plaidam commited on
Commit
be40477
·
verified ·
1 Parent(s): 3719834

Upload 294 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. assets/assets_black_tshirt.png +0 -0
  2. assets/assets_broc_ref.jpg +0 -0
  3. assets/black_tshirt.png +0 -0
  4. assets/broc_ref.jpg +0 -0
  5. comfy/checkpoint_pickle.py +13 -0
  6. comfy/cldm/cldm.py +433 -0
  7. comfy/cldm/control_types.py +10 -0
  8. comfy/cldm/dit_embedder.py +120 -0
  9. comfy/cldm/mmdit.py +81 -0
  10. comfy/cli_args.py +190 -0
  11. comfy/clip_config_bigg.json +23 -0
  12. comfy/clip_model.py +218 -0
  13. comfy/clip_vision.py +129 -0
  14. comfy/clip_vision_config_g.json +18 -0
  15. comfy/clip_vision_config_h.json +18 -0
  16. comfy/clip_vision_config_vitl.json +18 -0
  17. comfy/clip_vision_config_vitl_336.json +18 -0
  18. comfy/clip_vision_siglip_384.json +13 -0
  19. comfy/comfy_types/README.md +43 -0
  20. comfy/comfy_types/__init__.py +45 -0
  21. comfy/comfy_types/examples/example_nodes.py +28 -0
  22. comfy/comfy_types/examples/input_options.png +0 -0
  23. comfy/comfy_types/examples/input_types.png +0 -0
  24. comfy/comfy_types/examples/required_hint.png +0 -0
  25. comfy/comfy_types/node_typing.py +274 -0
  26. comfy/conds.py +83 -0
  27. comfy/controlnet.py +862 -0
  28. comfy/diffusers_convert.py +288 -0
  29. comfy/diffusers_load.py +36 -0
  30. comfy/extra_samplers/uni_pc.py +873 -0
  31. comfy/float.py +67 -0
  32. comfy/gligen.py +344 -0
  33. comfy/hooks.py +785 -0
  34. comfy/k_diffusion/deis.py +120 -0
  35. comfy/k_diffusion/sampling.py +1338 -0
  36. comfy/k_diffusion/utils.py +313 -0
  37. comfy/latent_formats.py +409 -0
  38. comfy/ldm/audio/autoencoder.py +282 -0
  39. comfy/ldm/audio/dit.py +896 -0
  40. comfy/ldm/audio/embedders.py +108 -0
  41. comfy/ldm/aura/mmdit.py +498 -0
  42. comfy/ldm/cascade/common.py +154 -0
  43. comfy/ldm/cascade/controlnet.py +92 -0
  44. comfy/ldm/cascade/stage_a.py +255 -0
  45. comfy/ldm/cascade/stage_b.py +256 -0
  46. comfy/ldm/cascade/stage_c.py +273 -0
  47. comfy/ldm/cascade/stage_c_coder.py +95 -0
  48. comfy/ldm/common_dit.py +30 -0
  49. comfy/ldm/cosmos/blocks.py +808 -0
  50. comfy/ldm/cosmos/cosmos_tokenizer/layers3d.py +1041 -0
assets/assets_black_tshirt.png ADDED
assets/assets_broc_ref.jpg ADDED
assets/black_tshirt.png ADDED
assets/broc_ref.jpg ADDED
comfy/checkpoint_pickle.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+
3
+ load = pickle.load
4
+
5
+ class Empty:
6
+ pass
7
+
8
+ class Unpickler(pickle.Unpickler):
9
+ def find_class(self, module, name):
10
+ #TODO: safe unpickle
11
+ if module.startswith("pytorch_lightning"):
12
+ return Empty
13
+ return super().find_class(module, name)
comfy/cldm/cldm.py ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #taken from: https://github.com/lllyasviel/ControlNet
2
+ #and modified
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ from ..ldm.modules.diffusionmodules.util import (
8
+ timestep_embedding,
9
+ )
10
+
11
+ from ..ldm.modules.attention import SpatialTransformer
12
+ from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
13
+ from ..ldm.util import exists
14
+ from .control_types import UNION_CONTROLNET_TYPES
15
+ from collections import OrderedDict
16
+ import comfy.ops
17
+ from comfy.ldm.modules.attention import optimized_attention
18
+
19
+ class OptimizedAttention(nn.Module):
20
+ def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
21
+ super().__init__()
22
+ self.heads = nhead
23
+ self.c = c
24
+
25
+ self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
26
+ self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
27
+
28
+ def forward(self, x):
29
+ x = self.in_proj(x)
30
+ q, k, v = x.split(self.c, dim=2)
31
+ out = optimized_attention(q, k, v, self.heads)
32
+ return self.out_proj(out)
33
+
34
+ class QuickGELU(nn.Module):
35
+ def forward(self, x: torch.Tensor):
36
+ return x * torch.sigmoid(1.702 * x)
37
+
38
+ class ResBlockUnionControlnet(nn.Module):
39
+ def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
40
+ super().__init__()
41
+ self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
42
+ self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
43
+ self.mlp = nn.Sequential(
44
+ OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
45
+ ("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
46
+ self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
47
+
48
+ def attention(self, x: torch.Tensor):
49
+ return self.attn(x)
50
+
51
+ def forward(self, x: torch.Tensor):
52
+ x = x + self.attention(self.ln_1(x))
53
+ x = x + self.mlp(self.ln_2(x))
54
+ return x
55
+
56
+ class ControlledUnetModel(UNetModel):
57
+ #implemented in the ldm unet
58
+ pass
59
+
60
+ class ControlNet(nn.Module):
61
+ def __init__(
62
+ self,
63
+ image_size,
64
+ in_channels,
65
+ model_channels,
66
+ hint_channels,
67
+ num_res_blocks,
68
+ dropout=0,
69
+ channel_mult=(1, 2, 4, 8),
70
+ conv_resample=True,
71
+ dims=2,
72
+ num_classes=None,
73
+ use_checkpoint=False,
74
+ dtype=torch.float32,
75
+ num_heads=-1,
76
+ num_head_channels=-1,
77
+ num_heads_upsample=-1,
78
+ use_scale_shift_norm=False,
79
+ resblock_updown=False,
80
+ use_new_attention_order=False,
81
+ use_spatial_transformer=False, # custom transformer support
82
+ transformer_depth=1, # custom transformer support
83
+ context_dim=None, # custom transformer support
84
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
85
+ legacy=True,
86
+ disable_self_attentions=None,
87
+ num_attention_blocks=None,
88
+ disable_middle_self_attn=False,
89
+ use_linear_in_transformer=False,
90
+ adm_in_channels=None,
91
+ transformer_depth_middle=None,
92
+ transformer_depth_output=None,
93
+ attn_precision=None,
94
+ union_controlnet_num_control_type=None,
95
+ device=None,
96
+ operations=comfy.ops.disable_weight_init,
97
+ **kwargs,
98
+ ):
99
+ super().__init__()
100
+ assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
101
+ if use_spatial_transformer:
102
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
103
+
104
+ if context_dim is not None:
105
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
106
+ # from omegaconf.listconfig import ListConfig
107
+ # if type(context_dim) == ListConfig:
108
+ # context_dim = list(context_dim)
109
+
110
+ if num_heads_upsample == -1:
111
+ num_heads_upsample = num_heads
112
+
113
