-5, dtype=None, device=None):
|
45 |
+
# Copy pasta from https://github.com/huggingface/transformers/blob/e5f71ecaae50ea476d1e12351003790273c4b2ed/src/transformers/models/cohere/modeling_cohere.py#L78
|
46 |
+
|
47 |
+
super().__init__()
|
48 |
+
self.weight = nn.Parameter(torch.empty(hidden_size, dtype=dtype, device=device))
|
49 |
+
self.variance_epsilon = eps
|
50 |
+
|
51 |
+
def forward(self, hidden_states):
|
52 |
+
input_dtype = hidden_states.dtype
|
53 |
+
hidden_states = hidden_states.to(torch.float32)
|
54 |
+
mean = hidden_states.mean(-1, keepdim=True)
|
55 |
+
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
|
56 |
+
hidden_states = (hidden_states - mean) * torch.rsqrt(
|
57 |
+
variance + self.variance_epsilon
|
58 |
+
)
|
59 |
+
hidden_states = self.weight.to(torch.float32) * hidden_states
|
60 |
+
return hidden_states.to(input_dtype)
|
61 |
+
|
62 |
+
class SingleAttention(nn.Module):
|
63 |
+
def __init__(self, dim, n_heads, mh_qknorm=False, dtype=None, device=None, operations=None):
|
64 |
+
super().__init__()
|
65 |
+
|
66 |
+
self.n_heads = n_heads
|
67 |
+
self.head_dim = dim // n_heads
|
68 |
+
|
69 |
+
# this is for cond
|
70 |
+
self.w1q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
71 |
+
self.w1k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
72 |
+
self.w1v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
73 |
+
self.w1o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
74 |
+
|
75 |
+
self.q_norm1 = (
|
76 |
+
MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
|
77 |
+
if mh_qknorm
|
78 |
+
else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
|
79 |
+
)
|
80 |
+
self.k_norm1 = (
|
81 |
+
MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
|
82 |
+
if mh_qknorm
|
83 |
+
else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
|
84 |
+
)
|
85 |
+
|
86 |
+
#@torch.compile()
|
87 |
+
def forward(self, c):
|
88 |
+
|
89 |
+
bsz, seqlen1, _ = c.shape
|
90 |
+
|
91 |
+
q, k, v = self.w1q(c), self.w1k(c), self.w1v(c)
|
92 |
+
q = q.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
93 |
+
k = k.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
94 |
+
v = v.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
95 |
+
q, k = self.q_norm1(q), self.k_norm1(k)
|
96 |
+
|
97 |
+
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
|
98 |
+
c = self.w1o(output)
|
99 |
+
return c
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
class DoubleAttention(nn.Module):
|
104 |
+
def __init__(self, dim, n_heads, mh_qknorm=False, dtype=None, device=None, operations=None):
|
105 |
+
super().__init__()
|
106 |
+
|
107 |
+
self.n_heads = n_heads
|
108 |
+
self.head_dim = dim // n_heads
|
109 |
+
|
110 |
+
# this is for cond
|
111 |
+
self.w1q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
112 |
+
self.w1k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
113 |
+
self.w1v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
114 |
+
self.w1o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
115 |
+
|
116 |
+
# this is for x
|
117 |
+
self.w2q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
118 |
+
self.w2k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
119 |
+
self.w2v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
120 |
+
self.w2o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
121 |
+
|
122 |
+
self.q_norm1 = (
|
123 |
+
MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
|
124 |
+
if mh_qknorm
|
125 |
+
else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
|
126 |
+
)
|
127 |
+
self.k_norm1 = (
|
128 |
+
MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
|
129 |
+
if mh_qknorm
|
130 |
+
else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
|
131 |
+
)
|
132 |
+
|
133 |
+
self.q_norm2 = (
|
134 |
+
MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
|
135 |
+
if mh_qknorm
|
136 |
+
else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
|
137 |
+
)
|
138 |
+
self.k_norm2 = (
|
139 |
+
MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
|
140 |
+
if mh_qknorm
|
141 |
+
else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
#@torch.compile()
|
146 |
+
def forward(self, c, x):
|
147 |
+
|
148 |
+
bsz, seqlen1, _ = c.shape
|
149 |
+
bsz, seqlen2, _ = x.shape
|
150 |
+
|
151 |
+
cq, ck, cv = self.w1q(c), self.w1k(c), self.w1v(c)
|
152 |
+
cq = cq.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
153 |
+
ck = ck.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
154 |
+
cv = cv.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
155 |
+
cq, ck = self.q_norm1(cq), self.k_norm1(ck)
|
156 |
+
|
157 |
+
xq, xk, xv = self.w2q(x), self.w2k(x), self.w2v(x)
|
158 |
+
xq = xq.view(bsz, seqlen2, self.n_heads, self.head_dim)
|
159 |
+
xk = xk.view(bsz, seqlen2, self.n_heads, self.head_dim)
|
160 |
+
xv = xv.view(bsz, seqlen2, self.n_heads, self.head_dim)
|
161 |
+
xq, xk = self.q_norm2(xq), self.k_norm2(xk)
|
162 |
+
|
163 |
+
# concat all
|
164 |
+
q, k, v = (
|
165 |
+
torch.cat([cq, xq], dim=1),
|
166 |
+
torch.cat([ck, xk], dim=1),
|
167 |
+
torch.cat([cv, xv], dim=1),
|
168 |
+
)
|
169 |
+
|
170 |
+
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
|
171 |
+
|
172 |
+
c, x = output.split([seqlen1, seqlen2], dim=1)
|
173 |
+
c = self.w1o(c)
|
174 |
+
x = self.w2o(x)
|
175 |
+
|
176 |
+
return c, x
|
177 |
+
|
178 |
+
|
179 |
+
class MMDiTBlock(nn.Module):
|
180 |
+
def __init__(self, dim, heads=8, global_conddim=1024, is_last=False, dtype=None, device=None, operations=None):
|
181 |
+
super().__init__()
|
182 |
+
|
183 |
+
self.normC1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
|
184 |
+
self.normC2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
|
185 |
+
if not is_last:
|
186 |
+
self.mlpC = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
|
187 |
+
self.modC = nn.Sequential(
|
188 |
+
nn.SiLU(),
|
189 |
+
operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device),
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
self.modC = nn.Sequential(
|
193 |
+
nn.SiLU(),
|
194 |
+
operations.Linear(global_conddim, 2 * dim, bias=False, dtype=dtype, device=device),
|
195 |
+
)
|
196 |
+
|
197 |
+
self.normX1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
|
198 |
+
self.normX2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
|
199 |
+
self.mlpX = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
|
200 |
+
self.modX = nn.Sequential(
|
201 |
+
nn.SiLU(),
|
202 |
+
operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device),
|
203 |
+
)
|
204 |
+
|
205 |
+
self.attn = DoubleAttention(dim, heads, dtype=dtype, device=device, operations=operations)
|
206 |
+
self.is_last = is_last
|
207 |
+
|
208 |
+
#@torch.compile()
|
209 |
+
def forward(self, c, x, global_cond, **kwargs):
|
210 |
+
|
211 |
+
cres, xres = c, x
|
212 |
+
|
213 |
+
cshift_msa, cscale_msa, cgate_msa, cshift_mlp, cscale_mlp, cgate_mlp = (
|
214 |
+
self.modC(global_cond).chunk(6, dim=1)
|
215 |
+
)
|
216 |
+
|
217 |
+
c = modulate(self.normC1(c), cshift_msa, cscale_msa)
|
218 |
+
|
219 |
+
# xpath
|
220 |
+
xshift_msa, xscale_msa, xgate_msa, xshift_mlp, xscale_mlp, xgate_mlp = (
|
221 |
+
self.modX(global_cond).chunk(6, dim=1)
|
222 |
+
)
|
223 |
+
|
224 |
+
x = modulate(self.normX1(x), xshift_msa, xscale_msa)
|
225 |
+
|
226 |
+
# attention
|
227 |
+
c, x = self.attn(c, x)
|
228 |
+
|
229 |
+
|
230 |
+
c = self.normC2(cres + cgate_msa.unsqueeze(1) * c)
|
231 |
+
c = cgate_mlp.unsqueeze(1) * self.mlpC(modulate(c, cshift_mlp, cscale_mlp))
|
232 |
+
c = cres + c
|
233 |
+
|
234 |
+
x = self.normX2(xres + xgate_msa.unsqueeze(1) * x)
|
235 |
+
x = xgate_mlp.unsqueeze(1) * self.mlpX(modulate(x, xshift_mlp, xscale_mlp))
|
236 |
+
x = xres + x
|
237 |
+
|
238 |
+
return c, x
|
239 |
+
|
240 |
+
class DiTBlock(nn.Module):
|
241 |
+
# like MMDiTBlock, but it only has X
|
242 |
+
def __init__(self, dim, heads=8, global_conddim=1024, dtype=None, device=None, operations=None):
|
243 |
+
super().__init__()
|
244 |
+
|
245 |
+
self.norm1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
|
246 |
+
self.norm2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
|
247 |
+
|
248 |
+
self.modCX = nn.Sequential(
|
249 |
+
nn.SiLU(),
|
250 |
+
operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device),
|
251 |
+
)
|
252 |
+
|
253 |
+
self.attn = SingleAttention(dim, heads, dtype=dtype, device=device, operations=operations)
|
254 |
+
self.mlp = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
|
255 |
+
|
256 |
+
#@torch.compile()
|
257 |
+
def forward(self, cx, global_cond, **kwargs):
|
258 |
+
cxres = cx
|
259 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.modCX(
|
260 |
+
global_cond
|
261 |
+
).chunk(6, dim=1)
|
262 |
+
cx = modulate(self.norm1(cx), shift_msa, scale_msa)
|
263 |
+
cx = self.attn(cx)
|
264 |
+
cx = self.norm2(cxres + gate_msa.unsqueeze(1) * cx)
|
265 |
+
mlpout = self.mlp(modulate(cx, shift_mlp, scale_mlp))
|
266 |
+
cx = gate_mlp.unsqueeze(1) * mlpout
|
267 |
+
|
268 |
+
cx = cxres + cx
|
269 |
+
|
270 |
+
return cx
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
class TimestepEmbedder(nn.Module):
|
275 |
+
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
|
276 |
+
super().__init__()
|
277 |
+
self.mlp = nn.Sequential(
|
278 |
+
operations.Linear(frequency_embedding_size, hidden_size, dtype=dtype, device=device),
|
279 |
+
nn.SiLU(),
|
280 |
+
operations.Linear(hidden_size, hidden_size, dtype=dtype, device=device),
|
281 |
+
)
|
282 |
+
self.frequency_embedding_size = frequency_embedding_size
|
283 |
+
|
284 |
+
@staticmethod
|
285 |
+
def timestep_embedding(t, dim, max_period=10000):
|
286 |
+
half = dim // 2
|
287 |
+
freqs = 1000 * torch.exp(
|
288 |
+
-math.log(max_period) * torch.arange(start=0, end=half) / half
|
289 |
+
).to(t.device)
|
290 |
+
args = t[:, None] * freqs[None]
|
291 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
292 |
+
if dim % 2:
|
293 |
+
embedding = torch.cat(
|
294 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
295 |
+
)
|
296 |
+
return embedding
|
297 |
+
|
298 |
+
#@torch.compile()
|
299 |
+
def forward(self, t, dtype):
|
300 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
|
301 |
+
t_emb = self.mlp(t_freq)
|
302 |
+
return t_emb
|
303 |
+
|
304 |
+
|
305 |
+
class MMDiT(nn.Module):
|
306 |
+
def __init__(
|
307 |
+
self,
|
308 |
+
in_channels=4,
|
309 |
+
out_channels=4,
|
310 |
+
patch_size=2,
|
311 |
+
dim=3072,
|
312 |
+
n_layers=36,
|
313 |
+
n_double_layers=4,
|
314 |
+
n_heads=12,
|
315 |
+
global_conddim=3072,
|
316 |
+
cond_seq_dim=2048,
|
317 |
+
max_seq=32 * 32,
|
318 |
+
device=None,
|
319 |
+
dtype=None,
|
320 |
+
operations=None,
|
321 |
+
):
|
322 |
+
super().__init__()
|
323 |
+
self.dtype = dtype
|
324 |
+
|
325 |
+
self.t_embedder = TimestepEmbedder(global_conddim, dtype=dtype, device=device, operations=operations)
|
326 |
+
|
327 |
+
self.cond_seq_linear = operations.Linear(
|
328 |
+
cond_seq_dim, dim, bias=False, dtype=dtype, device=device
|
329 |
+
) # linear for something like text sequence.
|
330 |
+
self.init_x_linear = operations.Linear(
|
331 |
+
patch_size * patch_size * in_channels, dim, dtype=dtype, device=device
|
332 |
+
) # init linear for patchified image.
|
333 |
+
|
334 |
+
self.positional_encoding = nn.Parameter(torch.empty(1, max_seq, dim, dtype=dtype, device=device))
|
335 |
+
self.register_tokens = nn.Parameter(torch.empty(1, 8, dim, dtype=dtype, device=device))
|
336 |
+
|
337 |
+
self.double_layers = nn.ModuleList([])
|
338 |
+
self.single_layers = nn.ModuleList([])
|
339 |
+
|
340 |
+
|
341 |
+
for idx in range(n_double_layers):
|
342 |
+
self.double_layers.append(
|
343 |
+
MMDiTBlock(dim, n_heads, global_conddim, is_last=(idx == n_layers - 1), dtype=dtype, device=device, operations=operations)
|
344 |
+
)
|
345 |
+
|
346 |
+
for idx in range(n_double_layers, n_layers):
|
347 |
+
self.single_layers.append(
|
348 |
+
DiTBlock(dim, n_heads, global_conddim, dtype=dtype, device=device, operations=operations)
|
349 |
+
)
|
350 |
+
|
351 |
+
|
352 |
+
self.final_linear = operations.Linear(
|
353 |
+
dim, patch_size * patch_size * out_channels, bias=False, dtype=dtype, device=device
|
354 |
+
)
|
355 |
+
|
356 |
+
self.modF = nn.Sequential(
|
357 |
+
nn.SiLU(),
|
358 |
+
operations.Linear(global_conddim, 2 * dim, bias=False, dtype=dtype, device=device),
|
359 |
+
)
|
360 |
+
|
361 |
+
self.out_channels = out_channels
|
362 |
+
self.patch_size = patch_size
|
363 |
+
self.n_double_layers = n_double_layers
|
364 |
+
self.n_layers = n_layers
|
365 |
+
|
366 |
+
self.h_max = round(max_seq**0.5)
|
367 |
+
self.w_max = round(max_seq**0.5)
|
368 |
+
|
369 |
+
@torch.no_grad()
|
370 |
+
def extend_pe(self, init_dim=(16, 16), target_dim=(64, 64)):
|
371 |
+
# extend pe
|
372 |
+
pe_data = self.positional_encoding.data.squeeze(0)[: init_dim[0] * init_dim[1]]
|
373 |
+
|
374 |
+
pe_as_2d = pe_data.view(init_dim[0], init_dim[1], -1).permute(2, 0, 1)