+ if num_heads == -1:
114
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
115
+
116
+ if num_head_channels == -1:
117
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
118
+
119
+ self.dims = dims
120
+ self.image_size = image_size
121
+ self.in_channels = in_channels
122
+ self.model_channels = model_channels
123
+
124
+ if isinstance(num_res_blocks, int):
125
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
126
+ else:
127
+ if len(num_res_blocks) != len(channel_mult):
128
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
129
+ "as a list/tuple (per-level) with the same length as channel_mult")
130
+ self.num_res_blocks = num_res_blocks
131
+
132
+ if disable_self_attentions is not None:
133
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
134
+ assert len(disable_self_attentions) == len(channel_mult)
135
+ if num_attention_blocks is not None:
136
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
137
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
138
+
139
+ transformer_depth = transformer_depth[:]
140
+
141
+ self.dropout = dropout
142
+ self.channel_mult = channel_mult
143
+ self.conv_resample = conv_resample
144
+ self.num_classes = num_classes
145
+ self.use_checkpoint = use_checkpoint
146
+ self.dtype = dtype
147
+ self.num_heads = num_heads
148
+ self.num_head_channels = num_head_channels
149
+ self.num_heads_upsample = num_heads_upsample
150
+ self.predict_codebook_ids = n_embed is not None
151
+
152
+ time_embed_dim = model_channels * 4
153
+ self.time_embed = nn.Sequential(
154
+ operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
155
+ nn.SiLU(),
156
+ operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
157
+ )
158
+
159
+ if self.num_classes is not None:
160
+ if isinstance(self.num_classes, int):
161
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
162
+ elif self.num_classes == "continuous":
163
+ self.label_emb = nn.Linear(1, time_embed_dim)
164
+ elif self.num_classes == "sequential":
165
+ assert adm_in_channels is not None
166
+ self.label_emb = nn.Sequential(
167
+ nn.Sequential(
168
+ operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
169
+ nn.SiLU(),
170
+ operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
171
+ )
172
+ )
173
+ else:
174
+ raise ValueError()
175
+
176
+ self.input_blocks = nn.ModuleList(
177
+ [
178
+ TimestepEmbedSequential(
179
+ operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
180
+ )
181
+ ]
182
+ )
183
+ self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
184
+
185
+ self.input_hint_block = TimestepEmbedSequential(
186
+ operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
187
+ nn.SiLU(),
188
+ operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
189
+ nn.SiLU(),
190
+ operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
191
+ nn.SiLU(),
192
+ operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
193
+ nn.SiLU(),
194
+ operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
195
+ nn.SiLU(),
196
+ operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
197
+ nn.SiLU(),
198
+ operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
199
+ nn.SiLU(),
200
+ operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
201
+ )
202
+
203
+ self._feature_size = model_channels
204
+ input_block_chans = [model_channels]
205
+ ch = model_channels
206
+ ds = 1
207
+ for level, mult in enumerate(channel_mult):
208
+ for nr in range(self.num_res_blocks[level]):
209
+ layers = [
210
+ ResBlock(
211
+ ch,
212
+ time_embed_dim,
213
+ dropout,
214
+ out_channels=mult * model_channels,
215
+ dims=dims,
216
+ use_checkpoint=use_checkpoint,
217
+ use_scale_shift_norm=use_scale_shift_norm,
218
+ dtype=self.dtype,
219
+ device=device,
220
+ operations=operations,
221
+ )
222
+ ]
223
+ ch = mult * model_channels
224
+ num_transformers = transformer_depth.pop(0)
225
+ if num_transformers > 0:
226
+ if num_head_channels == -1:
227
+ dim_head = ch // num_heads
228
+ else:
229
+ num_heads = ch // num_head_channels
230
+ dim_head = num_head_channels
231
+ if legacy:
232
+ #num_heads = 1
233
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
234
+ if exists(disable_self_attentions):
235
+ disabled_sa = disable_self_attentions[level]
236
+ else:
237
+ disabled_sa = False
238
+
239
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
240
+ layers.append(
241
+ SpatialTransformer(
242
+ ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
243
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
244
+ use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
245
+ )
246
+ )
247
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
248
+ self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
249
+ self._feature_size += ch
250
+ input_block_chans.append(ch)
251
+ if level != len(channel_mult) - 1:
252
+ out_ch = ch
253
+ self.input_blocks.append(
254
+ TimestepEmbedSequential(
255
+ ResBlock(
256
+ ch,
257
+ time_embed_dim,
258
+ dropout,
259
+ out_channels=out_ch,
260
+ dims=dims,
261
+ use_checkpoint=use_checkpoint,
262
+ use_scale_shift_norm=use_scale_shift_norm,
263
+ down=True,
264
+ dtype=self.dtype,
265
+ device=device,
266
+ operations=operations
267
+ )
268
+ if resblock_updown
269
+ else Downsample(
270
+ ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
271
+ )
272
+ )
273
+ )
274
+ ch = out_ch
275
+ input_block_chans.append(ch)
276
+ self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
277
+ ds *= 2
278
+ self._feature_size += ch
279
+
280
+ if num_head_channels == -1:
281
+ dim_head = ch // num_heads
282
+ else:
283
+ num_heads = ch // num_head_channels
284
+ dim_head = num_head_channels
285
+ if legacy:
286
+ #num_heads = 1
287
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
288
+ mid_block = [
289
+ ResBlock(
290
+ ch,
291
+ time_embed_dim,
292
+ dropout,
293
+ dims=dims,
294
+ use_checkpoint=use_checkpoint,
295
+ use_scale_shift_norm=use_scale_shift_norm,
296
+ dtype=self.dtype,
297
+ device=device,
298
+ operations=operations
299
+ )]
300
+ if transformer_depth_middle >= 0:
301
+ mid_block += [SpatialTransformer( # always uses a self-attn
302
+ ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
303
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
304
+ use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
305
+ ),
306
+ ResBlock(
307
+ ch,
308
+ time_embed_dim,
309
+ dropout,
310
+ dims=dims,
311
+ use_checkpoint=use_checkpoint,
312
+ use_scale_shift_norm=use_scale_shift_norm,
313
+ dtype=self.dtype,
314
+ device=device,
315
+ operations=operations
316
+ )]
317
+ self.middle_block = TimestepEmbedSequential(*mid_block)
318
+ self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
319
+ self._feature_size += ch
320
+
321
+ if union_controlnet_num_control_type is not None:
322
+ self.num_control_type = union_controlnet_num_control_type
323
+ num_trans_channel = 320
324
+ num_trans_head = 8
325
+ num_trans_layer = 1
326
+ num_proj_channel = 320
327
+ # task_scale_factor = num_trans_channel ** 0.5
328
+ self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device))
329
+
330
+ self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)])
331
+ self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device)
332
+ #-----------------------------------------------------------------------------------------------------
333
+
334
+ control_add_embed_dim = 256
335
+ class ControlAddEmbedding(nn.Module):
336
+ def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None):
337
+ super().__init__()
338
+ self.num_control_type = num_control_type
339
+ self.in_dim = in_dim
340
+ self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
341
+ self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
342
+ def forward(self, control_type, dtype, device):
343
+ c_type = torch.zeros((self.num_control_type,), device=device)
344
+ c_type[control_type] = 1.0
345
+ c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
346
+ return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
347
+
348
+ self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
349
+ else:
350
+ self.task_embedding = None
351
+ self.control_add_embedding = None
352
+
353
+ def union_controlnet_merge(self, hint, control_type, emb, context):
354
+ # Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
355
+ inputs = []
356
+ condition_list = []
357
+
358
+ for idx in range(min(1, len(control_type))):
359
+ controlnet_cond = self.input_hint_block(hint[idx], emb, context)
360
+ feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
361
+ if idx < len(control_type):
362
+ feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
363
+
364
+ inputs.append(feat_seq.unsqueeze(1))
365
+ condition_list.append(controlnet_cond)
366
+
367
+ x = torch.cat(inputs, dim=1)
368
+ x = self.transformer_layes(x)
369
+ controlnet_cond_fuser = None
370
+ for idx in range(len(control_type)):
371
+ alpha = self.spatial_ch_projs(x[:, idx])
372
+ alpha = alpha.unsqueeze(-1).unsqueeze(-1)
373
+ o = condition_list[idx] + alpha
374
+ if controlnet_cond_fuser is None:
375
+ controlnet_cond_fuser = o
376
+ else:
377
+ controlnet_cond_fuser += o
378
+ return controlnet_cond_fuser
379
+
380
+ def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
381
+ return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
382
+
383
+ def forward(self, x, hint, timesteps, context, y=None, **kwargs):
384
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
385
+ emb = self.time_embed(t_emb)
386
+
387
+ guided_hint = None
388
+ if self.control_add_embedding is not None: #Union Controlnet
389
+ control_type = kwargs.get("control_type", [])
390
+
391
+ if any([c >= self.num_control_type for c in control_type]):
392
+ max_type = max(control_type)
393
+ max_type_name = {
394
+ v: k for k, v in UNION_CONTROLNET_TYPES.items()
395
+ }[max_type]
396
+ raise ValueError(
397
+ f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
398
+ f"({self.num_control_type}) supported.\n" +
399
+ "Please consider using the ProMax ControlNet Union model.\n" +
400
+ "https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
401
+ )
402
+
403
+ emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
404
+ if len(control_type) > 0:
405
+ if len(hint.shape) < 5:
406
+ hint = hint.unsqueeze(dim=0)
407
+ guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
408
+
409
+ if guided_hint is None:
410
+ guided_hint = self.input_hint_block(hint, emb, context)
411
+
412
+ out_output = []
413
+ out_middle = []
414
+
415
+ if self.num_classes is not None:
416
+ assert y.shape[0] == x.shape[0]
417
+ emb = emb + self.label_emb(y)
418
+
419
+ h = x
420
+ for module, zero_conv in zip(self.input_blocks, self.zero_convs):
421
+ if guided_hint is not None:
422
+ h = module(h, emb, context)
423
+ h += guided_hint
424
+ guided_hint = None
425
+ else:
426
+ h = module(h, emb, context)
427
+ out_output.append(zero_conv(h, emb, context))
428
+
429
+ h = self.middle_block(h, emb, context)
430
+ out_middle.append(self.middle_block_out(h, emb, context))
431
+
432
+ return {"middle": out_middle, "output": out_output}
433
+
comfy/cldm/control_types.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ UNION_CONTROLNET_TYPES = {
2
+ "openpose": 0,
3
+ "depth": 1,
4
+ "hed/pidi/scribble/ted": 2,
5
+ "canny/lineart/anime_lineart/mlsd": 3,
6
+ "normal": 4,
7
+ "segment": 5,
8
+ "tile": 6,
9
+ "repaint": 7,
10
+ }
comfy/cldm/dit_embedder.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Tuple
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from torch import Tensor
7
+
8
+ from comfy.ldm.modules.diffusionmodules.mmdit import DismantledBlock, PatchEmbed, VectorEmbedder, TimestepEmbedder, get_2d_sincos_pos_embed_torch
9
+
10
+
11
+ class ControlNetEmbedder(nn.Module):
12
+
13
+ def __init__(
14
+ self,
15
+ img_size: int,
16
+ patch_size: int,
17
+ in_chans: int,
18
+ attention_head_dim: int,
19
+ num_attention_heads: int,
20
+ adm_in_channels: int,
21
+ num_layers: int,
22
+ main_model_double: int,
23
+ double_y_emb: bool,
24
+ device: torch.device,
25
+ dtype: torch.dtype,
26
+ pos_embed_max_size: Optional[int] = None,
27
+ operations = None,
28
+ ):
29
+ super().__init__()
30
+ self.main_model_double = main_model_double
31
+ self.dtype = dtype
32
+ self.hidden_size = num_attention_heads * attention_head_dim
33
+ self.patch_size = patch_size
34
+ self.x_embedder = PatchEmbed(
35
+ img_size=img_size,
36
+ patch_size=patch_size,
37
+ in_chans=in_chans,
38
+ embed_dim=self.hidden_size,
39
+ strict_img_size=pos_embed_max_size is None,
40
+ device=device,
41
+ dtype=dtype,
42
+ operations=operations,
43
+ )
44
+
45
+ self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations)
46
+
47
+ self.double_y_emb = double_y_emb