|
375 |
+
|
376 |
+
# now we need to extend this to target_dim. for this we will use interpolation.
|
377 |
+
# we will use torch.nn.functional.interpolate
|
378 |
+
pe_as_2d = F.interpolate(
|
379 |
+
pe_as_2d.unsqueeze(0), size=target_dim, mode="bilinear"
|
380 |
+
)
|
381 |
+
pe_new = pe_as_2d.squeeze(0).permute(1, 2, 0).flatten(0, 1)
|
382 |
+
self.positional_encoding.data = pe_new.unsqueeze(0).contiguous()
|
383 |
+
self.h_max, self.w_max = target_dim
|
384 |
+
|
385 |
+
def pe_selection_index_based_on_dim(self, h, w):
|
386 |
+
h_p, w_p = h // self.patch_size, w // self.patch_size
|
387 |
+
original_pe_indexes = torch.arange(self.positional_encoding.shape[1])
|
388 |
+
original_pe_indexes = original_pe_indexes.view(self.h_max, self.w_max)
|
389 |
+
starth = self.h_max // 2 - h_p // 2
|
390 |
+
endh =starth + h_p
|
391 |
+
startw = self.w_max // 2 - w_p // 2
|
392 |
+
endw = startw + w_p
|
393 |
+
original_pe_indexes = original_pe_indexes[
|
394 |
+
starth:endh, startw:endw
|
395 |
+
]
|
396 |
+
return original_pe_indexes.flatten()
|
397 |
+
|
398 |
+
def unpatchify(self, x, h, w):
|
399 |
+
c = self.out_channels
|
400 |
+
p = self.patch_size
|
401 |
+
|
402 |
+
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
403 |
+
x = torch.einsum("nhwpqc->nchpwq", x)
|
404 |
+
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
405 |
+
return imgs
|
406 |
+
|
407 |
+
def patchify(self, x):
|
408 |
+
B, C, H, W = x.size()
|
409 |
+
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
410 |
+
x = x.view(
|
411 |
+
B,
|
412 |
+
C,
|
413 |
+
(H + 1) // self.patch_size,
|
414 |
+
self.patch_size,
|
415 |
+
(W + 1) // self.patch_size,
|
416 |
+
self.patch_size,
|
417 |
+
)
|
418 |
+
x = x.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2)
|
419 |
+
return x
|
420 |
+
|
421 |
+
def apply_pos_embeds(self, x, h, w):
|
422 |
+
h = (h + 1) // self.patch_size
|
423 |
+
w = (w + 1) // self.patch_size
|
424 |
+
max_dim = max(h, w)
|
425 |
+
|
426 |
+
cur_dim = self.h_max
|
427 |
+
pos_encoding = comfy.ops.cast_to_input(self.positional_encoding.reshape(1, cur_dim, cur_dim, -1), x)
|
428 |
+
|
429 |
+
if max_dim > cur_dim:
|
430 |
+
pos_encoding = F.interpolate(pos_encoding.movedim(-1, 1), (max_dim, max_dim), mode="bilinear").movedim(1, -1)
|
431 |
+
cur_dim = max_dim
|
432 |
+
|
433 |
+
from_h = (cur_dim - h) // 2
|
434 |
+
from_w = (cur_dim - w) // 2
|
435 |
+
pos_encoding = pos_encoding[:,from_h:from_h+h,from_w:from_w+w]
|
436 |
+
return x + pos_encoding.reshape(1, -1, self.positional_encoding.shape[-1])
|
437 |
+
|
438 |
+
def forward(self, x, timestep, context, transformer_options={}, **kwargs):
|
439 |
+
patches_replace = transformer_options.get("patches_replace", {})
|
440 |
+
# patchify x, add PE
|
441 |
+
b, c, h, w = x.shape
|
442 |
+
|
443 |
+
# pe_indexes = self.pe_selection_index_based_on_dim(h, w)
|
444 |
+
# print(pe_indexes, pe_indexes.shape)
|
445 |
+
|
446 |
+
x = self.init_x_linear(self.patchify(x)) # B, T_x, D
|
447 |
+
x = self.apply_pos_embeds(x, h, w)
|
448 |
+
# x = x + self.positional_encoding[:, : x.size(1)].to(device=x.device, dtype=x.dtype)
|
449 |
+
# x = x + self.positional_encoding[:, pe_indexes].to(device=x.device, dtype=x.dtype)
|
450 |
+
|
451 |
+
# process conditions for MMDiT Blocks
|
452 |
+
c_seq = context # B, T_c, D_c
|
453 |
+
t = timestep
|
454 |
+
|
455 |
+
c = self.cond_seq_linear(c_seq) # B, T_c, D
|
456 |
+
c = torch.cat([comfy.ops.cast_to_input(self.register_tokens, c).repeat(c.size(0), 1, 1), c], dim=1)
|
457 |
+
|
458 |
+
global_cond = self.t_embedder(t, x.dtype) # B, D
|
459 |
+
|
460 |
+
blocks_replace = patches_replace.get("dit", {})
|
461 |
+
if len(self.double_layers) > 0:
|
462 |
+
for i, layer in enumerate(self.double_layers):
|
463 |
+
if ("double_block", i) in blocks_replace:
|
464 |
+
def block_wrap(args):
|
465 |
+
out = {}
|
466 |
+
out["txt"], out["img"] = layer(args["txt"],
|
467 |
+
args["img"],
|
468 |
+
args["vec"])
|
469 |
+
return out
|
470 |
+
out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond}, {"original_block": block_wrap})
|
471 |
+
c = out["txt"]
|
472 |
+
x = out["img"]
|
473 |
+
else:
|
474 |
+
c, x = layer(c, x, global_cond, **kwargs)
|
475 |
+
|
476 |
+
if len(self.single_layers) > 0:
|
477 |
+
c_len = c.size(1)
|
478 |
+
cx = torch.cat([c, x], dim=1)
|
479 |
+
for i, layer in enumerate(self.single_layers):
|
480 |
+
if ("single_block", i) in blocks_replace:
|
481 |
+
def block_wrap(args):
|
482 |
+
out = {}
|
483 |
+
out["img"] = layer(args["img"], args["vec"])
|
484 |
+
return out
|
485 |
+
|
486 |
+
out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond}, {"original_block": block_wrap})
|
487 |
+
cx = out["img"]
|
488 |
+
else:
|
489 |
+
cx = layer(cx, global_cond, **kwargs)
|
490 |
+
|
491 |
+
x = cx[:, c_len:]
|
492 |
+
|
493 |
+
fshift, fscale = self.modF(global_cond).chunk(2, dim=1)
|
494 |
+
|
495 |
+
x = modulate(x, fshift, fscale)
|
496 |
+
x = self.final_linear(x)
|
497 |
+
x = self.unpatchify(x, (h + 1) // self.patch_size, (w + 1) // self.patch_size)[:,:,:h,:w]
|
498 |
+
return x
|
comfy/ldm/cascade/common.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
from comfy.ldm.modules.attention import optimized_attention
|
22 |
+
import comfy.ops
|
23 |
+
|
24 |
+
class OptimizedAttention(nn.Module):
|
25 |
+
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
26 |
+
super().__init__()
|
27 |
+
self.heads = nhead
|
28 |
+
|
29 |
+
self.to_q = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
30 |
+
self.to_k = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
31 |
+
self.to_v = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
32 |
+
|
33 |
+
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
34 |
+
|
35 |
+
def forward(self, q, k, v):
|
36 |
+
q = self.to_q(q)
|
37 |
+
k = self.to_k(k)
|
38 |
+
v = self.to_v(v)
|
39 |
+
|
40 |
+
out = optimized_attention(q, k, v, self.heads)
|
41 |
+
|
42 |
+
return self.out_proj(out)
|
43 |
+
|
44 |
+
class Attention2D(nn.Module):
|
45 |
+
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
46 |
+
super().__init__()
|
47 |
+
self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations)
|
48 |
+
# self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device)
|
49 |
+
|
50 |
+
def forward(self, x, kv, self_attn=False):
|
51 |
+
orig_shape = x.shape
|
52 |
+
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
|
53 |
+
if self_attn:
|
54 |
+
kv = torch.cat([x, kv], dim=1)
|
55 |
+
# x = self.attn(x, kv, kv, need_weights=False)[0]
|
56 |
+
x = self.attn(x, kv, kv)
|
57 |
+
x = x.permute(0, 2, 1).view(*orig_shape)
|
58 |
+
return x
|
59 |
+
|
60 |
+
|
61 |
+
def LayerNorm2d_op(operations):
|
62 |
+
class LayerNorm2d(operations.LayerNorm):
|
63 |
+
def __init__(self, *args, **kwargs):
|
64 |
+
super().__init__(*args, **kwargs)
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
68 |
+
return LayerNorm2d
|
69 |
+
|
70 |
+
class GlobalResponseNorm(nn.Module):
|
71 |
+
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
|
72 |
+
def __init__(self, dim, dtype=None, device=None):
|
73 |
+
super().__init__()
|
74 |
+
self.gamma = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
|
75 |
+
self.beta = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
|
79 |
+
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
80 |
+
return comfy.ops.cast_to_input(self.gamma, x) * (x * Nx) + comfy.ops.cast_to_input(self.beta, x) + x
|
81 |
+
|
82 |
+
|
83 |
+
class ResBlock(nn.Module):
|
84 |
+
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, dtype=None, device=None, operations=None): # , num_heads=4, expansion=2):
|
85 |
+
super().__init__()
|
86 |
+
self.depthwise = operations.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c, dtype=dtype, device=device)
|
87 |
+
# self.depthwise = SAMBlock(c, num_heads, expansion)
|
88 |
+
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
89 |
+
self.channelwise = nn.Sequential(
|
90 |
+
operations.Linear(c + c_skip, c * 4, dtype=dtype, device=device),
|
91 |
+
nn.GELU(),
|
92 |
+
GlobalResponseNorm(c * 4, dtype=dtype, device=device),
|
93 |
+
nn.Dropout(dropout),
|
94 |
+
operations.Linear(c * 4, c, dtype=dtype, device=device)
|
95 |
+
)
|
96 |
+
|
97 |
+
def forward(self, x, x_skip=None):
|
98 |
+
x_res = x
|
99 |
+
x = self.norm(self.depthwise(x))
|
100 |
+
if x_skip is not None:
|
101 |
+
x = torch.cat([x, x_skip], dim=1)
|
102 |
+
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
103 |
+
return x + x_res
|
104 |
+
|
105 |
+
|
106 |
+
class AttnBlock(nn.Module):
|
107 |
+
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, dtype=None, device=None, operations=None):
|
108 |
+
super().__init__()
|
109 |
+
self.self_attn = self_attn
|
110 |
+
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
111 |
+
self.attention = Attention2D(c, nhead, dropout, dtype=dtype, device=device, operations=operations)
|
112 |
+
self.kv_mapper = nn.Sequential(
|
113 |
+
nn.SiLU(),
|
114 |
+
operations.Linear(c_cond, c, dtype=dtype, device=device)
|
115 |
+
)
|
116 |
+
|
117 |
+
def forward(self, x, kv):
|
118 |
+
kv = self.kv_mapper(kv)
|
119 |
+
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class FeedForwardBlock(nn.Module):
|
124 |
+
def __init__(self, c, dropout=0.0, dtype=None, device=None, operations=None):
|
125 |
+
super().__init__()
|
126 |
+
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
127 |
+
self.channelwise = nn.Sequential(
|
128 |
+
operations.Linear(c, c * 4, dtype=dtype, device=device),
|
129 |
+
nn.GELU(),
|
130 |
+
GlobalResponseNorm(c * 4, dtype=dtype, device=device),
|
131 |
+
nn.Dropout(dropout),
|
132 |
+
operations.Linear(c * 4, c, dtype=dtype, device=device)
|
133 |
+
)
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
137 |
+
return x
|
138 |
+
|
139 |
+
|
140 |
+
class TimestepBlock(nn.Module):
|
141 |
+
def __init__(self, c, c_timestep, conds=['sca'], dtype=None, device=None, operations=None):
|
142 |
+
super().__init__()
|
143 |
+
self.mapper = operations.Linear(c_timestep, c * 2, dtype=dtype, device=device)
|
144 |
+
self.conds = conds
|
145 |
+
for cname in conds:
|
146 |
+
setattr(self, f"mapper_{cname}", operations.Linear(c_timestep, c * 2, dtype=dtype, device=device))
|
147 |
+
|
148 |
+
def forward(self, x, t):
|
149 |
+
t = t.chunk(len(self.conds) + 1, dim=1)
|
150 |
+
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
|
151 |
+
for i, c in enumerate(self.conds):
|
152 |
+
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
|
153 |
+
a, b = a + ac, b + bc
|
154 |
+
return x * (1 + a) + b
|
comfy/ldm/cascade/controlnet.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import torchvision
|
20 |
+
from torch import nn
|
21 |
+
from .common import LayerNorm2d_op
|
22 |
+
|
23 |
+
|
24 |
+
class CNetResBlock(nn.Module):
|
25 |
+
def __init__(self, c, dtype=None, device=None, operations=None):
|
26 |
+
super().__init__()
|
27 |
+
self.blocks = nn.Sequential(
|
28 |
+
LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
|
29 |
+
nn.GELU(),
|
30 |
+
operations.Conv2d(c, c, kernel_size=3, padding=1),
|
31 |
+
LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
|
32 |
+
nn.GELU(),
|
33 |
+
operations.Conv2d(c, c, kernel_size=3, padding=1),
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
return x + self.blocks(x)
|
38 |
+
|
39 |
+
|
40 |
+
class ControlNet(nn.Module):
|
41 |
+
def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None, dtype=None, device=None, operations=nn):
|
42 |
+
super().__init__()
|
43 |
+
if bottleneck_mode is None:
|
44 |
+
bottleneck_mode = 'effnet'
|
45 |
+
self.proj_blocks = proj_blocks
|
46 |
+
if bottleneck_mode == 'effnet':
|
47 |
+
embd_channels = 1280
|
48 |
+
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
|
49 |
+
if c_in != 3:
|
50 |
+
in_weights = self.backbone[0][0].weight.data
|
51 |
+
self.backbone[0][0] = operations.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False, dtype=dtype, device=device)
|
52 |
+
if c_in > 3:
|
53 |
+
# nn.init.constant_(self.backbone[0][0].weight, 0)
|
54 |
+
self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone()
|
55 |
+
else:
|
56 |
+
self.backbone[0][0].weight.data = in_weights[:, :c_in].clone()
|
57 |
+
elif bottleneck_mode == 'simple':
|
58 |
+
embd_channels = c_in
|
59 |
+
self.backbone = nn.Sequential(
|
60 |
+
operations.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1, dtype=dtype, device=device),
|
61 |
+
nn.LeakyReLU(0.2, inplace=True),
|
62 |
+
operations.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1, dtype=dtype, device=device),
|
63 |
+
)
|
64 |
+
elif bottleneck_mode == 'large':
|
65 |
+
self.backbone = nn.Sequential(
|
66 |
+
operations.Conv2d(c_in, 4096 * 4, kernel_size=1, dtype=dtype, device=device),
|
67 |
+
nn.LeakyReLU(0.2, inplace=True),
|
68 |
+
operations.Conv2d(4096 * 4, 1024, kernel_size=1, dtype=dtype, device=device),
|
69 |
+
*[CNetResBlock(1024, dtype=dtype, device=device, operations=operations) for _ in range(8)],
|
70 |
+
operations.Conv2d(1024, 1280, kernel_size=1, dtype=dtype, device=device),
|
71 |
+
)
|
72 |
+
embd_channels = 1280
|
73 |
+
else:
|
74 |
+
raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}')
|
75 |
+
self.projections = nn.ModuleList()
|
76 |
+
for _ in range(len(proj_blocks)):
|
77 |
+
self.projections.append(nn.Sequential(
|
78 |
+
operations.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False, dtype=dtype, device=device),
|
79 |
+
nn.LeakyReLU(0.2, inplace=True),
|
80 |
+
operations.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False, dtype=dtype, device=device),
|
81 |
+
))
|
82 |
+
# nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection
|
83 |
+
self.xl = False
|
84 |
+
self.input_channels = c_in
|
85 |
+
self.unshuffle_amount = 8
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
x = self.backbone(x)
|
89 |
+
proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)]
|
90 |
+
for i, idx in enumerate(self.proj_blocks):
|
91 |
+
proj_outputs[idx] = self.projections[i](x)
|
92 |
+
return {"input": proj_outputs[::-1]}
|
comfy/ldm/cascade/stage_a.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
from torch.autograd import Function
|
22 |
+
|
23 |
+
class vector_quantize(Function):
|
24 |
+
@staticmethod
|
25 |
+
def forward(ctx, x, codebook):
|
26 |
+
with torch.no_grad():
|
27 |
+
codebook_sqr = torch.sum(codebook ** 2, dim=1)
|
28 |
+
x_sqr = torch.sum(x ** 2, dim=1, keepdim=True)
|
29 |
+
|
30 |
+
dist = torch.addmm(codebook_sqr + x_sqr, x, codebook.t(), alpha=-2.0, beta=1.0)
|
31 |
+
_, indices = dist.min(dim=1)
|
32 |
+
|
33 |
+
ctx.save_for_backward(indices, codebook)
|
34 |
+
ctx.mark_non_differentiable(indices)
|
35 |
+
|
36 |
+
nn = torch.index_select(codebook, 0, indices)
|
37 |
+
return nn, indices
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
def backward(ctx, grad_output, grad_indices):
|
41 |
+
grad_inputs, grad_codebook = None, None
|
42 |
+
|
43 |
+
if ctx.needs_input_grad[0]:
|
44 |
+
grad_inputs = grad_output.clone()
|
45 |
+
if ctx.needs_input_grad[1]:
|
46 |
+
# Gradient wrt. the codebook
|
47 |
+
indices, codebook = ctx.saved_tensors
|
48 |
+
|
49 |
+
grad_codebook = torch.zeros_like(codebook)
|
50 |
+
grad_codebook.index_add_(0, indices, grad_output)
|
51 |
+
|
52 |
+
return (grad_inputs, grad_codebook)
|
53 |
+
|
54 |
+
|
55 |
+
class VectorQuantize(nn.Module):
|
56 |
+
def __init__(self, embedding_size, k, ema_decay=0.99, ema_loss=False):
|
57 |
+
"""
|
58 |
+
Takes an input of variable size (as long as the last dimension matches the embedding size).