48
+ if self.double_y_emb:
49
+ self.orig_y_embedder = VectorEmbedder(
50
+ adm_in_channels, self.hidden_size, dtype, device, operations=operations
51
+ )
52
+ self.y_embedder = VectorEmbedder(
53
+ self.hidden_size, self.hidden_size, dtype, device, operations=operations
54
+ )
55
+ else:
56
+ self.y_embedder = VectorEmbedder(
57
+ adm_in_channels, self.hidden_size, dtype, device, operations=operations
58
+ )
59
+
60
+ self.transformer_blocks = nn.ModuleList(
61
+ DismantledBlock(
62
+ hidden_size=self.hidden_size, num_heads=num_attention_heads, qkv_bias=True,
63
+ dtype=dtype, device=device, operations=operations
64
+ )
65
+ for _ in range(num_layers)
66
+ )
67
+
68
+ # self.use_y_embedder = pooled_projection_dim != self.time_text_embed.text_embedder.linear_1.in_features
69
+ # TODO double check this logic when 8b
70
+ self.use_y_embedder = True
71
+
72
+ self.controlnet_blocks = nn.ModuleList([])
73
+ for _ in range(len(self.transformer_blocks)):
74
+ controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
75
+ self.controlnet_blocks.append(controlnet_block)
76
+
77
+ self.pos_embed_input = PatchEmbed(
78
+ img_size=img_size,
79
+ patch_size=patch_size,
80
+ in_chans=in_chans,
81
+ embed_dim=self.hidden_size,
82
+ strict_img_size=False,
83
+ device=device,
84
+ dtype=dtype,
85
+ operations=operations,
86
+ )
87
+
88
+ def forward(
89
+ self,
90
+ x: torch.Tensor,
91
+ timesteps: torch.Tensor,
92
+ y: Optional[torch.Tensor] = None,
93
+ context: Optional[torch.Tensor] = None,
94
+ hint = None,
95
+ ) -> Tuple[Tensor, List[Tensor]]:
96
+ x_shape = list(x.shape)
97
+ x = self.x_embedder(x)
98
+ if not self.double_y_emb:
99
+ h = (x_shape[-2] + 1) // self.patch_size
100
+ w = (x_shape[-1] + 1) // self.patch_size
101
+ x += get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=x.device)
102
+ c = self.t_embedder(timesteps, dtype=x.dtype)
103
+ if y is not None and self.y_embedder is not None:
104
+ if self.double_y_emb:
105
+ y = self.orig_y_embedder(y)
106
+ y = self.y_embedder(y)
107
+ c = c + y
108
+
109
+ x = x + self.pos_embed_input(hint)
110
+
111
+ block_out = ()
112
+
113
+ repeat = math.ceil(self.main_model_double / len(self.transformer_blocks))
114
+ for i in range(len(self.transformer_blocks)):
115
+ out = self.transformer_blocks[i](x, c)
116
+ if not self.double_y_emb:
117
+ x = out
118
+ block_out += (self.controlnet_blocks[i](out),) * repeat
119
+
120
+ return {"output": block_out}
comfy/cldm/mmdit.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from typing import Optional
3
+ import comfy.ldm.modules.diffusionmodules.mmdit
4
+
5
+ class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
6
+ def __init__(
7
+ self,
8
+ num_blocks = None,
9
+ control_latent_channels = None,
10
+ dtype = None,
11
+ device = None,
12
+ operations = None,
13
+ **kwargs,
14
+ ):
15
+ super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
16
+ # controlnet_blocks
17
+ self.controlnet_blocks = torch.nn.ModuleList([])
18
+ for _ in range(len(self.joint_blocks)):
19
+ self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
20
+
21
+ if control_latent_channels is None:
22
+ control_latent_channels = self.in_channels
23
+
24
+ self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
25
+ None,
26
+ self.patch_size,
27
+ control_latent_channels,
28
+ self.hidden_size,
29
+ bias=True,
30
+ strict_img_size=False,
31
+ dtype=dtype,
32
+ device=device,
33
+ operations=operations
34
+ )
35
+
36
+ def forward(
37
+ self,
38
+ x: torch.Tensor,
39
+ timesteps: torch.Tensor,
40
+ y: Optional[torch.Tensor] = None,
41
+ context: Optional[torch.Tensor] = None,
42
+ hint = None,
43
+ ) -> torch.Tensor:
44
+
45
+ #weird sd3 controlnet specific stuff
46
+ y = torch.zeros_like(y)
47
+
48
+ if self.context_processor is not None:
49
+ context = self.context_processor(context)
50
+
51
+ hw = x.shape[-2:]
52
+ x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
53
+ x += self.pos_embed_input(hint)
54
+
55
+ c = self.t_embedder(timesteps, dtype=x.dtype)
56
+ if y is not None and self.y_embedder is not None:
57
+ y = self.y_embedder(y)
58
+ c = c + y
59
+
60
+ if context is not None:
61
+ context = self.context_embedder(context)
62
+
63
+ output = []
64
+
65
+ blocks = len(self.joint_blocks)
66
+ for i in range(blocks):
67
+ context, x = self.joint_blocks[i](
68
+ context,
69
+ x,
70
+ c=c,
71
+ use_checkpoint=self.use_checkpoint,
72
+ )
73
+
74
+ out = self.controlnet_blocks[i](x)
75
+ count = self.depth // blocks
76
+ if i == blocks - 1:
77
+ count -= 1
78
+ for j in range(count):
79
+ output.append(out)
80
+
81
+ return {"output": output}
comfy/cli_args.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import enum
3
+ import os
4
+ from typing import Optional
5
+ import comfy.options
6
+
7
+
8
+ class EnumAction(argparse.Action):
9
+ """
10
+ Argparse action for handling Enums
11
+ """
12
+ def __init__(self, **kwargs):
13
+ # Pop off the type value
14
+ enum_type = kwargs.pop("type", None)
15
+
16
+ # Ensure an Enum subclass is provided
17
+ if enum_type is None:
18
+ raise ValueError("type must be assigned an Enum when using EnumAction")
19
+ if not issubclass(enum_type, enum.Enum):
20
+ raise TypeError("type must be an Enum when using EnumAction")
21
+
22
+ # Generate choices from the Enum
23
+ choices = tuple(e.value for e in enum_type)
24
+ kwargs.setdefault("choices", choices)
25
+ kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
26
+
27
+ super(EnumAction, self).__init__(**kwargs)
28
+
29
+ self._enum = enum_type
30
+
31
+ def __call__(self, parser, namespace, values, option_string=None):
32
+ # Convert value back into an Enum
33
+ value = self._enum(values)
34
+ setattr(namespace, self.dest, value)
35
+
36
+
37
+ parser = argparse.ArgumentParser()
38
+
39
+ parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
40
+ parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
41
+ parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
42
+ parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
43
+ parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
44
+ parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
45
+
46
+ parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
47
+ parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
48
+ parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).")
49
+ parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.")
50
+ parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
51
+ parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
52
+ parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
53
+ cm_group = parser.add_mutually_exclusive_group()
54
+ cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
55
+ cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
56
+
57
+
58
+ fp_group = parser.add_mutually_exclusive_group()
59
+ fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
60
+ fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
61
+
62
+ fpunet_group = parser.add_mutually_exclusive_group()
63
+ fpunet_group.add_argument("--fp32-unet", action="store_true", help="Run the diffusion model in fp32.")
64
+ fpunet_group.add_argument("--fp64-unet", action="store_true", help="Run the diffusion model in fp64.")
65
+ fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diffusion model in bf16.")
66
+ fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
67
+ fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
68
+ fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
69
+
70
+ fpvae_group = parser.add_mutually_exclusive_group()
71
+ fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
72
+ fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
73
+ fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
74
+
75
+ parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
76
+
77
+ fpte_group = parser.add_mutually_exclusive_group()
78
+ fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
79
+ fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
80
+ fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
81
+ fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
82
+
83
+ parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
84
+
85
+ parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
86
+
87
+ parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
88
+ parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
89
+
90
+ class LatentPreviewMethod(enum.Enum):
91
+ NoPreviews = "none"
92
+ Auto = "auto"
93
+ Latent2RGB = "latent2rgb"
94
+ TAESD = "taesd"
95
+
96
+ parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
97
+
98
+ parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
99
+
100
+ cache_group = parser.add_mutually_exclusive_group()
101
+ cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
102
+ cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
103
+
104
+ attn_group = parser.add_mutually_exclusive_group()
105
+ attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
106
+ attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
107
+ attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
108
+ attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
109
+
110
+ parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
111
+
112
+ upcast = parser.add_mutually_exclusive_group()
113
+ upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
114
+ upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
115
+
116
+
117
+ vram_group = parser.add_mutually_exclusive_group()
118
+ vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
119
+ vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
120
+ vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
121
+ vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
122
+ vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
123
+ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
124
+
125
+ parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
126
+
127
+
128
+ parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
129
+
130
+ parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
131
+ parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
132
+ parser.add_argument("--fast", action="store_true", help="Enable some untested and potentially quality deteriorating optimizations.")
133
+
134
+ parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
135
+ parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
136
+ parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
137
+
138
+ parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
139
+ parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
140
+
141
+ parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
142
+
143
+ parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
144
+ parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).")
145
+
146
+ # The default built-in provider hosted under web/
147
+ DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
148
+
149
+ parser.add_argument(
150
+ "--front-end-version",
151
+ type=str,
152
+ default=DEFAULT_VERSION_STRING,
153
+ help="""
154
+ Specifies the version of the frontend to be used. This command needs internet connectivity to query and
155
+ download available frontend implementations from GitHub releases.
156
+
157
+ The version string should be in the format of:
158
+ [repoOwner]/[repoName]@[version]
159
+ where version is one of: "latest" or a valid version number (e.g. "1.0.0")
160
+ """,
161
+ )
162
+
163
+ def is_valid_directory(path: Optional[str]) -> Optional[str]:
164
+ """Validate if the given path is a directory."""
165
+ if path is None:
166
+ return None
167
+
168
+ if not os.path.isdir(path):
169
+ raise argparse.ArgumentTypeError(f"{path} is not a valid directory.")
170
+ return path
171
+
172
+ parser.add_argument(
173
+ "--front-end-root",
174
+ type=is_valid_directory,
175
+ default=None,
176
+ help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
177
+ )
178
+
179
+ parser.add_argument("--user-directory", type=is_valid_directory, default=None, help="Set the ComfyUI user directory with an absolute path.")