|
59 |
+
Returns one tensor containing the nearest neigbour embeddings to each of the inputs,
|
60 |
+
with the same size as the input, vq and commitment components for the loss as a touple
|
61 |
+
in the second output and the indices of the quantized vectors in the third:
|
62 |
+
quantized, (vq_loss, commit_loss), indices
|
63 |
+
"""
|
64 |
+
super(VectorQuantize, self).__init__()
|
65 |
+
|
66 |
+
self.codebook = nn.Embedding(k, embedding_size)
|
67 |
+
self.codebook.weight.data.uniform_(-1./k, 1./k)
|
68 |
+
self.vq = vector_quantize.apply
|
69 |
+
|
70 |
+
self.ema_decay = ema_decay
|
71 |
+
self.ema_loss = ema_loss
|
72 |
+
if ema_loss:
|
73 |
+
self.register_buffer('ema_element_count', torch.ones(k))
|
74 |
+
self.register_buffer('ema_weight_sum', torch.zeros_like(self.codebook.weight))
|
75 |
+
|
76 |
+
def _laplace_smoothing(self, x, epsilon):
|
77 |
+
n = torch.sum(x)
|
78 |
+
return ((x + epsilon) / (n + x.size(0) * epsilon) * n)
|
79 |
+
|
80 |
+
def _updateEMA(self, z_e_x, indices):
|
81 |
+
mask = nn.functional.one_hot(indices, self.ema_element_count.size(0)).float()
|
82 |
+
elem_count = mask.sum(dim=0)
|
83 |
+
weight_sum = torch.mm(mask.t(), z_e_x)
|
84 |
+
|
85 |
+
self.ema_element_count = (self.ema_decay * self.ema_element_count) + ((1-self.ema_decay) * elem_count)
|
86 |
+
self.ema_element_count = self._laplace_smoothing(self.ema_element_count, 1e-5)
|
87 |
+
self.ema_weight_sum = (self.ema_decay * self.ema_weight_sum) + ((1-self.ema_decay) * weight_sum)
|
88 |
+
|
89 |
+
self.codebook.weight.data = self.ema_weight_sum / self.ema_element_count.unsqueeze(-1)
|
90 |
+
|
91 |
+
def idx2vq(self, idx, dim=-1):
|
92 |
+
q_idx = self.codebook(idx)
|
93 |
+
if dim != -1:
|
94 |
+
q_idx = q_idx.movedim(-1, dim)
|
95 |
+
return q_idx
|
96 |
+
|
97 |
+
def forward(self, x, get_losses=True, dim=-1):
|
98 |
+
if dim != -1:
|
99 |
+
x = x.movedim(dim, -1)
|
100 |
+
z_e_x = x.contiguous().view(-1, x.size(-1)) if len(x.shape) > 2 else x
|
101 |
+
z_q_x, indices = self.vq(z_e_x, self.codebook.weight.detach())
|
102 |
+
vq_loss, commit_loss = None, None
|
103 |
+
if self.ema_loss and self.training:
|
104 |
+
self._updateEMA(z_e_x.detach(), indices.detach())
|
105 |
+
# pick the graded embeddings after updating the codebook in order to have a more accurate commitment loss
|
106 |
+
z_q_x_grd = torch.index_select(self.codebook.weight, dim=0, index=indices)
|
107 |
+
if get_losses:
|
108 |
+
vq_loss = (z_q_x_grd - z_e_x.detach()).pow(2).mean()
|
109 |
+
commit_loss = (z_e_x - z_q_x_grd.detach()).pow(2).mean()
|
110 |
+
|
111 |
+
z_q_x = z_q_x.view(x.shape)
|
112 |
+
if dim != -1:
|
113 |
+
z_q_x = z_q_x.movedim(-1, dim)
|
114 |
+
return z_q_x, (vq_loss, commit_loss), indices.view(x.shape[:-1])
|
115 |
+
|
116 |
+
|
117 |
+
class ResBlock(nn.Module):
|
118 |
+
def __init__(self, c, c_hidden):
|
119 |
+
super().__init__()
|
120 |
+
# depthwise/attention
|
121 |
+
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
122 |
+
self.depthwise = nn.Sequential(
|
123 |
+
nn.ReplicationPad2d(1),
|
124 |
+
nn.Conv2d(c, c, kernel_size=3, groups=c)
|
125 |
+
)
|
126 |
+
|
127 |
+
# channelwise
|
128 |
+
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
129 |
+
self.channelwise = nn.Sequential(
|
130 |
+
nn.Linear(c, c_hidden),
|
131 |
+
nn.GELU(),
|
132 |
+
nn.Linear(c_hidden, c),
|
133 |
+
)
|
134 |
+
|
135 |
+
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
|
136 |
+
|
137 |
+
# Init weights
|
138 |
+
def _basic_init(module):
|
139 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
140 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
141 |
+
if module.bias is not None:
|
142 |
+
nn.init.constant_(module.bias, 0)
|
143 |
+
|
144 |
+
self.apply(_basic_init)
|
145 |
+
|
146 |
+
def _norm(self, x, norm):
|
147 |
+
return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
mods = self.gammas
|
151 |
+
|
152 |
+
x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1]
|
153 |
+
try:
|
154 |
+
x = x + self.depthwise(x_temp) * mods[2]
|
155 |
+
except: #operation not implemented for bf16
|
156 |
+
x_temp = self.depthwise[0](x_temp.float()).to(x.dtype)
|
157 |
+
x = x + self.depthwise[1](x_temp) * mods[2]
|
158 |
+
|
159 |
+
x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4]
|
160 |
+
x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5]
|
161 |
+
|
162 |
+
return x
|
163 |
+
|
164 |
+
|
165 |
+
class StageA(nn.Module):
|
166 |
+
def __init__(self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192):
|
167 |
+
super().__init__()
|
168 |
+
self.c_latent = c_latent
|
169 |
+
c_levels = [c_hidden // (2 ** i) for i in reversed(range(levels))]
|
170 |
+
|
171 |
+
# Encoder blocks
|
172 |
+
self.in_block = nn.Sequential(
|
173 |
+
nn.PixelUnshuffle(2),
|
174 |
+
nn.Conv2d(3 * 4, c_levels[0], kernel_size=1)
|
175 |
+
)
|
176 |
+
down_blocks = []
|
177 |
+
for i in range(levels):
|
178 |
+
if i > 0:
|
179 |
+
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
|
180 |
+
block = ResBlock(c_levels[i], c_levels[i] * 4)
|
181 |
+
down_blocks.append(block)
|
182 |
+
down_blocks.append(nn.Sequential(
|
183 |
+
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
|
184 |
+
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
|
185 |
+
))
|
186 |
+
self.down_blocks = nn.Sequential(*down_blocks)
|
187 |
+
self.down_blocks[0]
|
188 |
+
|
189 |
+
self.codebook_size = codebook_size
|
190 |
+
self.vquantizer = VectorQuantize(c_latent, k=codebook_size)
|
191 |
+
|
192 |
+
# Decoder blocks
|
193 |
+
up_blocks = [nn.Sequential(
|
194 |
+
nn.Conv2d(c_latent, c_levels[-1], kernel_size=1)
|
195 |
+
)]
|
196 |
+
for i in range(levels):
|
197 |
+
for j in range(bottleneck_blocks if i == 0 else 1):
|
198 |
+
block = ResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4)
|
199 |
+
up_blocks.append(block)
|
200 |
+
if i < levels - 1:
|
201 |
+
up_blocks.append(
|
202 |
+
nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
|
203 |
+
padding=1))
|
204 |
+
self.up_blocks = nn.Sequential(*up_blocks)
|
205 |
+
self.out_block = nn.Sequential(
|
206 |
+
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
|
207 |
+
nn.PixelShuffle(2),
|
208 |
+
)
|
209 |
+
|
210 |
+
def encode(self, x, quantize=False):
|
211 |
+
x = self.in_block(x)
|
212 |
+
x = self.down_blocks(x)
|
213 |
+
if quantize:
|
214 |
+
qe, (vq_loss, commit_loss), indices = self.vquantizer.forward(x, dim=1)
|
215 |
+
return qe, x, indices, vq_loss + commit_loss * 0.25
|
216 |
+
else:
|
217 |
+
return x
|
218 |
+
|
219 |
+
def decode(self, x):
|
220 |
+
x = self.up_blocks(x)
|
221 |
+
x = self.out_block(x)
|
222 |
+
return x
|
223 |
+
|
224 |
+
def forward(self, x, quantize=False):
|
225 |
+
qe, x, _, vq_loss = self.encode(x, quantize)
|
226 |
+
x = self.decode(qe)
|
227 |
+
return x, vq_loss
|
228 |
+
|
229 |
+
|
230 |
+
class Discriminator(nn.Module):
|
231 |
+
def __init__(self, c_in=3, c_cond=0, c_hidden=512, depth=6):
|
232 |
+
super().__init__()
|
233 |
+
d = max(depth - 3, 3)
|
234 |
+
layers = [
|
235 |
+
nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
|
236 |
+
nn.LeakyReLU(0.2),
|
237 |
+
]
|
238 |
+
for i in range(depth - 1):
|
239 |
+
c_in = c_hidden // (2 ** max((d - i), 0))
|
240 |
+
c_out = c_hidden // (2 ** max((d - 1 - i), 0))
|
241 |
+
layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
|
242 |
+
layers.append(nn.InstanceNorm2d(c_out))
|
243 |
+
layers.append(nn.LeakyReLU(0.2))
|
244 |
+
self.encoder = nn.Sequential(*layers)
|
245 |
+
self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
|
246 |
+
self.logits = nn.Sigmoid()
|
247 |
+
|
248 |
+
def forward(self, x, cond=None):
|
249 |
+
x = self.encoder(x)
|
250 |
+
if cond is not None:
|
251 |
+
cond = cond.view(cond.size(0), cond.size(1), 1, 1, ).expand(-1, -1, x.size(-2), x.size(-1))
|
252 |
+
x = torch.cat([x, cond], dim=1)
|
253 |
+
x = self.shuffle(x)
|
254 |
+
x = self.logits(x)
|
255 |
+
return x
|
comfy/ldm/cascade/stage_b.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import math
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock
|
23 |
+
|
24 |
+
class StageB(nn.Module):
|
25 |
+
def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1280, c_hidden=[320, 640, 1280, 1280],
|
26 |
+
nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]],
|
27 |
+
block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]], level_config=['CT', 'CT', 'CTA', 'CTA'], c_clip=1280,
|
28 |
+
c_clip_seq=4, c_effnet=16, c_pixels=3, kernel_size=3, dropout=[0, 0, 0.0, 0.0], self_attn=True,
|
29 |
+
t_conds=['sca'], stable_cascade_stage=None, dtype=None, device=None, operations=None):
|
30 |
+
super().__init__()
|
31 |
+
self.dtype = dtype
|
32 |
+
self.c_r = c_r
|
33 |
+
self.t_conds = t_conds
|
34 |
+
self.c_clip_seq = c_clip_seq
|
35 |
+
if not isinstance(dropout, list):
|
36 |
+
dropout = [dropout] * len(c_hidden)
|
37 |
+
if not isinstance(self_attn, list):
|
38 |
+
self_attn = [self_attn] * len(c_hidden)
|
39 |
+
|
40 |
+
# CONDITIONING
|
41 |
+
self.effnet_mapper = nn.Sequential(
|
42 |
+
operations.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device),
|
43 |
+
nn.GELU(),
|
44 |
+
operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device),
|
45 |
+
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
46 |
+
)
|
47 |
+
self.pixels_mapper = nn.Sequential(
|
48 |
+
operations.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device),
|
49 |
+
nn.GELU(),
|
50 |
+
operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device),
|
51 |
+
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
52 |
+
)
|
53 |
+
self.clip_mapper = operations.Linear(c_clip, c_cond * c_clip_seq, dtype=dtype, device=device)
|
54 |
+
self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
55 |
+
|
56 |
+
self.embedding = nn.Sequential(
|
57 |
+
nn.PixelUnshuffle(patch_size),
|
58 |
+
operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device),
|
59 |
+
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
60 |
+
)
|
61 |
+
|
62 |
+
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
|
63 |
+
if block_type == 'C':
|
64 |
+
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
65 |
+
elif block_type == 'A':
|
66 |
+
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
67 |
+
elif block_type == 'F':
|
68 |
+
return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
69 |
+
elif block_type == 'T':
|
70 |
+
return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations)
|
71 |
+
else:
|
72 |
+
raise Exception(f'Block type {block_type} not supported')
|
73 |
+
|
74 |
+
# BLOCKS
|
75 |
+
# -- down blocks
|
76 |
+
self.down_blocks = nn.ModuleList()
|
77 |
+
self.down_downscalers = nn.ModuleList()
|
78 |
+
self.down_repeat_mappers = nn.ModuleList()
|
79 |
+
for i in range(len(c_hidden)):
|
80 |
+
if i > 0:
|
81 |
+
self.down_downscalers.append(nn.Sequential(
|
82 |
+
LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
|
83 |
+
operations.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2, dtype=dtype, device=device),
|
84 |
+
))
|
85 |
+
else:
|
86 |
+
self.down_downscalers.append(nn.Identity())
|
87 |
+
down_block = nn.ModuleList()
|
88 |
+
for _ in range(blocks[0][i]):
|
89 |
+
for block_type in level_config[i]:
|
90 |
+
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
|
91 |
+
down_block.append(block)
|
92 |
+
self.down_blocks.append(down_block)
|
93 |
+
if block_repeat is not None:
|
94 |
+
block_repeat_mappers = nn.ModuleList()
|
95 |
+
for _ in range(block_repeat[0][i] - 1):
|
96 |
+
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
|
97 |
+
self.down_repeat_mappers.append(block_repeat_mappers)
|
98 |
+
|
99 |
+
# -- up blocks
|
100 |
+
self.up_blocks = nn.ModuleList()
|
101 |
+
self.up_upscalers = nn.ModuleList()
|
102 |
+
self.up_repeat_mappers = nn.ModuleList()
|
103 |
+
for i in reversed(range(len(c_hidden))):
|
104 |
+
if i > 0:
|
105 |
+
self.up_upscalers.append(nn.Sequential(
|
106 |
+
LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
|
107 |
+
operations.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2, dtype=dtype, device=device),
|
108 |
+
))
|
109 |
+
else:
|
110 |
+
self.up_upscalers.append(nn.Identity())
|
111 |
+
up_block = nn.ModuleList()
|
112 |
+
for j in range(blocks[1][::-1][i]):
|
113 |
+
for k, block_type in enumerate(level_config[i]):
|
114 |
+
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
|
115 |
+
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
|
116 |
+
self_attn=self_attn[i])
|
117 |
+
up_block.append(block)
|
118 |
+
self.up_blocks.append(up_block)
|
119 |
+
if block_repeat is not None:
|
120 |
+
block_repeat_mappers = nn.ModuleList()
|
121 |
+
for _ in range(block_repeat[1][::-1][i] - 1):
|
122 |
+
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
|
123 |
+
self.up_repeat_mappers.append(block_repeat_mappers)
|
124 |
+
|
125 |
+
# OUTPUT
|
126 |
+
self.clf = nn.Sequential(
|
127 |
+
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
|
128 |
+
operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device),
|
129 |
+
nn.PixelShuffle(patch_size),
|
130 |
+
)
|
131 |
+
|
132 |
+
# --- WEIGHT INIT ---
|
133 |
+
# self.apply(self._init_weights) # General init
|
134 |
+
# nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings
|
135 |
+
# nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings
|
136 |
+
# nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings
|
137 |
+
# nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings
|
138 |
+
# nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings
|
139 |
+
# torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
|
140 |
+
# nn.init.constant_(self.clf[1].weight, 0) # outputs
|
141 |
+
#
|
142 |
+
# # blocks
|
143 |
+
# for level_block in self.down_blocks + self.up_blocks:
|
144 |
+
# for block in level_block:
|
145 |
+
# if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
|
146 |
+
# block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
|
147 |
+
# elif isinstance(block, TimestepBlock):
|
148 |
+
# for layer in block.modules():
|
149 |
+
# if isinstance(layer, nn.Linear):
|
150 |
+
# nn.init.constant_(layer.weight, 0)
|
151 |
+
#
|
152 |
+
# def _init_weights(self, m):
|
153 |
+
# if isinstance(m, (nn.Conv2d, nn.Linear)):
|
154 |
+
# torch.nn.init.xavier_uniform_(m.weight)
|
155 |
+
# if m.bias is not None:
|
156 |
+
# nn.init.constant_(m.bias, 0)
|
157 |
+
|
158 |
+
def gen_r_embedding(self, r, max_positions=10000):
|
159 |
+
r = r * max_positions
|
160 |
+
half_dim = self.c_r // 2
|
161 |
+
emb = math.log(max_positions) / (half_dim - 1)
|
162 |
+
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
163 |
+
emb = r[:, None] * emb[None, :]
|
164 |
+
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
165 |
+
if self.c_r % 2 == 1: # zero pad
|
166 |
+
emb = nn.functional.pad(emb, (0, 1), mode='constant')
|
167 |
+
return emb
|
168 |
+
|
169 |
+
def gen_c_embeddings(self, clip):
|
170 |
+
if len(clip.shape) == 2:
|
171 |
+
clip = clip.unsqueeze(1)
|
172 |
+
clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1)
|
173 |
+
clip = self.clip_norm(clip)
|
174 |
+
return clip
|
175 |
+
|
176 |
+
def _down_encode(self, x, r_embed, clip):
|
177 |
+
level_outputs = []
|
178 |
+
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
179 |
+
for down_block, downscaler, repmap in block_group:
|
180 |
+
x = downscaler(x)
|
181 |
+
for i in range(len(repmap) + 1):
|
182 |
+
for block in down_block:
|
183 |
+
if isinstance(block, ResBlock) or (
|
184 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
185 |
+
ResBlock)):
|
186 |
+
x = block(x)
|
187 |
+
elif isinstance(block, AttnBlock) or (
|
188 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
189 |
+
AttnBlock)):
|
190 |
+
x = block(x, clip)
|
191 |
+
elif isinstance(block, TimestepBlock) or (
|
192 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
193 |
+
TimestepBlock)):
|
194 |
+
x = block(x, r_embed)
|
195 |
+
else:
|
196 |
+
x = block(x)
|
197 |
+
if i < len(repmap):
|
198 |
+
x = repmap[i](x)
|
199 |
+
level_outputs.insert(0, x)
|
200 |
+
return level_outputs
|
201 |
+
|
202 |
+
def _up_decode(self, level_outputs, r_embed, clip):
|
203 |
+
x = level_outputs[0]
|
204 |
+
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
205 |
+
for i, (up_block, upscaler, repmap) in enumerate(block_group):
|
206 |
+
for j in range(len(repmap) + 1):
|
207 |
+
for k, block in enumerate(up_block):
|
208 |
+
if isinstance(block, ResBlock) or (
|
209 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
210 |
+
ResBlock)):
|
211 |
+
skip = level_outputs[i] if k == 0 and i > 0 else None
|
212 |
+
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
|
213 |
+
x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear',
|
214 |
+
align_corners=True)
|
215 |
+
x = block(x, skip)
|
216 |
+
elif isinstance(block, AttnBlock) or (
|
217 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
218 |
+
AttnBlock)):
|
219 |
+
x = block(x, clip)
|
220 |
+
elif isinstance(block, TimestepBlock) or (
|
221 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
222 |
+
TimestepBlock)):
|
223 |
+
x = block(x, r_embed)
|
224 |
+
else:
|
225 |
+
x = block(x)
|
226 |
+
if j < len(repmap):
|
227 |
+
x = repmap[j](x)
|
228 |
+
x = upscaler(x)
|
229 |
+
return x
|
230 |
+
|
231 |
+
def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
|
232 |
+
if pixels is None:
|
233 |
+
pixels = x.new_zeros(x.size(0), 3, 8, 8)
|
234 |
+
|
235 |
+
# Process the conditioning embeddings
|
236 |
+
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
|
237 |
+
for c in self.t_conds:
|
238 |
+
t_cond = kwargs.get(c, torch.zeros_like(r))
|
239 |
+
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1)
|
240 |
+
clip = self.gen_c_embeddings(clip)
|
241 |
+
|
242 |
+
# Model Blocks
|
243 |
+
x = self.embedding(x)
|
244 |
+
x = x + self.effnet_mapper(
|
245 |
+
nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True))
|
246 |
+
x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear',
|
247 |
+
align_corners=True)
|
248 |
+
level_outputs = self._down_encode(x, r_embed, clip)
|
249 |
+
x = self._up_decode(level_outputs, r_embed, clip)
|
250 |
+
return self.clf(x)
|
251 |
+
|
252 |
+
def update_weights_ema(self, src_model, beta=0.999):
|
253 |
+
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
|
254 |
+
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
|
255 |
+
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
|
256 |
+
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
|
comfy/ldm/cascade/stage_c.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
import math
|
22 |
+
from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock
|
23 |
+
# from .controlnet import ControlNetDeliverer
|
24 |
+
|
25 |
+
class UpDownBlock2d(nn.Module):
|
26 |
+
def __init__(self, c_in, c_out, mode, enabled=True, dtype=None, device=None, operations=None):
|
27 |
+
super().__init__()
|
28 |
+
assert mode in ['up', 'down']
|
29 |
+
interpolation = nn.Upsample(scale_factor=2 if mode == 'up' else 0.5, mode='bilinear',
|
30 |
+
align_corners=True) if enabled else nn.Identity()
|
31 |
+
mapping = operations.Conv2d(c_in, c_out, kernel_size=1, dtype=dtype, device=device)
|
32 |
+
self.blocks = nn.ModuleList([interpolation, mapping] if mode == 'up' else [mapping, interpolation])
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
for block in self.blocks:
|
36 |
+
x = block(x)
|
37 |
+
return x
|
38 |
+
|
39 |
+
|
40 |
+
class StageC(nn.Module):
|
41 |
+
def __init__(self, c_in=16, c_out=16, c_r=64, patch_size=1, c_cond=2048, c_hidden=[2048, 2048], nhead=[32, 32],
|
42 |
+
blocks=[[8, 24], [24, 8]], block_repeat=[[1, 1], [1, 1]], level_config=['CTA', 'CTA'],
|
43 |
+
c_clip_text=1280, c_clip_text_pooled=1280, c_clip_img=768, c_clip_seq=4, kernel_size=3,
|
44 |
+
dropout=[0.0, 0.0], self_attn=True, t_conds=['sca', 'crp'], switch_level=[False], stable_cascade_stage=None,
|
45 |
+
dtype=None, device=None, operations=None):
|
46 |
+
super().__init__()
|
47 |
+
self.dtype = dtype
|
48 |
+
self.c_r = c_r
|
49 |
+
self.t_conds = t_conds
|
50 |
+
self.c_clip_seq = c_clip_seq
|
51 |
+
if not isinstance(dropout, list):
|
52 |
+
dropout = [dropout] * len(c_hidden)
|
53 |
+
if not isinstance(self_attn, list):