180
+
181
+ if comfy.options.args_parsing:
182
+ args = parser.parse_args()
183
+ else:
184
+ args = parser.parse_args([])
185
+
186
+ if args.windows_standalone_build:
187
+ args.auto_launch = True
188
+
189
+ if args.disable_auto_launch:
190
+ args.auto_launch = False
comfy/clip_config_bigg.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "CLIPTextModel"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 0,
7
+ "dropout": 0.0,
8
+ "eos_token_id": 49407,
9
+ "hidden_act": "gelu",
10
+ "hidden_size": 1280,
11
+ "initializer_factor": 1.0,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 5120,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 77,
16
+ "model_type": "clip_text_model",
17
+ "num_attention_heads": 20,
18
+ "num_hidden_layers": 32,
19
+ "pad_token_id": 1,
20
+ "projection_dim": 1280,
21
+ "torch_dtype": "float32",
22
+ "vocab_size": 49408
23
+ }
comfy/clip_model.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from comfy.ldm.modules.attention import optimized_attention_for_device
3
+ import comfy.ops
4
+
5
+ class CLIPAttention(torch.nn.Module):
6
+ def __init__(self, embed_dim, heads, dtype, device, operations):
7
+ super().__init__()
8
+
9
+ self.heads = heads
10
+ self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
11
+ self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
12
+ self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
13
+
14
+ self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
15
+
16
+ def forward(self, x, mask=None, optimized_attention=None):
17
+ q = self.q_proj(x)
18
+ k = self.k_proj(x)
19
+ v = self.v_proj(x)
20
+
21
+ out = optimized_attention(q, k, v, self.heads, mask)
22
+ return self.out_proj(out)
23
+
24
+ ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
25
+ "gelu": torch.nn.functional.gelu,
26
+ "gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
27
+ }
28
+
29
+ class CLIPMLP(torch.nn.Module):
30
+ def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
31
+ super().__init__()
32
+ self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
33
+ self.activation = ACTIVATIONS[activation]
34
+ self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
35
+
36
+ def forward(self, x):
37
+ x = self.fc1(x)
38
+ x = self.activation(x)
39
+ x = self.fc2(x)
40
+ return x
41
+
42
+ class CLIPLayer(torch.nn.Module):
43
+ def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
44
+ super().__init__()
45
+ self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
46
+ self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
47
+ self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
48
+ self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
49
+
50
+ def forward(self, x, mask=None, optimized_attention=None):
51
+ x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
52
+ x += self.mlp(self.layer_norm2(x))
53
+ return x
54
+
55
+
56
+ class CLIPEncoder(torch.nn.Module):
57
+ def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
58
+ super().__init__()
59
+ self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
60
+
61
+ def forward(self, x, mask=None, intermediate_output=None):
62
+ optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
63
+
64
+ if intermediate_output is not None:
65
+ if intermediate_output < 0:
66
+ intermediate_output = len(self.layers) + intermediate_output
67
+
68
+ intermediate = None
69
+ for i, l in enumerate(self.layers):
70
+ x = l(x, mask, optimized_attention)
71
+ if i == intermediate_output:
72
+ intermediate = x.clone()
73
+ return x, intermediate
74
+
75
+ class CLIPEmbeddings(torch.nn.Module):
76
+ def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
77
+ super().__init__()
78
+ self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
79
+ self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
80
+
81
+ def forward(self, input_tokens, dtype=torch.float32):
82
+ return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
83
+
84
+
85
+ class CLIPTextModel_(torch.nn.Module):
86
+ def __init__(self, config_dict, dtype, device, operations):
87
+ num_layers = config_dict["num_hidden_layers"]
88
+ embed_dim = config_dict["hidden_size"]
89
+ heads = config_dict["num_attention_heads"]
90
+ intermediate_size = config_dict["intermediate_size"]
91
+ intermediate_activation = config_dict["hidden_act"]
92
+ num_positions = config_dict["max_position_embeddings"]
93
+ self.eos_token_id = config_dict["eos_token_id"]
94
+
95
+ super().__init__()
96
+ self.embeddings = CLIPEmbeddings(embed_dim, num_positions=num_positions, dtype=dtype, device=device, operations=operations)
97
+ self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
98
+ self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
99
+
100
+ def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
101
+ x = self.embeddings(input_tokens, dtype=dtype)
102
+ mask = None
103
+ if attention_mask is not None:
104
+ mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
105
+ mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
106
+
107
+ causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
108
+ if mask is not None:
109
+ mask += causal_mask
110
+ else:
111
+ mask = causal_mask
112
+
113
+ x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
114
+ x = self.final_layer_norm(x)
115
+ if i is not None and final_layer_norm_intermediate:
116
+ i = self.final_layer_norm(i)
117
+
118
+ pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
119
+ return x, i, pooled_output
120
+
121
+ class CLIPTextModel(torch.nn.Module):
122
+ def __init__(self, config_dict, dtype, device, operations):
123
+ super().__init__()
124
+ self.num_layers = config_dict["num_hidden_layers"]
125
+ self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
126
+ embed_dim = config_dict["hidden_size"]
127
+ self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
128
+ self.dtype = dtype
129
+
130
+ def get_input_embeddings(self):
131
+ return self.text_model.embeddings.token_embedding
132
+
133
+ def set_input_embeddings(self, embeddings):
134
+ self.text_model.embeddings.token_embedding = embeddings
135
+
136
+ def forward(self, *args, **kwargs):
137
+ x = self.text_model(*args, **kwargs)
138
+ out = self.text_projection(x[2])
139
+ return (x[0], x[1], out, x[2])
140
+
141
+
142
+ class CLIPVisionEmbeddings(torch.nn.Module):
143
+ def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None):
144
+ super().__init__()
145
+
146
+ num_patches = (image_size // patch_size) ** 2
147
+ if model_type == "siglip_vision_model":
148
+ self.class_embedding = None
149
+ patch_bias = True
150
+ else:
151
+ num_patches = num_patches + 1
152
+ self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
153
+ patch_bias = False
154
+
155
+ self.patch_embedding = operations.Conv2d(
156
+ in_channels=num_channels,
157
+ out_channels=embed_dim,
158
+ kernel_size=patch_size,
159
+ stride=patch_size,
160
+ bias=patch_bias,
161
+ dtype=dtype,
162
+ device=device
163
+ )
164
+
165
+ self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device)
166
+
167
+ def forward(self, pixel_values):
168
+ embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
169
+ if self.class_embedding is not None:
170
+ embeds = torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1)
171
+ return embeds + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
172
+
173
+
174
+ class CLIPVision(torch.nn.Module):
175
+ def __init__(self, config_dict, dtype, device, operations):
176
+ super().__init__()
177
+ num_layers = config_dict["num_hidden_layers"]
178
+ embed_dim = config_dict["hidden_size"]
179
+ heads = config_dict["num_attention_heads"]
180
+ intermediate_size = config_dict["intermediate_size"]
181
+ intermediate_activation = config_dict["hidden_act"]
182
+ model_type = config_dict["model_type"]
183
+
184
+ self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
185
+ if model_type == "siglip_vision_model":
186
+ self.pre_layrnorm = lambda a: a
187
+ self.output_layernorm = True
188
+ else:
189
+ self.pre_layrnorm = operations.LayerNorm(embed_dim)
190
+ self.output_layernorm = False
191
+ self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
192
+ self.post_layernorm = operations.LayerNorm(embed_dim)
193
+
194
+ def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
195
+ x = self.embeddings(pixel_values)
196
+ x = self.pre_layrnorm(x)
197
+ #TODO: attention_mask?