|
54 |
+
self_attn = [self_attn] * len(c_hidden)
|
55 |
+
|
56 |
+
# CONDITIONING
|
57 |
+
self.clip_txt_mapper = operations.Linear(c_clip_text, c_cond, dtype=dtype, device=device)
|
58 |
+
self.clip_txt_pooled_mapper = operations.Linear(c_clip_text_pooled, c_cond * c_clip_seq, dtype=dtype, device=device)
|
59 |
+
self.clip_img_mapper = operations.Linear(c_clip_img, c_cond * c_clip_seq, dtype=dtype, device=device)
|
60 |
+
self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
61 |
+
|
62 |
+
self.embedding = nn.Sequential(
|
63 |
+
nn.PixelUnshuffle(patch_size),
|
64 |
+
operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device),
|
65 |
+
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6)
|
66 |
+
)
|
67 |
+
|
68 |
+
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
|
69 |
+
if block_type == 'C':
|
70 |
+
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
71 |
+
elif block_type == 'A':
|
72 |
+
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
73 |
+
elif block_type == 'F':
|
74 |
+
return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
75 |
+
elif block_type == 'T':
|
76 |
+
return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations)
|
77 |
+
else:
|
78 |
+
raise Exception(f'Block type {block_type} not supported')
|
79 |
+
|
80 |
+
# BLOCKS
|
81 |
+
# -- down blocks
|
82 |
+
self.down_blocks = nn.ModuleList()
|
83 |
+
self.down_downscalers = nn.ModuleList()
|
84 |
+
self.down_repeat_mappers = nn.ModuleList()
|
85 |
+
for i in range(len(c_hidden)):
|
86 |
+
if i > 0:
|
87 |
+
self.down_downscalers.append(nn.Sequential(
|
88 |
+
LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
|
89 |
+
UpDownBlock2d(c_hidden[i - 1], c_hidden[i], mode='down', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations)
|
90 |
+
))
|
91 |
+
else:
|
92 |
+
self.down_downscalers.append(nn.Identity())
|
93 |
+
down_block = nn.ModuleList()
|
94 |
+
for _ in range(blocks[0][i]):
|
95 |
+
for block_type in level_config[i]:
|
96 |
+
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
|
97 |
+
down_block.append(block)
|
98 |
+
self.down_blocks.append(down_block)
|
99 |
+
if block_repeat is not None:
|
100 |
+
block_repeat_mappers = nn.ModuleList()
|
101 |
+
for _ in range(block_repeat[0][i] - 1):
|
102 |
+
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
|
103 |
+
self.down_repeat_mappers.append(block_repeat_mappers)
|
104 |
+
|
105 |
+
# -- up blocks
|
106 |
+
self.up_blocks = nn.ModuleList()
|
107 |
+
self.up_upscalers = nn.ModuleList()
|
108 |
+
self.up_repeat_mappers = nn.ModuleList()
|
109 |
+
for i in reversed(range(len(c_hidden))):
|
110 |
+
if i > 0:
|
111 |
+
self.up_upscalers.append(nn.Sequential(
|
112 |
+
LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6),
|
113 |
+
UpDownBlock2d(c_hidden[i], c_hidden[i - 1], mode='up', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations)
|
114 |
+
))
|
115 |
+
else:
|
116 |
+
self.up_upscalers.append(nn.Identity())
|
117 |
+
up_block = nn.ModuleList()
|
118 |
+
for j in range(blocks[1][::-1][i]):
|
119 |
+
for k, block_type in enumerate(level_config[i]):
|
120 |
+
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
|
121 |
+
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
|
122 |
+
self_attn=self_attn[i])
|
123 |
+
up_block.append(block)
|
124 |
+
self.up_blocks.append(up_block)
|
125 |
+
if block_repeat is not None:
|
126 |
+
block_repeat_mappers = nn.ModuleList()
|
127 |
+
for _ in range(block_repeat[1][::-1][i] - 1):
|
128 |
+
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
|
129 |
+
self.up_repeat_mappers.append(block_repeat_mappers)
|
130 |
+
|
131 |
+
# OUTPUT
|
132 |
+
self.clf = nn.Sequential(
|
133 |
+
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
|
134 |
+
operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device),
|
135 |
+
nn.PixelShuffle(patch_size),
|
136 |
+
)
|
137 |
+
|
138 |
+
# --- WEIGHT INIT ---
|
139 |
+
# self.apply(self._init_weights) # General init
|
140 |
+
# nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) # conditionings
|
141 |
+
# nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) # conditionings
|
142 |
+
# nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings
|
143 |
+
# torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
|
144 |
+
# nn.init.constant_(self.clf[1].weight, 0) # outputs
|
145 |
+
#
|
146 |
+
# # blocks
|
147 |
+
# for level_block in self.down_blocks + self.up_blocks:
|
148 |
+
# for block in level_block:
|
149 |
+
# if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
|
150 |
+
# block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
|
151 |
+
# elif isinstance(block, TimestepBlock):
|
152 |
+
# for layer in block.modules():
|
153 |
+
# if isinstance(layer, nn.Linear):
|
154 |
+
# nn.init.constant_(layer.weight, 0)
|
155 |
+
#
|
156 |
+
# def _init_weights(self, m):
|
157 |
+
# if isinstance(m, (nn.Conv2d, nn.Linear)):
|
158 |
+
# torch.nn.init.xavier_uniform_(m.weight)
|
159 |
+
# if m.bias is not None:
|
160 |
+
# nn.init.constant_(m.bias, 0)
|
161 |
+
|
162 |
+
def gen_r_embedding(self, r, max_positions=10000):
|
163 |
+
r = r * max_positions
|
164 |
+
half_dim = self.c_r // 2
|
165 |
+
emb = math.log(max_positions) / (half_dim - 1)
|
166 |
+
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
167 |
+
emb = r[:, None] * emb[None, :]
|
168 |
+
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
169 |
+
if self.c_r % 2 == 1: # zero pad
|
170 |
+
emb = nn.functional.pad(emb, (0, 1), mode='constant')
|
171 |
+
return emb
|
172 |
+
|
173 |
+
def gen_c_embeddings(self, clip_txt, clip_txt_pooled, clip_img):
|
174 |
+
clip_txt = self.clip_txt_mapper(clip_txt)
|
175 |
+
if len(clip_txt_pooled.shape) == 2:
|
176 |
+
clip_txt_pooled = clip_txt_pooled.unsqueeze(1)
|
177 |
+
if len(clip_img.shape) == 2:
|
178 |
+
clip_img = clip_img.unsqueeze(1)
|
179 |
+
clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.c_clip_seq, -1)
|
180 |
+
clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.c_clip_seq, -1)
|
181 |
+
clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1)
|
182 |
+
clip = self.clip_norm(clip)
|
183 |
+
return clip
|
184 |
+
|
185 |
+
def _down_encode(self, x, r_embed, clip, cnet=None):
|
186 |
+
level_outputs = []
|
187 |
+
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
188 |
+
for down_block, downscaler, repmap in block_group:
|
189 |
+
x = downscaler(x)
|
190 |
+
for i in range(len(repmap) + 1):
|
191 |
+
for block in down_block:
|
192 |
+
if isinstance(block, ResBlock) or (
|
193 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
194 |
+
ResBlock)):
|
195 |
+
if cnet is not None:
|
196 |
+
next_cnet = cnet.pop()
|
197 |
+
if next_cnet is not None:
|
198 |
+
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
|
199 |
+
align_corners=True).to(x.dtype)
|
200 |
+
x = block(x)
|
201 |
+
elif isinstance(block, AttnBlock) or (
|
202 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
203 |
+
AttnBlock)):
|
204 |
+
x = block(x, clip)
|
205 |
+
elif isinstance(block, TimestepBlock) or (
|
206 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
207 |
+
TimestepBlock)):
|
208 |
+
x = block(x, r_embed)
|
209 |
+
else:
|
210 |
+
x = block(x)
|
211 |
+
if i < len(repmap):
|
212 |
+
x = repmap[i](x)
|
213 |
+
level_outputs.insert(0, x)
|
214 |
+
return level_outputs
|
215 |
+
|
216 |
+
def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
|
217 |
+
x = level_outputs[0]
|
218 |
+
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
219 |
+
for i, (up_block, upscaler, repmap) in enumerate(block_group):
|
220 |
+
for j in range(len(repmap) + 1):
|
221 |
+
for k, block in enumerate(up_block):
|
222 |
+
if isinstance(block, ResBlock) or (
|
223 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
224 |
+
ResBlock)):
|
225 |
+
skip = level_outputs[i] if k == 0 and i > 0 else None
|
226 |
+
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
|
227 |
+
x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear',
|
228 |
+
align_corners=True)
|
229 |
+
if cnet is not None:
|
230 |
+
next_cnet = cnet.pop()
|
231 |
+
if next_cnet is not None:
|
232 |
+
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
|
233 |
+
align_corners=True).to(x.dtype)
|
234 |
+
x = block(x, skip)
|
235 |
+
elif isinstance(block, AttnBlock) or (
|
236 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
237 |
+
AttnBlock)):
|
238 |
+
x = block(x, clip)
|
239 |
+
elif isinstance(block, TimestepBlock) or (
|
240 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
241 |
+
TimestepBlock)):
|
242 |
+
x = block(x, r_embed)
|
243 |
+
else:
|
244 |
+
x = block(x)
|
245 |
+
if j < len(repmap):
|
246 |
+
x = repmap[j](x)
|
247 |
+
x = upscaler(x)
|
248 |
+
return x
|
249 |
+
|
250 |
+
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, **kwargs):
|
251 |
+
# Process the conditioning embeddings
|
252 |
+
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
|
253 |
+
for c in self.t_conds:
|
254 |
+
t_cond = kwargs.get(c, torch.zeros_like(r))
|
255 |
+
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1)
|
256 |
+
clip = self.gen_c_embeddings(clip_text, clip_text_pooled, clip_img)
|
257 |
+
|
258 |
+
if control is not None:
|
259 |
+
cnet = control.get("input")
|
260 |
+
else:
|
261 |
+
cnet = None
|
262 |
+
|
263 |
+
# Model Blocks
|
264 |
+
x = self.embedding(x)
|
265 |
+
level_outputs = self._down_encode(x, r_embed, clip, cnet)
|
266 |
+
x = self._up_decode(level_outputs, r_embed, clip, cnet)
|
267 |
+
return self.clf(x)
|
268 |
+
|
269 |
+
def update_weights_ema(self, src_model, beta=0.999):
|
270 |
+
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
|
271 |
+
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
|
272 |
+
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
|
273 |
+
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
|
comfy/ldm/cascade/stage_c_coder.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
import torch
|
19 |
+
import torchvision
|
20 |
+
from torch import nn
|
21 |
+
|
22 |
+
|
23 |
+
# EfficientNet
|
24 |
+
class EfficientNetEncoder(nn.Module):
|
25 |
+
def __init__(self, c_latent=16):
|
26 |
+
super().__init__()
|
27 |
+
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
|
28 |
+
self.mapper = nn.Sequential(
|
29 |
+
nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
|
30 |
+
nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
|
31 |
+
)
|
32 |
+
self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406]))
|
33 |
+
self.std = nn.Parameter(torch.tensor([0.229, 0.224, 0.225]))
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
x = x * 0.5 + 0.5
|
37 |
+
x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1])
|
38 |
+
o = self.mapper(self.backbone(x))
|
39 |
+
return o
|
40 |
+
|
41 |
+
|
42 |
+
# Fast Decoder for Stage C latents. E.g. 16 x 24 x 24 -> 3 x 192 x 192
|
43 |
+
class Previewer(nn.Module):
|
44 |
+
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
45 |
+
super().__init__()
|
46 |
+
self.blocks = nn.Sequential(
|
47 |
+
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
|
48 |
+
nn.GELU(),
|
49 |
+
nn.BatchNorm2d(c_hidden),
|
50 |
+
|
51 |
+
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
|
52 |
+
nn.GELU(),
|
53 |
+
nn.BatchNorm2d(c_hidden),
|
54 |
+
|
55 |
+
nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
|
56 |
+
nn.GELU(),
|
57 |
+
nn.BatchNorm2d(c_hidden // 2),
|
58 |
+
|
59 |
+
nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
|
60 |
+
nn.GELU(),
|
61 |
+
nn.BatchNorm2d(c_hidden // 2),
|
62 |
+
|
63 |
+
nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
|
64 |
+
nn.GELU(),
|
65 |
+
nn.BatchNorm2d(c_hidden // 4),
|
66 |
+
|
67 |
+
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
68 |
+
nn.GELU(),
|
69 |
+
nn.BatchNorm2d(c_hidden // 4),
|
70 |
+
|
71 |
+
nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
|
72 |
+
nn.GELU(),
|
73 |
+
nn.BatchNorm2d(c_hidden // 4),
|
74 |
+
|
75 |
+
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
76 |
+
nn.GELU(),
|
77 |
+
nn.BatchNorm2d(c_hidden // 4),
|
78 |
+
|
79 |
+
nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
|
80 |
+
)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
return (self.blocks(x) - 0.5) * 2.0
|
84 |
+
|
85 |
+
class StageC_coder(nn.Module):
|
86 |
+
def __init__(self):
|
87 |
+
super().__init__()
|
88 |
+
self.previewer = Previewer()
|
89 |
+
self.encoder = EfficientNetEncoder()
|
90 |
+
|
91 |
+
def encode(self, x):
|
92 |
+
return self.encoder(x)
|
93 |
+
|
94 |
+
def decode(self, x):
|
95 |
+
return self.previewer(x)
|
comfy/ldm/common_dit.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import comfy.ops
|
3 |
+
|
4 |
+
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
|
5 |
+
if padding_mode == "circular" and (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
6 |
+
padding_mode = "reflect"
|
7 |
+
|
8 |
+
pad = ()
|
9 |
+
for i in range(img.ndim - 2):
|
10 |
+
pad = (0, (patch_size[i] - img.shape[i + 2] % patch_size[i]) % patch_size[i]) + pad
|
11 |
+
|
12 |
+
return torch.nn.functional.pad(img, pad, mode=padding_mode)
|
13 |
+
|
14 |
+
try:
|
15 |
+
rms_norm_torch = torch.nn.functional.rms_norm
|
16 |
+
except:
|
17 |
+
rms_norm_torch = None
|
18 |
+
|
19 |
+
def rms_norm(x, weight=None, eps=1e-6):
|
20 |
+
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
21 |
+
if weight is None:
|
22 |
+
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
|
23 |
+
else:
|
24 |
+
return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
|
25 |
+
else:
|
26 |
+
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
|
27 |
+
if weight is None:
|
28 |
+
return r
|
29 |
+
else:
|
30 |
+
return r * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)
|
comfy/ldm/cosmos/blocks.py
ADDED
@@ -0,0 +1,808 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import math
|
17 |
+
from typing import Optional
|
18 |
+
import logging
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
from einops import rearrange, repeat
|
23 |
+
from einops.layers.torch import Rearrange
|
24 |
+
from torch import nn
|
25 |
+
|
26 |
+
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
|
27 |
+
from comfy.ldm.modules.attention import optimized_attention
|
28 |
+
|
29 |
+
|
30 |
+
def apply_rotary_pos_emb(
|
31 |
+
t: torch.Tensor,
|
32 |
+
freqs: torch.Tensor,
|
33 |
+
) -> torch.Tensor:
|
34 |
+
t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float()
|
35 |
+
t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1]
|
36 |
+
t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t)
|
37 |
+
return t_out
|
38 |
+
|
39 |
+
|
40 |
+
def get_normalization(name: str, channels: int, weight_args={}):
|
41 |
+
if name == "I":
|
42 |
+
return nn.Identity()
|
43 |
+
elif name == "R":
|
44 |
+
return RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
|
45 |
+
else:
|
46 |
+
raise ValueError(f"Normalization {name} not found")
|
47 |
+
|
48 |
+
|
49 |
+
class BaseAttentionOp(nn.Module):
|
50 |
+
def __init__(self):
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
|
54 |
+
class Attention(nn.Module):
|
55 |
+
"""
|
56 |
+
Generalized attention impl.
|
57 |
+
|
58 |
+
Allowing for both self-attention and cross-attention configurations depending on whether a `context_dim` is provided.
|
59 |
+
If `context_dim` is None, self-attention is assumed.
|
60 |
+
|
61 |
+
Parameters:
|
62 |
+
query_dim (int): Dimension of each query vector.
|
63 |
+
context_dim (int, optional): Dimension of each context vector. If None, self-attention is assumed.
|
64 |
+
heads (int, optional): Number of attention heads. Defaults to 8.
|
65 |
+
dim_head (int, optional): Dimension of each head. Defaults to 64.
|
66 |
+
dropout (float, optional): Dropout rate applied to the output of the attention block. Defaults to 0.0.
|
67 |
+
attn_op (BaseAttentionOp, optional): Custom attention operation to be used instead of the default.
|
68 |
+
qkv_bias (bool, optional): If True, adds a learnable bias to query, key, and value projections. Defaults to False.
|
69 |
+
out_bias (bool, optional): If True, adds a learnable bias to the output projection. Defaults to False.
|
70 |
+
qkv_norm (str, optional): A string representing normalization strategies for query, key, and value projections.
|
71 |
+
Defaults to "SSI".
|
72 |
+
qkv_norm_mode (str, optional): A string representing normalization mode for query, key, and value projections.
|
73 |
+
Defaults to 'per_head'. Only support 'per_head'.
|
74 |
+
|
75 |
+
Examples:
|
76 |
+
>>> attn = Attention(query_dim=128, context_dim=256, heads=4, dim_head=32, dropout=0.1)
|
77 |
+
>>> query = torch.randn(10, 128) # Batch size of 10
|
78 |
+
>>> context = torch.randn(10, 256) # Batch size of 10
|
79 |
+
>>> output = attn(query, context) # Perform the attention operation
|
80 |
+
|
81 |
+
Note:
|
82 |
+
https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
83 |
+
"""
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
query_dim: int,
|
88 |
+
context_dim=None,
|
89 |
+
heads=8,
|
90 |
+
dim_head=64,
|
91 |
+
dropout=0.0,
|
92 |
+
attn_op: Optional[BaseAttentionOp] = None,
|
93 |
+
qkv_bias: bool = False,
|
94 |
+
out_bias: bool = False,
|
95 |
+
qkv_norm: str = "SSI",
|
96 |
+
qkv_norm_mode: str = "per_head",
|
97 |
+
backend: str = "transformer_engine",
|
98 |
+
qkv_format: str = "bshd",
|
99 |
+
weight_args={},
|
100 |
+
operations=None,
|
101 |
+
) -> None:
|
102 |
+
super().__init__()
|
103 |
+
|
104 |
+
self.is_selfattn = context_dim is None # self attention
|
105 |
+
|
106 |
+
inner_dim = dim_head * heads
|
107 |
+
context_dim = query_dim if context_dim is None else context_dim
|
108 |
+
|
109 |
+
self.heads = heads
|
110 |
+
self.dim_head = dim_head
|
111 |
+
self.qkv_norm_mode = qkv_norm_mode
|
112 |
+
self.qkv_format = qkv_format
|
113 |
+
|
114 |
+
if self.qkv_norm_mode == "per_head":
|
115 |
+
norm_dim = dim_head
|
116 |
+
else:
|
117 |
+
raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'")
|
118 |
+
|
119 |
+
self.backend = backend
|
120 |
+
|
121 |
+
self.to_q = nn.Sequential(
|
122 |
+
operations.Linear(query_dim, inner_dim, bias=qkv_bias, **weight_args),
|
123 |
+
get_normalization(qkv_norm[0], norm_dim),
|
124 |
+
)
|
125 |
+
self.to_k = nn.Sequential(
|
126 |
+
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
|
127 |
+
get_normalization(qkv_norm[1], norm_dim),
|
128 |
+
)
|
129 |
+
self.to_v = nn.Sequential(
|
130 |
+
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
|
131 |
+
get_normalization(qkv_norm[2], norm_dim),
|
132 |
+
)
|
133 |
+
|
134 |
+
self.to_out = nn.Sequential(
|
135 |
+
operations.Linear(inner_dim, query_dim, bias=out_bias, **weight_args),
|
136 |
+
nn.Dropout(dropout),
|
137 |
+
)
|
138 |
+
|
139 |
+
def cal_qkv(
|
140 |
+
self, x, context=None, mask=None, rope_emb=None, **kwargs
|
141 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
142 |
+
del kwargs
|
143 |
+
|
144 |
+
|
145 |
+
"""
|
146 |
+
self.to_q, self.to_k, self.to_v are nn.Sequential with projection + normalization layers.
|
147 |
+
Before 07/24/2024, these modules normalize across all heads.
|
148 |
+
After 07/24/2024, to support tensor parallelism and follow the common practice in the community,
|
149 |
+
we support to normalize per head.
|
150 |
+
To keep the checkpoint copatibility with the previous code,
|
151 |
+
we keep the nn.Sequential but call the projection and the normalization layers separately.
|
152 |
+
We use a flag `self.qkv_norm_mode` to control the normalization behavior.
|
153 |
+
The default value of `self.qkv_norm_mode` is "per_head", which means we normalize per head.
|
154 |
+
"""
|
155 |
+
if self.qkv_norm_mode == "per_head":
|
156 |
+
q = self.to_q[0](x)
|
157 |
+
context = x if context is None else context
|
158 |
+
k = self.to_k[0](context)
|
159 |
+
v = self.to_v[0](context)
|
160 |
+
q, k, v = map(
|
161 |
+
lambda t: rearrange(t, "s b (n c) -> b n s c", n=self.heads, c=self.dim_head),
|
162 |
+
(q, k, v),
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'")
|
166 |
+
|
167 |
+
q = self.to_q[1](q)
|
168 |
+
k = self.to_k[1](k)
|
169 |
+
v = self.to_v[1](v)
|
170 |
+
if self.is_selfattn and rope_emb is not None: # only apply to self-attention!
|
171 |
+
# apply_rotary_pos_emb inlined
|
172 |
+
q_shape = q.shape
|
173 |
+
q = q.reshape(*q.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2)
|
174 |
+
q = rope_emb[..., 0] * q[..., 0] + rope_emb[..., 1] * q[..., 1]
|
175 |
+
q = q.movedim(-1, -2).reshape(*q_shape).to(x.dtype)
|
176 |
+
|
177 |
+
# apply_rotary_pos_emb inlined
|
178 |
+
k_shape = k.shape
|
179 |
+
k = k.reshape(*k.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2)
|
180 |
+
k = rope_emb[..., 0] * k[..., 0] + rope_emb[..., 1] * k[..., 1]
|
181 |
+
k = k.movedim(-1, -2).reshape(*k_shape).to(x.dtype)
|
182 |
+
return q, k, v
|
183 |
+
|
184 |
+
def forward(
|
185 |
+
self,
|
186 |
+
x,
|
187 |
+
context=None,
|
188 |
+
mask=None,
|
189 |
+
rope_emb=None,
|
190 |
+
**kwargs,
|
191 |
+
):
|
192 |
+
"""
|
193 |
+
Args:
|
194 |
+
x (Tensor): The query tensor of shape [B, Mq, K]
|
195 |
+
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
|
196 |
+
"""
|
197 |
+
q, k, v = self.cal_qkv(x, context, mask, rope_emb=rope_emb, **kwargs)
|
198 |
+
out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True)
|
199 |
+
del q, k, v
|
200 |
+
out = rearrange(out, " b n s c -> s b (n c)")
|
201 |
+
return self.to_out(out)
|
202 |
+
|
203 |
+
|
204 |
+
class FeedForward(nn.Module):
|
205 |
+
"""
|
206 |
+
Transformer FFN with optional gating
|
207 |
+
|
208 |
+
Parameters:
|
209 |
+
d_model (int): Dimensionality of input features.
|
210 |
+
d_ff (int): Dimensionality of the hidden layer.
|
211 |
+
dropout (float, optional): Dropout rate applied after the activation function. Defaults to 0.1.
|
212 |
+
activation (callable, optional): The activation function applied after the first linear layer.
|
213 |
+
Defaults to nn.ReLU().
|
214 |
+
is_gated (bool, optional): If set to True, incorporates gating mechanism to the feed-forward layer.
|
215 |
+
Defaults to False.
|
216 |
+
bias (bool, optional): If set to True, adds a bias to the linear layers. Defaults to True.
|
217 |
+
|
218 |
+
Example:
|
219 |
+
>>> ff = FeedForward(d_model=512, d_ff=2048)
|
220 |
+
>>> x = torch.randn(64, 10, 512) # Example input tensor
|
221 |
+
>>> output = ff(x)
|
222 |
+
>>> print(output.shape) # Expected shape: (64, 10, 512)
|
223 |
+
"""
|
224 |
+
|
225 |
+
def __init__(
|
226 |
+
self,
|
227 |
+
d_model: int,
|
228 |
+
d_ff: int,
|
229 |
+
dropout: float = 0.1,
|
230 |
+
activation=nn.ReLU(),
|
231 |
+
is_gated: bool = False,
|
232 |
+
bias: bool = False,
|
233 |
+
weight_args={},
|
234 |
+
operations=None,
|
235 |
+
) -> None:
|
236 |
+
super().__init__()
|
237 |
+
|
238 |
+
self.layer1 = operations.Linear(d_model, d_ff, bias=bias, **weight_args)
|
239 |
+
self.layer2 = operations.Linear(d_ff, d_model, bias=bias, **weight_args)
|
240 |
+
|
241 |
+
self.dropout = nn.Dropout(dropout)
|
242 |
+
self.activation = activation
|
243 |
+
self.is_gated = is_gated
|
244 |
+
if is_gated:
|
245 |
+
self.linear_gate = operations.Linear(d_model, d_ff, bias=False, **weight_args)
|
246 |
+
|
247 |
+
def forward(self, x: torch.Tensor):
|
248 |
+
g = self.activation(self.layer1(x))
|
249 |
+
if self.is_gated:
|
250 |
+
x = g * self.linear_gate(x)
|
251 |
+
else:
|
252 |
+
x = g
|
253 |
+
assert self.dropout.p == 0.0, "we skip dropout"
|
254 |
+
return self.layer2(x)
|
255 |
+
|
256 |
+
|
257 |
+
class GPT2FeedForward(FeedForward):
|
258 |
+
def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1, bias: bool = False, weight_args={}, operations=None):
|
259 |
+
super().__init__(
|
260 |
+
d_model=d_model,
|
261 |
+
d_ff=d_ff,
|
262 |
+
dropout=dropout,
|
263 |
+
activation=nn.GELU(),
|
264 |
+
is_gated=False,
|
265 |
+
bias=bias,
|
266 |
+
weight_args=weight_args,
|
267 |
+
operations=operations,
|
268 |
+
)
|
269 |
+
|
270 |
+
def forward(self, x: torch.Tensor):
|
271 |
+
assert self.dropout.p == 0.0, "we skip dropout"
|
272 |
+
|
273 |
+
x = self.layer1(x)
|
274 |
+
x = self.activation(x)
|
275 |
+
x = self.layer2(x)
|
276 |
+
|
277 |
+
return x
|
278 |
+
|
279 |
+
|
280 |
+
def modulate(x, shift, scale):
|
281 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
282 |
+
|
283 |
+
|
284 |
+
class Timesteps(nn.Module):
|
285 |
+
def __init__(self, num_channels):
|
286 |
+
super().__init__()
|
287 |
+
self.num_channels = num_channels
|
288 |
+
|
289 |
+
def forward(self, timesteps):
|
290 |
+
half_dim = self.num_channels // 2
|
291 |
+
exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device)
|
292 |
+
exponent = exponent / (half_dim - 0.0)
|
293 |
+
|
294 |
+
emb = torch.exp(exponent)
|
295 |
+
emb = timesteps[:, None].float() * emb[None, :]
|
296 |
+
|
297 |
+
sin_emb = torch.sin(emb)
|
298 |
+
cos_emb = torch.cos(emb)
|
299 |
+
emb = torch.cat([cos_emb, sin_emb], dim=-1)
|
300 |
+
|
301 |
+
return emb
|
302 |
+
|
303 |
+
|
304 |
+
class TimestepEmbedding(nn.Module):
|
305 |
+
def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False, weight_args={}, operations=None):
|
306 |
+
super().__init__()
|
307 |
+
logging.debug(
|
308 |
+
f"Using AdaLN LoRA Flag: {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility."
|
309 |
+
)
|
310 |
+
self.linear_1 = operations.Linear(in_features, out_features, bias=not use_adaln_lora, **weight_args)
|
311 |
+
self.activation = nn.SiLU()
|
312 |
+
self.use_adaln_lora = use_adaln_lora
|
313 |
+
if use_adaln_lora:
|
314 |
+
self.linear_2 = operations.Linear(out_features, 3 * out_features, bias=False, **weight_args)
|
315 |
+
else:
|
316 |
+
self.linear_2 = operations.Linear(out_features, out_features, bias=True, **weight_args)
|
317 |
+
|
318 |
+
def forward(self, sample: torch.Tensor) -> torch.Tensor:
|
319 |
+
emb = self.linear_1(sample)
|
320 |
+
emb = self.activation(emb)
|
321 |
+
emb = self.linear_2(emb)
|
322 |
+
|
323 |
+
if self.use_adaln_lora:
|
324 |
+
adaln_lora_B_3D = emb
|
325 |
+
emb_B_D = sample
|
326 |
+
else:
|
327 |
+
emb_B_D = emb
|
328 |
+
adaln_lora_B_3D = None
|
329 |
+
|
330 |
+
return emb_B_D, adaln_lora_B_3D
|
331 |
+
|
332 |
+
|
333 |
+
class FourierFeatures(nn.Module):
|
334 |
+
"""
|
335 |
+
Implements a layer that generates Fourier features from input tensors, based on randomly sampled
|
336 |
+
frequencies and phases. This can help in learning high-frequency functions in low-dimensional problems.
|
337 |
+
|
338 |
+
[B] -> [B, D]
|
339 |
+
|
340 |
+
Parameters:
|
341 |
+
num_channels (int): The number of Fourier features to generate.
|
342 |
+
bandwidth (float, optional): The scaling factor for the frequency of the Fourier features. Defaults to 1.
|
343 |
+
normalize (bool, optional): If set to True, the outputs are scaled by sqrt(2), usually to normalize
|
344 |
+
the variance of the features. Defaults to False.
|
345 |
+
|
346 |
+
Example:
|
347 |
+
>>> layer = FourierFeatures(num_channels=256, bandwidth=0.5, normalize=True)
|
348 |
+
>>> x = torch.randn(10, 256) # Example input tensor
|
349 |
+
>>> output = layer(x)
|
350 |
+
>>> print(output.shape) # Expected shape: (10, 256)
|
351 |
+
"""
|
352 |
+
|
353 |
+
def __init__(self, num_channels, bandwidth=1, normalize=False):
|
354 |
+
super().__init__()
|
355 |
+
self.register_buffer("freqs", 2 * np.pi * bandwidth * torch.randn(num_channels), persistent=True)
|
356 |
+
self.register_buffer("phases", 2 * np.pi * torch.rand(num_channels), persistent=True)
|
357 |
+
self.gain = np.sqrt(2) if normalize else 1
|
358 |
+
|
359 |
+
def forward(self, x, gain: float = 1.0):
|
360 |
+
"""
|
361 |
+
Apply the Fourier feature transformation to the input tensor.
|
362 |
+
|
363 |
+
Args:
|
364 |
+
x (torch.Tensor): The input tensor.
|
365 |
+
gain (float, optional): An additional gain factor applied during the forward pass. Defaults to 1.
|
366 |
+
|
367 |
+
Returns:
|
368 |
+
torch.Tensor: The transformed tensor, with Fourier features applied.
|
369 |
+
"""
|
370 |
+
in_dtype = x.dtype
|
371 |
+
x = x.to(torch.float32).ger(self.freqs.to(torch.float32)).add(self.phases.to(torch.float32))
|
372 |
+
x = x.cos().mul(self.gain * gain).to(in_dtype)
|
373 |
+
return x
|
374 |
+
|
375 |
+
|
376 |
+
class PatchEmbed(nn.Module):
|
377 |
+
"""
|
378 |
+
PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers,
|
379 |
+
depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions,
|
380 |
+
making it suitable for video and image processing tasks. It supports dividing the input into patches
|
381 |
+
and embedding each patch into a vector of size `out_channels`.
|
382 |
+
|
383 |
+
Parameters:
|
384 |
+
- spatial_patch_size (int): The size of each spatial patch.
|
385 |
+
- temporal_patch_size (int): The size of each temporal patch.
|
386 |
+
- in_channels (int): Number of input channels. Default: 3.
|
387 |
+
- out_channels (int): The dimension of the embedding vector for each patch. Default: 768.
|
388 |
+
- bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True.
|
389 |
+
"""
|
390 |
+
|
391 |
+
def __init__(
|
392 |
+
self,
|
393 |
+
spatial_patch_size,
|
394 |
+
temporal_patch_size,
|
395 |
+
in_channels=3,
|
396 |
+
out_channels=768,
|
397 |
+
bias=True,
|
398 |
+
weight_args={},
|
399 |
+
operations=None,
|
400 |
+
):
|
401 |
+
super().__init__()
|
402 |
+
self.spatial_patch_size = spatial_patch_size
|
403 |
+
self.temporal_patch_size = temporal_patch_size
|
404 |
+
|
405 |
+
self.proj = nn.Sequential(
|
406 |
+
Rearrange(
|
407 |
+
"b c (t r) (h m) (w n) -> b t h w (c r m n)",
|
408 |
+
r=temporal_patch_size,
|
409 |
+
m=spatial_patch_size,
|
410 |
+
n=spatial_patch_size,
|
411 |
+
),
|
412 |
+
operations.Linear(
|
413 |
+
in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=bias, **weight_args
|
414 |
+
),
|
415 |
+
)
|
416 |
+
self.out = nn.Identity()
|
417 |
+
|
418 |
+
def forward(self, x):
|
419 |
+
"""
|
420 |
+
Forward pass of the PatchEmbed module.
|
421 |
+
|
422 |
+
Parameters:
|
423 |
+
- x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where
|
424 |
+
B is the batch size,
|
425 |
+
C is the number of channels,
|
426 |
+
T is the temporal dimension,
|
427 |
+
H is the height, and
|
428 |
+
W is the width of the input.
|
429 |
+
|
430 |
+
Returns:
|
431 |
+
- torch.Tensor: The embedded patches as a tensor, with shape b t h w c.
|
432 |
+
"""
|
433 |
+
assert x.dim() == 5
|
434 |
+
_, _, T, H, W = x.shape
|
435 |
+
assert H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0
|
436 |
+
assert T % self.temporal_patch_size == 0
|
437 |
+
x = self.proj(x)
|
438 |
+
return self.out(x)
|
439 |
+
|
440 |
+
|
441 |
+
class FinalLayer(nn.Module):
|
442 |
+
"""
|
443 |
+
The final layer of video DiT.
|
444 |
+
"""
|
445 |
+
|
446 |
+
def __init__(
|
447 |
+
self,
|
448 |
+
hidden_size,
|
449 |
+
spatial_patch_size,
|
450 |
+
temporal_patch_size,
|
451 |
+
out_channels,
|
452 |
+
use_adaln_lora: bool = False,
|
453 |
+
adaln_lora_dim: int = 256,
|
454 |
+
weight_args={},
|
455 |
+
operations=None,
|
456 |
+
):
|
457 |
+
super().__init__()
|
458 |
+
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **weight_args)
|
459 |
+
self.linear = operations.Linear(
|
460 |
+
hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, **weight_args
|
461 |
+
)
|
462 |
+
self.hidden_size = hidden_size
|
463 |
+
self.n_adaln_chunks = 2
|
464 |
+
self.use_adaln_lora = use_adaln_lora
|
465 |
+
if use_adaln_lora:
|
466 |
+
self.adaLN_modulation = nn.Sequential(
|
467 |
+
nn.SiLU(),
|
468 |
+
operations.Linear(hidden_size, adaln_lora_dim, bias=False, **weight_args),
|
469 |
+
operations.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False, **weight_args),
|
470 |
+
)
|
471 |
+
else:
|
472 |
+
self.adaLN_modulation = nn.Sequential(
|
473 |
+
nn.SiLU(), operations.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False, **weight_args)
|
474 |
+
)
|
475 |
+
|
476 |
+
def forward(
|
477 |
+
self,
|
478 |
+
x_BT_HW_D,
|
479 |
+
emb_B_D,
|
480 |
+
adaln_lora_B_3D: Optional[torch.Tensor] = None,
|
481 |
+
):
|
482 |
+
if self.use_adaln_lora:
|
483 |
+
assert adaln_lora_B_3D is not None
|
484 |
+
shift_B_D, scale_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D[:, : 2 * self.hidden_size]).chunk(
|
485 |
+
2, dim=1
|
486 |
+
)
|
487 |
+
else:
|
488 |
+
shift_B_D, scale_B_D = self.adaLN_modulation(emb_B_D).chunk(2, dim=1)
|
489 |
+
|
490 |
+
B = emb_B_D.shape[0]
|
491 |
+
T = x_BT_HW_D.shape[0] // B
|
492 |
+
shift_BT_D, scale_BT_D = repeat(shift_B_D, "b d -> (b t) d", t=T), repeat(scale_B_D, "b d -> (b t) d", t=T)
|
493 |
+
x_BT_HW_D = modulate(self.norm_final(x_BT_HW_D), shift_BT_D, scale_BT_D)
|
494 |
+
|
495 |
+
x_BT_HW_D = self.linear(x_BT_HW_D)
|
496 |
+
return x_BT_HW_D
|
497 |
+
|
498 |
+
|
499 |
+
class VideoAttn(nn.Module):
|
500 |
+
"""
|
501 |
+
Implements video attention with optional cross-attention capabilities.
|
502 |
+
|
503 |
+
This module processes video features while maintaining their spatio-temporal structure. It can perform
|
504 |
+
self-attention within the video features or cross-attention with external context features.
|
505 |
+
|
506 |
+
Parameters:
|
507 |
+
x_dim (int): Dimension of input feature vectors
|
508 |
+
context_dim (Optional[int]): Dimension of context features for cross-attention. None for self-attention
|
509 |
+
num_heads (int): Number of attention heads
|
510 |
+
bias (bool): Whether to include bias in attention projections. Default: False
|
511 |
+
qkv_norm_mode (str): Normalization mode for query/key/value projections. Must be "per_head". Default: "per_head"
|
512 |
+
x_format (str): Format of input tensor. Must be "BTHWD". Default: "BTHWD"
|
513 |
+
|
514 |
+
Input shape:
|
515 |
+
- x: (T, H, W, B, D) video features
|
516 |
+
- context (optional): (M, B, D) context features for cross-attention
|
517 |
+
where:
|
518 |
+
T: temporal dimension
|
519 |
+
H: height
|
520 |
+
W: width
|
521 |
+
B: batch size
|
522 |
+
D: feature dimension
|
523 |
+
M: context sequence length
|
524 |
+
"""
|
525 |
+
|
526 |
+
def __init__(
|
527 |
+
self,
|
528 |
+
x_dim: int,
|
529 |
+
context_dim: Optional[int],
|
530 |
+
num_heads: int,
|
531 |
+
bias: bool = False,
|
532 |
+
qkv_norm_mode: str = "per_head",
|
533 |
+
x_format: str = "BTHWD",
|
534 |
+
weight_args={},
|
535 |
+
operations=None,
|
536 |
+
) -> None:
|
537 |
+
super().__init__()
|
538 |
+
self.x_format = x_format
|
539 |
+
|
540 |
+
self.attn = Attention(
|
541 |
+
x_dim,
|
542 |
+
context_dim,
|
543 |
+
num_heads,
|
544 |
+
x_dim // num_heads,
|
545 |
+
qkv_bias=bias,
|
546 |
+
qkv_norm="RRI",
|
547 |
+
out_bias=bias,
|
548 |
+
qkv_norm_mode=qkv_norm_mode,
|
549 |
+
qkv_format="sbhd",
|
550 |
+
weight_args=weight_args,
|
551 |
+
operations=operations,
|
552 |
+
)
|
553 |
+
|
554 |
+
def forward(
|
555 |
+
self,
|
556 |
+
x: torch.Tensor,
|
557 |
+
context: Optional[torch.Tensor] = None,
|
558 |
+
crossattn_mask: Optional[torch.Tensor] = None,
|
559 |
+
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
|
560 |
+
) -> torch.Tensor:
|
561 |
+
"""
|
562 |
+
Forward pass for video attention.
|
563 |
+
|
564 |
+
Args:
|
565 |
+
x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D) representing batches of video data.
|
566 |
+
context (Tensor): Context tensor of shape (B, M, D) or (M, B, D),
|
567 |
+
where M is the sequence length of the context.
|
568 |
+
crossattn_mask (Optional[Tensor]): An optional mask for cross-attention mechanisms.
|
569 |
+
rope_emb_L_1_1_D (Optional[Tensor]):
|
570 |
+
Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training.