198
+ x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
199
+ if self.output_layernorm:
200
+ x = self.post_layernorm(x)
201
+ pooled_output = x
202
+ else:
203
+ pooled_output = self.post_layernorm(x[:, 0, :])
204
+ return x, i, pooled_output
205
+
206
+ class CLIPVisionModelProjection(torch.nn.Module):
207
+ def __init__(self, config_dict, dtype, device, operations):
208
+ super().__init__()
209
+ self.vision_model = CLIPVision(config_dict, dtype, device, operations)
210
+ if "projection_dim" in config_dict:
211
+ self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
212
+ else:
213
+ self.visual_projection = lambda a: a
214
+
215
+ def forward(self, *args, **kwargs):
216
+ x = self.vision_model(*args, **kwargs)
217
+ out = self.visual_projection(x[2])
218
+ return (x[0], x[1], out)
comfy/clip_vision.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
2
+ import os
3
+ import torch
4
+ import json
5
+ import logging
6
+
7
+ import comfy.ops
8
+ import comfy.model_patcher
9
+ import comfy.model_management
10
+ import comfy.utils
11
+ import comfy.clip_model
12
+
13
+ class Output:
14
+ def __getitem__(self, key):
15
+ return getattr(self, key)
16
+ def __setitem__(self, key, item):
17
+ setattr(self, key, item)
18
+
19
+ def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
20
+ mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
21
+ std = torch.tensor(std, device=image.device, dtype=image.dtype)
22
+ image = image.movedim(-1, 1)
23
+ if not (image.shape[2] == size and image.shape[3] == size):
24
+ if crop:
25
+ scale = (size / min(image.shape[2], image.shape[3]))
26
+ scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
27
+ else:
28
+ scale_size = (size, size)
29
+
30
+ image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
31
+ h = (image.shape[2] - size)//2
32
+ w = (image.shape[3] - size)//2
33
+ image = image[:,:,h:h+size,w:w+size]
34
+ image = torch.clip((255. * image), 0, 255).round() / 255.0
35
+ return (image - mean.view([3,1,1])) / std.view([3,1,1])
36
+
37
+ class ClipVisionModel():
38
+ def __init__(self, json_config):
39
+ with open(json_config) as f:
40
+ config = json.load(f)
41
+
42
+ self.image_size = config.get("image_size", 224)
43
+ self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
44
+ self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
45
+ self.load_device = comfy.model_management.text_encoder_device()
46
+ offload_device = comfy.model_management.text_encoder_offload_device()
47
+ self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
48
+ self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
49
+ self.model.eval()
50
+
51
+ self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
52
+
53
+ def load_sd(self, sd):
54
+ return self.model.load_state_dict(sd, strict=False)
55
+
56
+ def get_sd(self):
57
+ return self.model.state_dict()
58
+
59
+ def encode_image(self, image, crop=True):
60
+ comfy.model_management.load_model_gpu(self.patcher)
61
+ pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
62
+ out = self.model(pixel_values=pixel_values, intermediate_output=-2)
63
+
64
+ outputs = Output()
65
+ outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
66
+ outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
67
+ outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
68
+ return outputs
69
+
70
+ def convert_to_transformers(sd, prefix):
71
+ sd_k = sd.keys()
72
+ if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
73
+ keys_to_replace = {
74
+ "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
75
+ "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
76
+ "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
77
+ "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
78
+ "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
79
+ "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
80
+ "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
81
+ }
82
+
83
+ for x in keys_to_replace:
84
+ if x in sd_k:
85
+ sd[keys_to_replace[x]] = sd.pop(x)
86
+
87
+ if "{}proj".format(prefix) in sd_k:
88
+ sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
89
+
90
+ sd = transformers_convert(sd, prefix, "vision_model.", 48)
91
+ else:
92
+ replace_prefix = {prefix: ""}
93
+ sd = state_dict_prefix_replace(sd, replace_prefix)
94
+ return sd
95
+
96
+ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
97
+ if convert_keys:
98
+ sd = convert_to_transformers(sd, prefix)
99
+ if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
100
+ json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
101
+ elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
102
+ json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
103
+ elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
104
+ if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
105
+ json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
106
+ elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
107
+ json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
108
+ else:
109
+ json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
110
+ else:
111
+ return None
112
+
113
+ clip = ClipVisionModel(json_config)
114
+ m, u = clip.load_sd(sd)
115
+ if len(m) > 0:
116
+ logging.warning("missing clip vision: {}".format(m))
117
+ u = set(u)
118
+ keys = list(sd.keys())
119
+ for k in keys:
120
+ if k not in u:
121
+ sd.pop(k)
122
+ return clip
123
+
124
+ def load(ckpt_path):
125
+ sd = load_torch_file(ckpt_path)
126
+ if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
127
+ return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
128
+ else:
129
+ return load_clipvision_from_sd(sd)
comfy/clip_vision_config_g.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_dropout": 0.0,
3
+ "dropout": 0.0,
4
+ "hidden_act": "gelu",
5
+ "hidden_size": 1664,
6
+ "image_size": 224,
7
+ "initializer_factor": 1.0,
8
+ "initializer_range": 0.02,
9
+ "intermediate_size": 8192,
10
+ "layer_norm_eps": 1e-05,
11
+ "model_type": "clip_vision_model",
12
+ "num_attention_heads": 16,
13
+ "num_channels": 3,
14
+ "num_hidden_layers": 48,
15
+ "patch_size": 14,
16
+ "projection_dim": 1280,
17
+ "torch_dtype": "float32"
18
+ }
comfy/clip_vision_config_h.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_dropout": 0.0,
3
+ "dropout": 0.0,
4
+ "hidden_act": "gelu",
5
+ "hidden_size": 1280,
6
+ "image_size": 224,
7
+ "initializer_factor": 1.0,
8
+ "initializer_range": 0.02,
9
+ "intermediate_size": 5120,
10
+ "layer_norm_eps": 1e-05,
11
+ "model_type": "clip_vision_model",
12
+ "num_attention_heads": 16,
13
+ "num_channels": 3,
14
+ "num_hidden_layers": 32,
15
+ "patch_size": 14,
16
+ "projection_dim": 1024,
17
+ "torch_dtype": "float32"
18
+ }
comfy/clip_vision_config_vitl.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_dropout": 0.0,
3
+ "dropout": 0.0,
4
+ "hidden_act": "quick_gelu",
5
+ "hidden_size": 1024,
6
+ "image_size": 224,
7
+ "initializer_factor": 1.0,
8
+ "initializer_range": 0.02,
9
+ "intermediate_size": 4096,
10
+ "layer_norm_eps": 1e-05,
11
+ "model_type": "clip_vision_model",
12
+ "num_attention_heads": 16,
13
+ "num_channels": 3,
14
+ "num_hidden_layers": 24,
15
+ "patch_size": 14,
16
+ "projection_dim": 768,
17
+ "torch_dtype": "float32"
18
+ }
comfy/clip_vision_config_vitl_336.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_dropout": 0.0,
3
+ "dropout": 0.0,
4
+ "hidden_act": "quick_gelu",
5
+ "hidden_size": 1024,
6
+ "image_size": 336,
7
+ "initializer_factor": 1.0,
8
+ "initializer_range": 0.02,
9
+ "intermediate_size": 4096,
10
+ "layer_norm_eps": 1e-5,
11
+ "model_type": "clip_vision_model",
12
+ "num_attention_heads": 16,
13
+ "num_channels": 3,
14
+ "num_hidden_layers": 24,
15
+ "patch_size": 14,
16
+ "projection_dim": 768,
17
+ "torch_dtype": "float32"
18
+ }
comfy/clip_vision_siglip_384.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "num_channels": 3,
3
+ "hidden_act": "gelu_pytorch_tanh",
4
+ "hidden_size": 1152,
5
+ "image_size": 384,
6
+ "intermediate_size": 4304,
7
+ "model_type": "siglip_vision_model",
8
+ "num_attention_heads": 16,
9
+ "num_hidden_layers": 27,
10
+ "patch_size": 14,
11
+ "image_mean": [0.5, 0.5, 0.5],
12
+ "image_std": [0.5, 0.5, 0.5]
13
+ }
comfy/comfy_types/README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Comfy Typing
2
+ ## Type hinting for ComfyUI Node development
3
+
4
+ This module provides type hinting and concrete convenience types for node developers.