|
571 |
+
|
572 |
+
Returns:
|
573 |
+
Tensor: The output tensor with applied attention, maintaining the input shape.
|
574 |
+
"""
|
575 |
+
|
576 |
+
x_T_H_W_B_D = x
|
577 |
+
context_M_B_D = context
|
578 |
+
T, H, W, B, D = x_T_H_W_B_D.shape
|
579 |
+
x_THW_B_D = rearrange(x_T_H_W_B_D, "t h w b d -> (t h w) b d")
|
580 |
+
x_THW_B_D = self.attn(
|
581 |
+
x_THW_B_D,
|
582 |
+
context_M_B_D,
|
583 |
+
crossattn_mask,
|
584 |
+
rope_emb=rope_emb_L_1_1_D,
|
585 |
+
)
|
586 |
+
x_T_H_W_B_D = rearrange(x_THW_B_D, "(t h w) b d -> t h w b d", h=H, w=W)
|
587 |
+
return x_T_H_W_B_D
|
588 |
+
|
589 |
+
|
590 |
+
def adaln_norm_state(norm_state, x, scale, shift):
|
591 |
+
normalized = norm_state(x)
|
592 |
+
return normalized * (1 + scale) + shift
|
593 |
+
|
594 |
+
|
595 |
+
class DITBuildingBlock(nn.Module):
|
596 |
+
"""
|
597 |
+
A building block for the DiT (Diffusion Transformer) architecture that supports different types of
|
598 |
+
attention and MLP operations with adaptive layer normalization.
|
599 |
+
|
600 |
+
Parameters:
|
601 |
+
block_type (str): Type of block - one of:
|
602 |
+
- "cross_attn"/"ca": Cross-attention
|
603 |
+
- "full_attn"/"fa": Full self-attention
|
604 |
+
- "mlp"/"ff": MLP/feedforward block
|
605 |
+
x_dim (int): Dimension of input features
|
606 |
+
context_dim (Optional[int]): Dimension of context features for cross-attention
|
607 |
+
num_heads (int): Number of attention heads
|
608 |
+
mlp_ratio (float): MLP hidden dimension multiplier. Default: 4.0
|
609 |
+
bias (bool): Whether to use bias in layers. Default: False
|
610 |
+
mlp_dropout (float): Dropout rate for MLP. Default: 0.0
|
611 |
+
qkv_norm_mode (str): QKV normalization mode. Default: "per_head"
|
612 |
+
x_format (str): Input tensor format. Default: "BTHWD"
|
613 |
+
use_adaln_lora (bool): Whether to use AdaLN-LoRA. Default: False
|
614 |
+
adaln_lora_dim (int): Dimension for AdaLN-LoRA. Default: 256
|
615 |
+
"""
|
616 |
+
|
617 |
+
def __init__(
|
618 |
+
self,
|
619 |
+
block_type: str,
|
620 |
+
x_dim: int,
|
621 |
+
context_dim: Optional[int],
|
622 |
+
num_heads: int,
|
623 |
+
mlp_ratio: float = 4.0,
|
624 |
+
bias: bool = False,
|
625 |
+
mlp_dropout: float = 0.0,
|
626 |
+
qkv_norm_mode: str = "per_head",
|
627 |
+
x_format: str = "BTHWD",
|
628 |
+
use_adaln_lora: bool = False,
|
629 |
+
adaln_lora_dim: int = 256,
|
630 |
+
weight_args={},
|
631 |
+
operations=None
|
632 |
+
) -> None:
|
633 |
+
block_type = block_type.lower()
|
634 |
+
|
635 |
+
super().__init__()
|
636 |
+
self.x_format = x_format
|
637 |
+
if block_type in ["cross_attn", "ca"]:
|
638 |
+
self.block = VideoAttn(
|
639 |
+
x_dim,
|
640 |
+
context_dim,
|
641 |
+
num_heads,
|
642 |
+
bias=bias,
|
643 |
+
qkv_norm_mode=qkv_norm_mode,
|
644 |
+
x_format=self.x_format,
|
645 |
+
weight_args=weight_args,
|
646 |
+
operations=operations,
|
647 |
+
)
|
648 |
+
elif block_type in ["full_attn", "fa"]:
|
649 |
+
self.block = VideoAttn(
|
650 |
+
x_dim, None, num_heads, bias=bias, qkv_norm_mode=qkv_norm_mode, x_format=self.x_format, weight_args=weight_args, operations=operations
|
651 |
+
)
|
652 |
+
elif block_type in ["mlp", "ff"]:
|
653 |
+
self.block = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), dropout=mlp_dropout, bias=bias, weight_args=weight_args, operations=operations)
|
654 |
+
else:
|
655 |
+
raise ValueError(f"Unknown block type: {block_type}")
|
656 |
+
|
657 |
+
self.block_type = block_type
|
658 |
+
self.use_adaln_lora = use_adaln_lora
|
659 |
+
|
660 |
+
self.norm_state = nn.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6)
|
661 |
+
self.n_adaln_chunks = 3
|
662 |
+
if use_adaln_lora:
|
663 |
+
self.adaLN_modulation = nn.Sequential(
|
664 |
+
nn.SiLU(),
|
665 |
+
operations.Linear(x_dim, adaln_lora_dim, bias=False, **weight_args),
|
666 |
+
operations.Linear(adaln_lora_dim, self.n_adaln_chunks * x_dim, bias=False, **weight_args),
|
667 |
+
)
|
668 |
+
else:
|
669 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, self.n_adaln_chunks * x_dim, bias=False, **weight_args))
|
670 |
+
|
671 |
+
def forward(
|
672 |
+
self,
|
673 |
+
x: torch.Tensor,
|
674 |
+
emb_B_D: torch.Tensor,
|
675 |
+
crossattn_emb: torch.Tensor,
|
676 |
+
crossattn_mask: Optional[torch.Tensor] = None,
|
677 |
+
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
|
678 |
+
adaln_lora_B_3D: Optional[torch.Tensor] = None,
|
679 |
+
) -> torch.Tensor:
|
680 |
+
"""
|
681 |
+
Forward pass for dynamically configured blocks with adaptive normalization.
|
682 |
+
|
683 |
+
Args:
|
684 |
+
x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D).
|
685 |
+
emb_B_D (Tensor): Embedding tensor for adaptive layer normalization modulation.
|
686 |
+
crossattn_emb (Tensor): Tensor for cross-attention blocks.
|
687 |
+
crossattn_mask (Optional[Tensor]): Optional mask for cross-attention.
|
688 |
+
rope_emb_L_1_1_D (Optional[Tensor]):
|
689 |
+
Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training.
|
690 |
+
|
691 |
+
Returns:
|
692 |
+
Tensor: The output tensor after processing through the configured block and adaptive normalization.
|
693 |
+
"""
|
694 |
+
if self.use_adaln_lora:
|
695 |
+
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk(
|
696 |
+
self.n_adaln_chunks, dim=1
|
697 |
+
)
|
698 |
+
else:
|
699 |
+
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1)
|
700 |
+
|
701 |
+
shift_1_1_1_B_D, scale_1_1_1_B_D, gate_1_1_1_B_D = (
|
702 |
+
shift_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
|
703 |
+
scale_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
|
704 |
+
gate_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
|
705 |
+
)
|
706 |
+
|
707 |
+
if self.block_type in ["mlp", "ff"]:
|
708 |
+
x = x + gate_1_1_1_B_D * self.block(
|
709 |
+
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
|
710 |
+
)
|
711 |
+
elif self.block_type in ["full_attn", "fa"]:
|
712 |
+
x = x + gate_1_1_1_B_D * self.block(
|
713 |
+
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
|
714 |
+
context=None,
|
715 |
+
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
|
716 |
+
)
|
717 |
+
elif self.block_type in ["cross_attn", "ca"]:
|
718 |
+
x = x + gate_1_1_1_B_D * self.block(
|
719 |
+
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
|
720 |
+
context=crossattn_emb,
|
721 |
+
crossattn_mask=crossattn_mask,
|
722 |
+
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
|
723 |
+
)
|
724 |
+
else:
|
725 |
+
raise ValueError(f"Unknown block type: {self.block_type}")
|
726 |
+
|
727 |
+
return x
|
728 |
+
|
729 |
+
|
730 |
+
class GeneralDITTransformerBlock(nn.Module):
|
731 |
+
"""
|
732 |
+
A wrapper module that manages a sequence of DITBuildingBlocks to form a complete transformer layer.
|
733 |
+
Each block in the sequence is specified by a block configuration string.
|
734 |
+
|
735 |
+
Parameters:
|
736 |
+
x_dim (int): Dimension of input features
|
737 |
+
context_dim (int): Dimension of context features for cross-attention blocks
|
738 |
+
num_heads (int): Number of attention heads
|
739 |
+
block_config (str): String specifying block sequence (e.g. "ca-fa-mlp" for cross-attention,
|
740 |
+
full-attention, then MLP)
|
741 |
+
mlp_ratio (float): MLP hidden dimension multiplier. Default: 4.0
|
742 |
+
x_format (str): Input tensor format. Default: "BTHWD"
|
743 |
+
use_adaln_lora (bool): Whether to use AdaLN-LoRA. Default: False
|
744 |
+
adaln_lora_dim (int): Dimension for AdaLN-LoRA. Default: 256
|
745 |
+
|
746 |
+
The block_config string uses "-" to separate block types:
|
747 |
+
- "ca"/"cross_attn": Cross-attention block
|
748 |
+
- "fa"/"full_attn": Full self-attention block
|
749 |
+
- "mlp"/"ff": MLP/feedforward block
|
750 |
+
|
751 |
+
Example:
|
752 |
+
block_config = "ca-fa-mlp" creates a sequence of:
|
753 |
+
1. Cross-attention block
|
754 |
+
2. Full self-attention block
|
755 |
+
3. MLP block
|
756 |
+
"""
|
757 |
+
|
758 |
+
def __init__(
|
759 |
+
self,
|
760 |
+
x_dim: int,
|
761 |
+
context_dim: int,
|
762 |
+
num_heads: int,
|
763 |
+
block_config: str,
|
764 |
+
mlp_ratio: float = 4.0,
|
765 |
+
x_format: str = "BTHWD",
|
766 |
+
use_adaln_lora: bool = False,
|
767 |
+
adaln_lora_dim: int = 256,
|
768 |
+
weight_args={},
|
769 |
+
operations=None
|
770 |
+
):
|
771 |
+
super().__init__()
|
772 |
+
self.blocks = nn.ModuleList()
|
773 |
+
self.x_format = x_format
|
774 |
+
for block_type in block_config.split("-"):
|
775 |
+
self.blocks.append(
|
776 |
+
DITBuildingBlock(
|
777 |
+
block_type,
|
778 |
+
x_dim,
|
779 |
+
context_dim,
|
780 |
+
num_heads,
|
781 |
+
mlp_ratio,
|
782 |
+
x_format=self.x_format,
|
783 |
+
use_adaln_lora=use_adaln_lora,
|
784 |
+
adaln_lora_dim=adaln_lora_dim,
|
785 |
+
weight_args=weight_args,
|
786 |
+
operations=operations,
|
787 |
+
)
|
788 |
+
)
|
789 |
+
|
790 |
+
def forward(
|
791 |
+
self,
|
792 |
+
x: torch.Tensor,
|
793 |
+
emb_B_D: torch.Tensor,
|
794 |
+
crossattn_emb: torch.Tensor,
|
795 |
+
crossattn_mask: Optional[torch.Tensor] = None,
|
796 |
+
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
|
797 |
+
adaln_lora_B_3D: Optional[torch.Tensor] = None,
|
798 |
+
) -> torch.Tensor:
|
799 |
+
for block in self.blocks:
|
800 |
+
x = block(
|
801 |
+
x,
|
802 |
+
emb_B_D,
|
803 |
+
crossattn_emb,
|
804 |
+
crossattn_mask,
|
805 |
+
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
|
806 |
+
adaln_lora_B_3D=adaln_lora_B_3D,
|
807 |
+
)
|
808 |
+
return x
|
comfy/ldm/cosmos/cosmos_tokenizer/layers3d.py
ADDED
@@ -0,0 +1,1041 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""The model definition for 3D layers
|
16 |
+
|
17 |
+
Adapted from: https://github.com/lucidrains/magvit2-pytorch/blob/
|
18 |
+
9f49074179c912736e617d61b32be367eb5f993a/magvit2_pytorch/magvit2_pytorch.py#L889
|
19 |
+
|
20 |
+
[MIT License Copyright (c) 2023 Phil Wang]
|
21 |
+
https://github.com/lucidrains/magvit2-pytorch/blob/
|
22 |
+
9f49074179c912736e617d61b32be367eb5f993a/LICENSE
|
23 |
+
"""
|
24 |
+
import math
|
25 |
+
from typing import Tuple, Union
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
import torch.nn as nn
|
30 |
+
import torch.nn.functional as F
|
31 |
+
import logging
|
32 |
+
|
33 |
+
from comfy.ldm.modules.diffusionmodules.model import vae_attention
|
34 |
+
|
35 |
+
from .patching import (
|
36 |
+
Patcher,
|
37 |
+
Patcher3D,
|
38 |
+
UnPatcher,
|
39 |
+
UnPatcher3D,
|
40 |
+
)
|
41 |
+
from .utils import (
|
42 |
+
CausalNormalize,
|
43 |
+
batch2space,
|
44 |
+
batch2time,
|
45 |
+
cast_tuple,
|
46 |
+
is_odd,
|
47 |
+
nonlinearity,
|
48 |
+
replication_pad,
|
49 |
+
space2batch,
|
50 |
+
time2batch,
|
51 |
+
)
|
52 |
+
|
53 |
+
import comfy.ops
|
54 |
+
ops = comfy.ops.disable_weight_init
|
55 |
+
|
56 |
+
_LEGACY_NUM_GROUPS = 32
|
57 |
+
|
58 |
+
|
59 |
+
class CausalConv3d(nn.Module):
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
chan_in: int = 1,
|
63 |
+
chan_out: int = 1,
|
64 |
+
kernel_size: Union[int, Tuple[int, int, int]] = 3,
|
65 |
+
pad_mode: str = "constant",
|
66 |
+
**kwargs,
|
67 |
+
):
|
68 |
+
super().__init__()
|
69 |
+
kernel_size = cast_tuple(kernel_size, 3)
|
70 |
+
|
71 |
+
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size
|
72 |
+
|
73 |
+
assert is_odd(height_kernel_size) and is_odd(width_kernel_size)
|
74 |
+
|
75 |
+
dilation = kwargs.pop("dilation", 1)
|
76 |
+
stride = kwargs.pop("stride", 1)
|
77 |
+
time_stride = kwargs.pop("time_stride", 1)
|
78 |
+
time_dilation = kwargs.pop("time_dilation", 1)
|
79 |
+
padding = kwargs.pop("padding", 1)
|
80 |
+
|
81 |
+
self.pad_mode = pad_mode
|
82 |
+
time_pad = time_dilation * (time_kernel_size - 1) + (1 - time_stride)
|
83 |
+
self.time_pad = time_pad
|
84 |
+
|
85 |
+
self.spatial_pad = (padding, padding, padding, padding)
|
86 |
+
|
87 |
+
stride = (time_stride, stride, stride)
|
88 |
+
dilation = (time_dilation, dilation, dilation)
|
89 |
+
self.conv3d = ops.Conv3d(
|
90 |
+
chan_in,
|
91 |
+
chan_out,
|
92 |
+
kernel_size,
|
93 |
+
stride=stride,
|
94 |
+
dilation=dilation,
|
95 |
+
**kwargs,
|
96 |
+
)
|
97 |
+
|
98 |
+
def _replication_pad(self, x: torch.Tensor) -> torch.Tensor:
|
99 |
+
x_prev = x[:, :, :1, ...].repeat(1, 1, self.time_pad, 1, 1)
|
100 |
+
x = torch.cat([x_prev, x], dim=2)
|
101 |
+
padding = self.spatial_pad + (0, 0)
|
102 |
+
return F.pad(x, padding, mode=self.pad_mode, value=0.0)
|
103 |
+
|
104 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
105 |
+
x = self._replication_pad(x)
|
106 |
+
return self.conv3d(x)
|
107 |
+
|
108 |
+
|
109 |
+
class CausalUpsample3d(nn.Module):
|
110 |
+
def __init__(self, in_channels: int) -> None:
|
111 |
+
super().__init__()
|
112 |
+
self.conv = CausalConv3d(
|
113 |
+
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
114 |
+
)
|
115 |
+
|
116 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
117 |
+
x = x.repeat_interleave(2, dim=3).repeat_interleave(2, dim=4)
|
118 |
+
time_factor = 1.0 + 1.0 * (x.shape[2] > 1)
|
119 |
+
if isinstance(time_factor, torch.Tensor):
|
120 |
+
time_factor = time_factor.item()
|
121 |
+
x = x.repeat_interleave(int(time_factor), dim=2)
|
122 |
+
# TODO(freda): Check if this causes temporal inconsistency.
|
123 |
+
# Shoule reverse the order of the following two ops,
|
124 |
+
# better perf and better temporal smoothness.
|
125 |
+
x = self.conv(x)
|
126 |
+
return x[..., int(time_factor - 1) :, :, :]
|
127 |
+
|
128 |
+
|
129 |
+
class CausalDownsample3d(nn.Module):
|
130 |
+
def __init__(self, in_channels: int) -> None:
|
131 |
+
super().__init__()
|
132 |
+
self.conv = CausalConv3d(
|
133 |
+
in_channels,
|
134 |
+
in_channels,
|
135 |
+
kernel_size=3,
|
136 |
+
stride=2,
|
137 |
+
time_stride=2,
|
138 |
+
padding=0,
|
139 |
+
)
|
140 |
+
|
141 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
142 |
+
pad = (0, 1, 0, 1, 0, 0)
|
143 |
+
x = F.pad(x, pad, mode="constant", value=0)
|
144 |
+
x = replication_pad(x)
|
145 |
+
x = self.conv(x)
|
146 |
+
return x
|
147 |
+
|
148 |
+
|
149 |
+
class CausalHybridUpsample3d(nn.Module):
|
150 |
+
def __init__(
|
151 |
+
self,
|
152 |
+
in_channels: int,
|
153 |
+
spatial_up: bool = True,
|
154 |
+
temporal_up: bool = True,
|
155 |
+
**kwargs,
|
156 |
+
) -> None:
|
157 |
+
super().__init__()
|
158 |
+
self.spatial_up = spatial_up
|
159 |
+
self.temporal_up = temporal_up
|
160 |
+
if not self.spatial_up and not self.temporal_up:
|
161 |
+
return
|
162 |
+
|
163 |
+
self.conv1 = CausalConv3d(
|
164 |
+
in_channels,
|
165 |
+
in_channels,
|
166 |
+
kernel_size=(3, 1, 1),
|
167 |
+
stride=1,
|
168 |
+
time_stride=1,
|
169 |
+
padding=0,
|
170 |
+
)
|
171 |
+
self.conv2 = CausalConv3d(
|
172 |
+
in_channels,
|
173 |
+
in_channels,
|
174 |
+
kernel_size=(1, 3, 3),
|
175 |
+
stride=1,
|
176 |
+
time_stride=1,
|
177 |
+
padding=1,
|
178 |
+
)
|
179 |
+
self.conv3 = CausalConv3d(
|
180 |
+
in_channels,
|
181 |
+
in_channels,
|
182 |
+
kernel_size=1,
|
183 |
+
stride=1,
|
184 |
+
time_stride=1,
|
185 |
+
padding=0,
|
186 |
+
)
|
187 |
+
|
188 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
189 |
+
if not self.spatial_up and not self.temporal_up:
|
190 |
+
return x
|
191 |
+
|
192 |
+
# hybrid upsample temporally.
|
193 |
+
if self.temporal_up:
|
194 |
+
time_factor = 1.0 + 1.0 * (x.shape[2] > 1)
|
195 |
+
if isinstance(time_factor, torch.Tensor):
|
196 |
+
time_factor = time_factor.item()
|
197 |
+
x = x.repeat_interleave(int(time_factor), dim=2)
|
198 |
+
x = x[..., int(time_factor - 1) :, :, :]
|
199 |
+
x = self.conv1(x) + x
|
200 |
+
|
201 |
+
# hybrid upsample spatially.
|
202 |
+
if self.spatial_up:
|
203 |
+
x = x.repeat_interleave(2, dim=3).repeat_interleave(2, dim=4)
|
204 |
+
x = self.conv2(x) + x
|
205 |
+
|
206 |
+
# final 1x1x1 conv.
|
207 |
+
x = self.conv3(x)
|
208 |
+
return x
|
209 |
+
|
210 |
+
|
211 |
+
class CausalHybridDownsample3d(nn.Module):
|
212 |
+
def __init__(
|
213 |
+
self,
|
214 |
+
in_channels: int,
|
215 |
+
spatial_down: bool = True,
|
216 |
+
temporal_down: bool = True,
|
217 |
+
**kwargs,
|
218 |
+
) -> None:
|
219 |
+
super().__init__()
|
220 |
+
self.spatial_down = spatial_down
|
221 |
+
self.temporal_down = temporal_down
|
222 |
+
if not self.spatial_down and not self.temporal_down:
|
223 |
+
return
|
224 |
+
|
225 |
+
self.conv1 = CausalConv3d(
|
226 |
+
in_channels,
|
227 |
+
in_channels,
|
228 |
+
kernel_size=(1, 3, 3),
|
229 |
+
stride=2,
|
230 |
+
time_stride=1,
|
231 |
+
padding=0,
|
232 |
+
)
|
233 |
+
self.conv2 = CausalConv3d(
|
234 |
+
in_channels,
|
235 |
+
in_channels,
|
236 |
+
kernel_size=(3, 1, 1),
|
237 |
+
stride=1,
|
238 |
+
time_stride=2,
|
239 |
+
padding=0,
|
240 |
+
)
|
241 |
+
self.conv3 = CausalConv3d(
|
242 |
+
in_channels,
|
243 |
+
in_channels,
|
244 |
+
kernel_size=1,
|
245 |
+
stride=1,
|
246 |
+
time_stride=1,
|
247 |
+
padding=0,
|
248 |
+
)
|
249 |
+
|
250 |
+
|
251 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
252 |
+
if not self.spatial_down and not self.temporal_down:
|
253 |
+
return x
|
254 |
+
|
255 |
+
# hybrid downsample spatially.
|
256 |
+
if self.spatial_down:
|
257 |
+
pad = (0, 1, 0, 1, 0, 0)
|
258 |
+
x = F.pad(x, pad, mode="constant", value=0)
|
259 |
+
x1 = self.conv1(x)
|
260 |
+
x2 = F.avg_pool3d(x, kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
261 |
+
x = x1 + x2
|
262 |
+
|
263 |
+
# hybrid downsample temporally.
|
264 |
+
if self.temporal_down:
|
265 |
+
x = replication_pad(x)
|
266 |
+
x1 = self.conv2(x)
|
267 |
+
x2 = F.avg_pool3d(x, kernel_size=(2, 1, 1), stride=(2, 1, 1))
|
268 |
+
x = x1 + x2
|
269 |
+
|
270 |
+
# final 1x1x1 conv.
|
271 |
+
x = self.conv3(x)
|
272 |
+
return x
|
273 |
+
|
274 |
+
|
275 |
+
class CausalResnetBlock3d(nn.Module):
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
*,
|
279 |
+
in_channels: int,
|
280 |
+
out_channels: int = None,
|
281 |
+
dropout: float,
|
282 |
+
num_groups: int,
|
283 |
+
) -> None:
|
284 |
+
super().__init__()
|
285 |
+
self.in_channels = in_channels
|
286 |
+
out_channels = in_channels if out_channels is None else out_channels
|
287 |
+
|
288 |
+
self.norm1 = CausalNormalize(in_channels, num_groups=num_groups)
|
289 |
+
self.conv1 = CausalConv3d(
|
290 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
291 |
+
)
|
292 |
+
self.norm2 = CausalNormalize(out_channels, num_groups=num_groups)
|
293 |
+
self.dropout = torch.nn.Dropout(dropout)
|
294 |
+
self.conv2 = CausalConv3d(
|
295 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
296 |
+
)
|
297 |
+
self.nin_shortcut = (
|
298 |
+
CausalConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
299 |
+
if in_channels != out_channels
|
300 |
+
else nn.Identity()
|
301 |
+
)
|
302 |
+
|
303 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
304 |
+
h = x
|
305 |
+
h = self.norm1(h)
|
306 |
+
h = nonlinearity(h)
|
307 |
+
h = self.conv1(h)
|
308 |
+
|
309 |
+
h = self.norm2(h)
|
310 |
+
h = nonlinearity(h)
|
311 |
+
h = self.dropout(h)
|
312 |
+
h = self.conv2(h)
|
313 |
+
x = self.nin_shortcut(x)
|
314 |
+
|
315 |
+
return x + h
|
316 |
+
|
317 |
+
|
318 |
+
class CausalResnetBlockFactorized3d(nn.Module):
|
319 |
+
def __init__(
|
320 |
+
self,
|
321 |
+
*,
|
322 |
+
in_channels: int,
|
323 |
+
out_channels: int = None,
|
324 |
+
dropout: float,
|
325 |
+
num_groups: int,
|
326 |
+
) -> None:
|
327 |
+
super().__init__()
|
328 |
+
self.in_channels = in_channels
|
329 |
+
out_channels = in_channels if out_channels is None else out_channels
|
330 |
+
|
331 |
+
self.norm1 = CausalNormalize(in_channels, num_groups=1)
|
332 |
+
self.conv1 = nn.Sequential(
|
333 |
+
CausalConv3d(
|
334 |
+
in_channels,
|
335 |
+
out_channels,
|
336 |
+
kernel_size=(1, 3, 3),
|
337 |
+
stride=1,
|
338 |
+
padding=1,
|
339 |
+
),
|
340 |
+
CausalConv3d(
|
341 |
+
out_channels,
|
342 |
+
out_channels,
|
343 |
+
kernel_size=(3, 1, 1),
|
344 |
+
stride=1,
|
345 |
+
padding=0,
|
346 |
+
),
|
347 |
+
)
|
348 |
+
self.norm2 = CausalNormalize(out_channels, num_groups=num_groups)
|
349 |
+
self.dropout = torch.nn.Dropout(dropout)
|
350 |
+
self.conv2 = nn.Sequential(
|
351 |
+
CausalConv3d(
|
352 |
+
out_channels,
|
353 |
+
out_channels,
|
354 |
+
kernel_size=(1, 3, 3),
|
355 |
+
stride=1,
|
356 |
+
padding=1,
|
357 |
+
),
|
358 |
+
CausalConv3d(
|
359 |
+
out_channels,
|
360 |
+
out_channels,
|
361 |
+
kernel_size=(3, 1, 1),
|
362 |
+
stride=1,
|
363 |
+
padding=0,
|
364 |
+
),
|
365 |
+
)
|
366 |
+
self.nin_shortcut = (
|
367 |
+
CausalConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
368 |
+
if in_channels != out_channels
|
369 |
+
else nn.Identity()
|
370 |
+
)
|
371 |
+
|
372 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
373 |
+
h = x
|
374 |
+
h = self.norm1(h)
|
375 |
+
h = nonlinearity(h)
|
376 |
+
h = self.conv1(h)
|
377 |
+
|
378 |
+
h = self.norm2(h)
|
379 |
+
h = nonlinearity(h)
|
380 |
+
h = self.dropout(h)
|
381 |
+
h = self.conv2(h)
|
382 |
+
x = self.nin_shortcut(x)
|
383 |
+
|
384 |
+
return x + h
|
385 |
+
|
386 |
+
|
387 |
+
class CausalAttnBlock(nn.Module):
|
388 |
+
def __init__(self, in_channels: int, num_groups: int) -> None:
|
389 |
+
super().__init__()
|
390 |
+
|
391 |
+
self.norm = CausalNormalize(in_channels, num_groups=num_groups)
|
392 |
+
self.q = CausalConv3d(
|
393 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
394 |
+
)
|
395 |
+
self.k = CausalConv3d(
|
396 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
397 |
+
)
|
398 |
+
self.v = CausalConv3d(
|
399 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
400 |
+
)
|
401 |
+
self.proj_out = CausalConv3d(
|
402 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
403 |
+
)
|
404 |
+
|
405 |
+
self.optimized_attention = vae_attention()
|
406 |
+
|
407 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
408 |
+
h_ = x
|
409 |
+
h_ = self.norm(h_)
|
410 |
+
q = self.q(h_)
|
411 |
+
k = self.k(h_)
|
412 |
+
v = self.v(h_)
|
413 |
+
|
414 |
+
# compute attention
|
415 |
+
q, batch_size = time2batch(q)
|
416 |
+
k, batch_size = time2batch(k)
|
417 |
+
v, batch_size = time2batch(v)
|
418 |
+
|
419 |
+
b, c, h, w = q.shape
|
420 |
+
h_ = self.optimized_attention(q, k, v)
|
421 |
+
|
422 |
+
h_ = batch2time(h_, batch_size)
|
423 |
+
h_ = self.proj_out(h_)
|
424 |
+
return x + h_
|
425 |
+
|
426 |
+
|
427 |
+
class CausalTemporalAttnBlock(nn.Module):
|
428 |
+
def __init__(self, in_channels: int, num_groups: int) -> None:
|
429 |
+
super().__init__()
|
430 |
+
|
431 |
+
self.norm = CausalNormalize(in_channels, num_groups=num_groups)
|
432 |
+
self.q = CausalConv3d(
|
433 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
434 |
+
)
|
435 |
+
self.k = CausalConv3d(
|
436 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
437 |
+
)
|
438 |
+
self.v = CausalConv3d(
|
439 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
440 |
+
)
|
441 |
+
self.proj_out = CausalConv3d(
|
442 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
443 |
+
)
|
444 |
+
|
445 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
446 |
+
h_ = x
|
447 |
+
h_ = self.norm(h_)
|
448 |
+
q = self.q(h_)
|
449 |
+
k = self.k(h_)
|
450 |
+
v = self.v(h_)
|
451 |
+
|
452 |
+
# compute attention
|
453 |
+
q, batch_size, height = space2batch(q)
|
454 |
+
k, _, _ = space2batch(k)
|
455 |
+
v, _, _ = space2batch(v)
|
456 |
+
|
457 |
+
bhw, c, t = q.shape
|
458 |
+
q = q.permute(0, 2, 1) # (bhw, t, c)
|
459 |
+
k = k.permute(0, 2, 1) # (bhw, t, c)
|
460 |
+
v = v.permute(0, 2, 1) # (bhw, t, c)
|
461 |
+
|
462 |
+
w_ = torch.bmm(q, k.permute(0, 2, 1)) # (bhw, t, t)
|
463 |
+
w_ = w_ * (int(c) ** (-0.5))
|
464 |
+
|
465 |
+
# Apply causal mask
|
466 |
+
mask = torch.tril(torch.ones_like(w_))
|
467 |
+
w_ = w_.masked_fill(mask == 0, float("-inf"))
|
468 |
+
w_ = F.softmax(w_, dim=2)
|
469 |
+
|
470 |
+
# attend to values
|
471 |
+
h_ = torch.bmm(w_, v) # (bhw, t, c)
|
472 |
+
h_ = h_.permute(0, 2, 1).reshape(bhw, c, t) # (bhw, c, t)
|
473 |
+
|
474 |
+
h_ = batch2space(h_, batch_size, height)
|
475 |
+
h_ = self.proj_out(h_)
|
476 |
+
return x + h_
|
477 |
+
|
478 |
+
|
479 |
+
class EncoderBase(nn.Module):
|
480 |
+
def __init__(
|
481 |
+
self,
|
482 |
+
in_channels: int,
|
483 |
+
channels: int,
|
484 |
+
channels_mult: list[int],
|
485 |
+
num_res_blocks: int,
|
486 |
+
attn_resolutions: list[int],
|
487 |
+
dropout: float,
|
488 |
+
resolution: int,
|
489 |
+
z_channels: int,
|
490 |
+
**ignore_kwargs,
|
491 |
+
) -> None:
|
492 |
+
super().__init__()
|
493 |
+
self.num_resolutions = len(channels_mult)
|
494 |
+
self.num_res_blocks = num_res_blocks
|
495 |
+
|
496 |
+
# Patcher.
|
497 |
+
patch_size = ignore_kwargs.get("patch_size", 1)
|
498 |
+
self.patcher = Patcher(
|
499 |
+
patch_size, ignore_kwargs.get("patch_method", "rearrange")
|
500 |
+
)
|
501 |
+
in_channels = in_channels * patch_size * patch_size
|
502 |
+
|
503 |
+
# downsampling
|
504 |
+
self.conv_in = CausalConv3d(
|
505 |
+
in_channels, channels, kernel_size=3, stride=1, padding=1
|
506 |
+
)
|
507 |
+
|
508 |
+
# num of groups for GroupNorm, num_groups=1 for LayerNorm.
|
509 |
+
num_groups = ignore_kwargs.get("num_groups", _LEGACY_NUM_GROUPS)
|
510 |
+
curr_res = resolution // patch_size
|
511 |
+
in_ch_mult = (1,) + tuple(channels_mult)
|
512 |
+
self.in_ch_mult = in_ch_mult
|
513 |
+
self.down = nn.ModuleList()
|
514 |
+
for i_level in range(self.num_resolutions):
|
515 |
+
block = nn.ModuleList()
|
516 |
+
attn = nn.ModuleList()
|
517 |
+
block_in = channels * in_ch_mult[i_level]
|
518 |
+
block_out = channels * channels_mult[i_level]
|
519 |
+
for _ in range(self.num_res_blocks):
|
520 |
+
block.append(
|
521 |
+
CausalResnetBlock3d(
|
522 |
+
in_channels=block_in,
|
523 |
+
out_channels=block_out,
|
524 |
+
dropout=dropout,
|
525 |
+
num_groups=num_groups,
|
526 |
+
)
|
527 |
+
)
|
528 |
+
block_in = block_out
|
529 |
+
if curr_res in attn_resolutions:
|
530 |
+
attn.append(CausalAttnBlock(block_in, num_groups=num_groups))
|
531 |
+
down = nn.Module()
|
532 |
+
down.block = block
|
533 |
+
down.attn = attn
|
534 |
+
if i_level != self.num_resolutions - 1:
|
535 |
+
down.downsample = CausalDownsample3d(block_in)
|
536 |
+
curr_res = curr_res // 2
|
537 |
+
self.down.append(down)
|
538 |
+
|
539 |
+
# middle
|
540 |
+
self.mid = nn.Module()
|
541 |
+
self.mid.block_1 = CausalResnetBlock3d(
|
542 |
+
in_channels=block_in,
|
543 |
+
out_channels=block_in,
|
544 |
+
dropout=dropout,
|
545 |
+
num_groups=num_groups,
|
546 |
+
)
|
547 |
+
self.mid.attn_1 = CausalAttnBlock(block_in, num_groups=num_groups)
|
548 |
+
self.mid.block_2 = CausalResnetBlock3d(
|
549 |
+
in_channels=block_in,
|
550 |
+
out_channels=block_in,
|
551 |
+
dropout=dropout,
|
552 |
+
num_groups=num_groups,
|
553 |
+
)
|
554 |
+
|
555 |
+
# end
|
556 |
+
self.norm_out = CausalNormalize(block_in, num_groups=num_groups)
|
557 |
+
self.conv_out = CausalConv3d(
|
558 |
+
block_in, z_channels, kernel_size=3, stride=1, padding=1
|
559 |
+
)
|
560 |
+
|
561 |
+
def patcher3d(self, x: torch.Tensor) -> torch.Tensor:
|
562 |
+
x, batch_size = time2batch(x)
|
563 |
+
x = self.patcher(x)
|
564 |
+
x = batch2time(x, batch_size)
|
565 |
+
return x
|
566 |
+
|
567 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
568 |
+
x = self.patcher3d(x)
|
569 |
+
|
570 |
+
# downsampling
|
571 |
+
hs = [self.conv_in(x)]
|
572 |
+
for i_level in range(self.num_resolutions):
|
573 |
+
for i_block in range(self.num_res_blocks):
|
574 |
+
h = self.down[i_level].block[i_block](hs[-1])
|
575 |
+
if len(self.down[i_level].attn) > 0:
|
576 |
+
h = self.down[i_level].attn[i_block](h)
|
577 |
+
hs.append(h)
|
578 |
+
if i_level != self.num_resolutions - 1:
|
579 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
580 |
+
else:
|
581 |
+
# temporal downsample (last level)
|
582 |
+
time_factor = 1 + 1 * (hs[-1].shape[2] > 1)
|
583 |
+
if isinstance(time_factor, torch.Tensor):
|
584 |
+
time_factor = time_factor.item()
|
585 |
+
hs[-1] = replication_pad(hs[-1])
|
586 |
+
hs.append(
|
587 |
+
F.avg_pool3d(
|
588 |
+
hs[-1],
|
589 |
+
kernel_size=[time_factor, 1, 1],
|
590 |
+
stride=[2, 1, 1],
|
591 |
+
)
|
592 |
+
)
|
593 |
+
|
594 |
+
# middle
|
595 |
+
h = hs[-1]
|
596 |
+
h = self.mid.block_1(h)
|
597 |
+
h = self.mid.attn_1(h)
|
598 |
+
h = self.mid.block_2(h)
|
599 |
+
|
600 |
+
# end
|
601 |
+
h = self.norm_out(h)
|
602 |
+
h = nonlinearity(h)
|
603 |
+
h = self.conv_out(h)
|
604 |
+
return h
|
605 |
+
|
606 |
+
|
607 |
+
class DecoderBase(nn.Module):
|
608 |
+
def __init__(
|
609 |
+
self,
|
610 |
+
out_channels: int,
|
611 |
+
channels: int,
|
612 |
+
channels_mult: list[int],
|
613 |
+
num_res_blocks: int,
|
614 |
+
attn_resolutions: list[int],
|
615 |
+
dropout: float,
|
616 |
+
resolution: int,
|
617 |
+
z_channels: int,
|
618 |
+
**ignore_kwargs,
|
619 |
+
):
|
620 |
+
super().__init__()
|
621 |
+
self.num_resolutions = len(channels_mult)
|
622 |
+
self.num_res_blocks = num_res_blocks
|
623 |
+
|
624 |
+
# UnPatcher.
|
625 |
+
patch_size = ignore_kwargs.get("patch_size", 1)
|
626 |
+
self.unpatcher = UnPatcher(
|
627 |
+
patch_size, ignore_kwargs.get("patch_method", "rearrange")
|
628 |
+
)
|
629 |
+
out_ch = out_channels * patch_size * patch_size
|
630 |
+
|
631 |
+
block_in = channels * channels_mult[self.num_resolutions - 1]
|
632 |
+
curr_res = (resolution // patch_size) // 2 ** (self.num_resolutions - 1)
|
633 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
634 |
+
logging.debug(
|
635 |
+
"Working with z of shape {} = {} dimensions.".format(
|
636 |
+
self.z_shape, np.prod(self.z_shape)
|
637 |
+
)
|
638 |
+
)
|
639 |
+
|
640 |
+
# z to block_in
|
641 |
+
self.conv_in = CausalConv3d(
|
642 |
+
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
643 |
+
)
|
644 |
+
|
645 |
+
# num of groups for GroupNorm, num_groups=1 for LayerNorm.
|
646 |
+
num_groups = ignore_kwargs.get("num_groups", _LEGACY_NUM_GROUPS)
|
647 |
+
|
648 |
+
# middle
|
649 |
+
self.mid = nn.Module()
|
650 |
+
self.mid.block_1 = CausalResnetBlock3d(
|
651 |
+
in_channels=block_in,
|
652 |
+
out_channels=block_in,
|
653 |
+
dropout=dropout,
|
654 |
+
num_groups=num_groups,
|
655 |
+
)
|
656 |
+
self.mid.attn_1 = CausalAttnBlock(block_in, num_groups=num_groups)
|
657 |
+
self.mid.block_2 = CausalResnetBlock3d(
|
658 |
+
in_channels=block_in,
|
659 |
+
out_channels=block_in,
|
660 |
+
dropout=dropout,
|
661 |
+
num_groups=num_groups,
|
662 |
+
)
|
663 |
+
|
664 |
+
# upsampling
|
665 |
+
self.up = nn.ModuleList()
|
666 |
+
for i_level in reversed(range(self.num_resolutions)):
|
667 |
+
block = nn.ModuleList()
|
668 |
+
attn = nn.ModuleList()
|
669 |
+
block_out = channels * channels_mult[i_level]
|
670 |
+
for _ in range(self.num_res_blocks + 1):
|
671 |
+
block.append(
|
672 |
+
CausalResnetBlock3d(
|
673 |
+
in_channels=block_in,
|
674 |
+
out_channels=block_out,
|
675 |
+
dropout=dropout,
|
676 |
+
num_groups=num_groups,
|
677 |
+
)
|
678 |
+
)
|
679 |
+
block_in = block_out
|
680 |
+
if curr_res in attn_resolutions:
|
681 |
+
attn.append(CausalAttnBlock(block_in, num_groups=num_groups))
|
682 |
+
up = nn.Module()
|
683 |
+
up.block = block
|
684 |
+
up.attn = attn
|
685 |
+
if i_level != 0:
|
686 |
+
up.upsample = CausalUpsample3d(block_in)
|
687 |
+
curr_res = curr_res * 2
|
688 |
+
self.up.insert(0, up) # prepend to get consistent order
|
689 |
+
|
690 |
+
# end
|
691 |
+
self.norm_out = CausalNormalize(block_in, num_groups=num_groups)
|
692 |
+
self.conv_out = CausalConv3d(
|
693 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
694 |
+
)
|
695 |
+
|
696 |
+
def unpatcher3d(self, x: torch.Tensor) -> torch.Tensor:
|
697 |
+
x, batch_size = time2batch(x)
|
698 |
+
x = self.unpatcher(x)
|
699 |
+
x = batch2time(x, batch_size)
|
700 |
+
|
701 |
+
return x
|
702 |
+
|
703 |
+
def forward(self, z):
|
704 |
+
h = self.conv_in(z)
|
705 |
+
|
706 |
+
# middle block.
|
707 |
+
h = self.mid.block_1(h)
|
708 |
+
h = self.mid.attn_1(h)
|
709 |
+
h = self.mid.block_2(h)
|
710 |
+
|
711 |
+
# decoder blocks.
|
712 |
+
for i_level in reversed(range(self.num_resolutions)):
|
713 |
+
for i_block in range(self.num_res_blocks + 1):
|
714 |
+
h = self.up[i_level].block[i_block](h)
|
715 |
+
if len(self.up[i_level].attn) > 0:
|
716 |
+
h = self.up[i_level].attn[i_block](h)
|
717 |
+
if i_level != 0:
|
718 |
+
h = self.up[i_level].upsample(h)
|
719 |
+
else:
|
720 |
+
# temporal upsample (last level)
|
721 |
+
time_factor = 1.0 + 1.0 * (h.shape[2] > 1)
|
722 |
+
if isinstance(time_factor, torch.Tensor):
|
723 |
+
time_factor = time_factor.item()
|
724 |
+
h = h.repeat_interleave(int(time_factor), dim=2)
|
725 |
+
h = h[..., int(time_factor - 1) :, :, :]
|
726 |
+
|
727 |
+
h = self.norm_out(h)
|
728 |
+
h = nonlinearity(h)
|
729 |
+
h = self.conv_out(h)
|
730 |
+
h = self.unpatcher3d(h)
|
731 |
+
return h
|
732 |
+
|
733 |
+
|
734 |
+
class EncoderFactorized(nn.Module):
|
735 |
+
def __init__(
|
736 |
+
self,
|
737 |
+
in_channels: int,
|
738 |
+
channels: int,
|
739 |
+
channels_mult: list[int],
|
740 |
+
num_res_blocks: int,
|
741 |
+
attn_resolutions: list[int],
|
742 |
+
dropout: float,
|
743 |
+
resolution: int,
|
744 |
+
z_channels: int,
|
745 |
+
spatial_compression: int = 8,
|
746 |
+
temporal_compression: int = 8,
|
747 |
+
**ignore_kwargs,
|
748 |
+
) -> None:
|
749 |
+
super().__init__()
|
750 |
+
self.num_resolutions = len(channels_mult)
|
751 |
+
self.num_res_blocks = num_res_blocks
|
752 |
+
|
753 |
+
# Patcher.
|
754 |
+
patch_size = ignore_kwargs.get("patch_size", 1)
|
755 |
+
self.patcher3d = Patcher3D(
|
756 |
+
patch_size, ignore_kwargs.get("patch_method", "haar")
|
757 |
+
)
|
758 |
+
in_channels = in_channels * patch_size * patch_size * patch_size
|
759 |
+
|
760 |
+
# calculate the number of downsample operations
|
761 |
+
self.num_spatial_downs = int(math.log2(spatial_compression)) - int(
|
762 |
+
math.log2(patch_size)
|
763 |
+
)
|
764 |
+
assert (
|
765 |
+
self.num_spatial_downs <= self.num_resolutions
|
766 |
+
), f"Spatially downsample {self.num_resolutions} times at most"
|
767 |
+
|
768 |
+
self.num_temporal_downs = int(math.log2(temporal_compression)) - int(
|
769 |
+
math.log2(patch_size)
|
770 |
+
)
|
771 |
+
assert (
|
772 |
+
self.num_temporal_downs <= self.num_resolutions
|
773 |
+
), f"Temporally downsample {self.num_resolutions} times at most"
|
774 |
+
|
775 |
+
# downsampling
|
776 |
+
self.conv_in = nn.Sequential(
|
777 |
+
CausalConv3d(
|
778 |
+
in_channels,
|
779 |
+
channels,
|
780 |
+
kernel_size=(1, 3, 3),
|
781 |
+
stride=1,
|
782 |
+
padding=1,
|
783 |
+
),
|
784 |
+
CausalConv3d(
|
785 |
+
channels, channels, kernel_size=(3, 1, 1), stride=1, padding=0
|
786 |
+
),
|
787 |
+
)
|
788 |
+
|
789 |
+
curr_res = resolution // patch_size
|
790 |
+
in_ch_mult = (1,) + tuple(channels_mult)
|
791 |
+
self.in_ch_mult = in_ch_mult
|
792 |
+
self.down = nn.ModuleList()
|
793 |
+
for i_level in range(self.num_resolutions):
|
794 |
+
block = nn.ModuleList()
|
795 |
+
attn = nn.ModuleList()
|
796 |
+
block_in = channels * in_ch_mult[i_level]
|
797 |
+
block_out = channels * channels_mult[i_level]
|
798 |
+
for _ in range(self.num_res_blocks):
|
799 |
+
block.append(
|
800 |
+
CausalResnetBlockFactorized3d(
|
801 |
+
in_channels=block_in,
|
802 |
+
out_channels=block_out,
|
803 |
+
dropout=dropout,
|
804 |
+
num_groups=1,
|
805 |
+
)
|
806 |
+
)
|
807 |
+
block_in = block_out
|
808 |
+
if curr_res in attn_resolutions:
|
809 |
+
attn.append(
|
810 |
+
nn.Sequential(
|
811 |
+
CausalAttnBlock(block_in, num_groups=1),
|
812 |
+
CausalTemporalAttnBlock(block_in, num_groups=1),
|
813 |
+
)
|
814 |
+
)
|
815 |
+
down = nn.Module()
|
816 |
+
down.block = block
|
817 |
+
down.attn = attn
|
818 |
+
if i_level != self.num_resolutions - 1:
|
819 |
+
spatial_down = i_level < self.num_spatial_downs
|
820 |
+
temporal_down = i_level < self.num_temporal_downs
|
821 |
+
down.downsample = CausalHybridDownsample3d(
|
822 |
+
block_in,
|
823 |
+
spatial_down=spatial_down,
|
824 |
+
temporal_down=temporal_down,
|
825 |
+
)
|
826 |
+
curr_res = curr_res // 2
|
827 |
+
self.down.append(down)
|
828 |
+
|
829 |
+
# middle
|
830 |
+
self.mid = nn.Module()
|
831 |
+
self.mid.block_1 = CausalResnetBlockFactorized3d(
|
832 |
+
in_channels=block_in,
|
833 |
+
out_channels=block_in,
|
834 |
+
dropout=dropout,
|
835 |
+
num_groups=1,
|
836 |
+
)
|
837 |
+
self.mid.attn_1 = nn.Sequential(
|
838 |
+
CausalAttnBlock(block_in, num_groups=1),
|
839 |
+
CausalTemporalAttnBlock(block_in, num_groups=1),
|
840 |
+
)
|
841 |
+
self.mid.block_2 = CausalResnetBlockFactorized3d(
|
842 |
+
in_channels=block_in,
|
843 |
+
out_channels=block_in,
|
844 |
+
dropout=dropout,
|
845 |
+
num_groups=1,
|
846 |
+
)
|
847 |
+
|
848 |
+
# end
|
849 |
+
self.norm_out = CausalNormalize(block_in, num_groups=1)
|
850 |
+
self.conv_out = nn.Sequential(
|
851 |
+
CausalConv3d(
|
852 |
+
block_in, z_channels, kernel_size=(1, 3, 3), stride=1, padding=1
|
853 |
+
),
|
854 |
+
CausalConv3d(
|
855 |
+
z_channels,
|
856 |
+
z_channels,
|
857 |
+
kernel_size=(3, 1, 1),
|
858 |
+
stride=1,
|
859 |
+
padding=0,
|
860 |
+
),
|
861 |
+
)
|
862 |
+
|
863 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
864 |
+
x = self.patcher3d(x)
|
865 |
+
|
866 |
+
# downsampling
|
867 |
+
h = self.conv_in(x)
|
868 |
+
for i_level in range(self.num_resolutions):
|
869 |
+
for i_block in range(self.num_res_blocks):
|
870 |
+
h = self.down[i_level].block[i_block](h)
|
871 |
+
if len(self.down[i_level].attn) > 0:
|
872 |
+
h = self.down[i_level].attn[i_block](h)
|
873 |
+
if i_level != self.num_resolutions - 1:
|
874 |
+
h = self.down[i_level].downsample(h)
|
875 |
+
|
876 |
+
# middle
|
877 |
+
h = self.mid.block_1(h)
|
878 |
+
h = self.mid.attn_1(h)
|
879 |
+
h = self.mid.block_2(h)
|
880 |
+
|
881 |
+
# end
|
882 |
+
h = self.norm_out(h)
|
883 |
+
h = nonlinearity(h)
|
884 |
+
h = self.conv_out(h)
|
885 |
+
return h
|
886 |
+
|
887 |
+
|
888 |
+
class DecoderFactorized(nn.Module):
|
889 |
+
def __init__(
|
890 |
+
self,
|
891 |
+
out_channels: int,
|
892 |
+
channels: int,
|
893 |
+
channels_mult: list[int],
|
894 |
+
num_res_blocks: int,
|
895 |
+
attn_resolutions: list[int],
|
896 |
+
dropout: float,
|
897 |
+
resolution: int,
|
898 |
+
z_channels: int,
|
899 |
+
spatial_compression: int = 8,
|
900 |
+
temporal_compression: int = 8,
|
901 |
+
**ignore_kwargs,
|
902 |
+
):
|
903 |
+
super().__init__()
|
904 |
+
self.num_resolutions = len(channels_mult)
|
905 |
+
self.num_res_blocks = num_res_blocks
|
906 |
+
|
907 |
+
# UnPatcher.
|
908 |
+
patch_size = ignore_kwargs.get("patch_size", 1)
|
909 |
+
self.unpatcher3d = UnPatcher3D(
|
910 |
+
patch_size, ignore_kwargs.get("patch_method", "haar")
|
911 |
+
)
|
912 |
+
out_ch = out_channels * patch_size * patch_size * patch_size
|
913 |
+
|
914 |
+
# calculate the number of upsample operations
|
915 |
+
self.num_spatial_ups = int(math.log2(spatial_compression)) - int(
|
916 |
+
math.log2(patch_size)
|
917 |
+
)
|
918 |
+
assert (
|
919 |
+
self.num_spatial_ups <= self.num_resolutions
|
920 |
+
), f"Spatially upsample {self.num_resolutions} times at most"
|
921 |
+
self.num_temporal_ups = int(math.log2(temporal_compression)) - int(
|
922 |
+
math.log2(patch_size)
|
923 |
+
)
|
924 |
+
assert (
|
925 |
+
self.num_temporal_ups <= self.num_resolutions
|
926 |
+
), f"Temporally upsample {self.num_resolutions} times at most"
|
927 |
+
|
928 |
+
block_in = channels * channels_mult[self.num_resolutions - 1]
|
929 |
+
curr_res = (resolution // patch_size) // 2 ** (self.num_resolutions - 1)
|
930 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
931 |
+
logging.debug(
|
932 |
+
"Working with z of shape {} = {} dimensions.".format(
|
933 |
+
self.z_shape, np.prod(self.z_shape)
|
934 |
+
)
|
935 |
+
)
|
936 |
+
|
937 |
+
# z to block_in
|
938 |
+
self.conv_in = nn.Sequential(
|
939 |
+
CausalConv3d(
|
940 |
+
z_channels, block_in, kernel_size=(1, 3, 3), stride=1, padding=1
|
941 |
+
),
|
942 |
+
CausalConv3d(
|
943 |
+
block_in, block_in, kernel_size=(3, 1, 1), stride=1, padding=0
|
944 |
+
),
|
945 |
+
)
|
946 |
+
|
947 |
+
# middle
|
948 |
+
self.mid = nn.Module()
|
949 |
+
self.mid.block_1 = CausalResnetBlockFactorized3d(
|
950 |
+
in_channels=block_in,
|
951 |
+
out_channels=block_in,
|
952 |
+
dropout=dropout,
|
953 |
+
num_groups=1,
|
954 |
+
)
|
955 |
+
self.mid.attn_1 = nn.Sequential(
|
956 |
+
CausalAttnBlock(block_in, num_groups=1),
|
957 |
+
CausalTemporalAttnBlock(block_in, num_groups=1),
|
958 |
+
)
|
959 |
+
self.mid.block_2 = CausalResnetBlockFactorized3d(
|
960 |
+
in_channels=block_in,
|
961 |
+
out_channels=block_in,
|
962 |
+
dropout=dropout,
|
963 |
+
num_groups=1,
|
964 |
+
)
|
965 |
+
|
966 |
+
legacy_mode = ignore_kwargs.get("legacy_mode", False)
|
967 |
+
# upsampling
|
968 |
+
self.up = nn.ModuleList()
|
969 |
+
for i_level in reversed(range(self.num_resolutions)):
|
970 |
+
block = nn.ModuleList()
|
971 |
+
attn = nn.ModuleList()
|
972 |
+
block_out = channels * channels_mult[i_level]
|
973 |
+
for _ in range(self.num_res_blocks + 1):
|
974 |
+
block.append(
|
975 |
+
CausalResnetBlockFactorized3d(
|
976 |
+
in_channels=block_in,
|
977 |
+
out_channels=block_out,
|
978 |
+
dropout=dropout,
|
979 |
+
num_groups=1,
|
980 |
+
)
|
981 |
+
)
|
982 |
+
block_in = block_out
|
983 |
+
if curr_res in attn_resolutions:
|
984 |
+
attn.append(
|
985 |
+
nn.Sequential(
|
986 |
+
CausalAttnBlock(block_in, num_groups=1),
|
987 |
+
CausalTemporalAttnBlock(block_in, num_groups=1),
|
988 |
+
)
|
989 |
+
)
|
990 |
+
up = nn.Module()
|
991 |
+
up.block = block
|
992 |
+
up.attn = attn
|
993 |
+
if i_level != 0:
|
994 |
+
# The layer index for temporal/spatial downsampling performed
|
995 |
+
# in the encoder should correspond to the layer index in
|
996 |
+
# reverse order where upsampling is performed in the decoder.
|
997 |
+
# If you've a pre-trained model, you can simply finetune.
|
998 |
+
i_level_reverse = self.num_resolutions - i_level - 1
|
999 |
+
if legacy_mode:
|
1000 |
+
temporal_up = i_level_reverse < self.num_temporal_ups
|
1001 |
+
else:
|
1002 |
+
temporal_up = 0 < i_level_reverse < self.num_temporal_ups + 1
|
1003 |
+
spatial_up = temporal_up or (
|
1004 |
+
i_level_reverse < self.num_spatial_ups
|
1005 |
+
and self.num_spatial_ups > self.num_temporal_ups
|
1006 |
+
)
|
1007 |
+
up.upsample = CausalHybridUpsample3d(
|
1008 |
+
block_in, spatial_up=spatial_up, temporal_up=temporal_up
|
1009 |
+
)
|
1010 |
+
curr_res = curr_res * 2
|
1011 |
+
self.up.insert(0, up) # prepend to get consistent order
|
1012 |
+
|
1013 |
+
# end
|
1014 |
+
self.norm_out = CausalNormalize(block_in, num_groups=1)
|
1015 |
+
self.conv_out = nn.Sequential(
|
1016 |
+
CausalConv3d(block_in, out_ch, kernel_size=(1, 3, 3), stride=1, padding=1),
|
1017 |
+
CausalConv3d(out_ch, out_ch, kernel_size=(3, 1, 1), stride=1, padding=0),
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
def forward(self, z):
|
1021 |
+
h = self.conv_in(z)
|
1022 |
+
|
1023 |
+
# middle block.
|
1024 |
+
h = self.mid.block_1(h)
|
1025 |
+
h = self.mid.attn_1(h)
|
1026 |
+
h = self.mid.block_2(h)
|
1027 |
+
|
1028 |
+
# decoder blocks.
|
1029 |
+
for i_level in reversed(range(self.num_resolutions)):
|
1030 |
+
for i_block in range(self.num_res_blocks + 1):
|
1031 |
+
h = self.up[i_level].block[i_block](h)
|
1032 |
+
if len(self.up[i_level].attn) > 0:
|
1033 |
+
h = self.up[i_level].attn[i_block](h)
|
1034 |
+
if i_level != 0:
|
1035 |
+
h = self.up[i_level].upsample(h)
|
1036 |
+
|
1037 |
+
h = self.norm_out(h)
|
1038 |
+
h = nonlinearity(h)
|
1039 |
+
h = self.conv_out(h)
|
1040 |
+
h = self.unpatcher3d(h)
|
1041 |
+
return h
|