5
+ If cloned to the custom_nodes directory of ComfyUI, types can be imported using:
6
+
7
+ ```python
8
+ from comfy.comfy_types import IO, ComfyNodeABC, CheckLazyMixin
9
+
10
+ class ExampleNode(ComfyNodeABC):
11
+ @classmethod
12
+ def INPUT_TYPES(s) -> InputTypeDict:
13
+ return {"required": {}}
14
+ ```
15
+
16
+ Full example is in [examples/example_nodes.py](examples/example_nodes.py).
17
+
18
+ # Types
19
+ A few primary types are documented below. More complete information is available via the docstrings on each type.
20
+
21
+ ## `IO`
22
+
23
+ A string enum of built-in and a few custom data types. Includes the following special types and their requisite plumbing:
24
+
25
+ - `ANY`: `"*"`
26
+ - `NUMBER`: `"FLOAT,INT"`
27
+ - `PRIMITIVE`: `"STRING,FLOAT,INT,BOOLEAN"`
28
+
29
+ ## `ComfyNodeABC`
30
+
31
+ An abstract base class for nodes, offering type-hinting / autocomplete, and somewhat-alright docstrings.
32
+
33
+ ### Type hinting for `INPUT_TYPES`
34
+
35
+ ![INPUT_TYPES auto-completion in Visual Studio Code](examples/input_types.png)
36
+
37
+ ### `INPUT_TYPES` return dict
38
+
39
+ ![INPUT_TYPES return value type hinting in Visual Studio Code](examples/required_hint.png)
40
+
41
+ ### Options for individual inputs
42
+
43
+ ![INPUT_TYPES return value option auto-completion in Visual Studio Code](examples/input_options.png)
comfy/comfy_types/__init__.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from typing import Callable, Protocol, TypedDict, Optional, List
3
+ from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin
4
+
5
+
6
+ class UnetApplyFunction(Protocol):
7
+ """Function signature protocol on comfy.model_base.BaseModel.apply_model"""
8
+
9
+ def __call__(self, x: torch.Tensor, t: torch.Tensor, **kwargs) -> torch.Tensor:
10
+ pass
11
+
12
+
13
+ class UnetApplyConds(TypedDict):
14
+ """Optional conditions for unet apply function."""
15
+
16
+ c_concat: Optional[torch.Tensor]
17
+ c_crossattn: Optional[torch.Tensor]
18
+ control: Optional[torch.Tensor]
19
+ transformer_options: Optional[dict]
20
+
21
+
22
+ class UnetParams(TypedDict):
23
+ # Tensor of shape [B, C, H, W]
24
+ input: torch.Tensor
25
+ # Tensor of shape [B]
26
+ timestep: torch.Tensor
27
+ c: UnetApplyConds
28
+ # List of [0, 1], [0], [1], ...
29
+ # 0 means conditional, 1 means conditional unconditional
30
+ cond_or_uncond: List[int]
31
+
32
+
33
+ UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor]
34
+
35
+
36
+ __all__ = [
37
+ "UnetWrapperFunction",
38
+ UnetApplyConds.__name__,
39
+ UnetParams.__name__,
40
+ UnetApplyFunction.__name__,
41
+ IO.__name__,
42
+ InputTypeDict.__name__,
43
+ ComfyNodeABC.__name__,
44
+ CheckLazyMixin.__name__,
45
+ ]
comfy/comfy_types/examples/example_nodes.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
2
+ from inspect import cleandoc
3
+
4
+
5
+ class ExampleNode(ComfyNodeABC):
6
+ """An example node that just adds 1 to an input integer.
7
+
8
+ * Requires a modern IDE to provide any benefit (detail: an IDE configured with analysis paths etc).
9
+ * This node is intended as an example for developers only.
10
+ """
11
+
12
+ DESCRIPTION = cleandoc(__doc__)
13
+ CATEGORY = "examples"
14
+
15
+ @classmethod
16
+ def INPUT_TYPES(s) -> InputTypeDict:
17
+ return {
18
+ "required": {
19
+ "input_int": (IO.INT, {"defaultInput": True}),
20
+ }
21
+ }
22
+
23
+ RETURN_TYPES = (IO.INT,)
24
+ RETURN_NAMES = ("input_plus_one",)
25
+ FUNCTION = "execute"
26
+
27
+ def execute(self, input_int: int):
28
+ return (input_int + 1,)
comfy/comfy_types/examples/input_options.png ADDED
comfy/comfy_types/examples/input_types.png ADDED
comfy/comfy_types/examples/required_hint.png ADDED
comfy/comfy_types/node_typing.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Comfy-specific type hinting"""
2
+
3
+ from __future__ import annotations
4
+ from typing import Literal, TypedDict
5
+ from abc import ABC, abstractmethod
6
+ from enum import Enum
7
+
8
+
9
+ class StrEnum(str, Enum):
10
+ """Base class for string enums. Python's StrEnum is not available until 3.11."""
11
+
12
+ def __str__(self) -> str:
13
+ return self.value
14
+
15
+
16
+ class IO(StrEnum):
17
+ """Node input/output data types.
18
+
19
+ Includes functionality for ``"*"`` (`ANY`) and ``"MULTI,TYPES"``.
20
+ """
21
+
22
+ STRING = "STRING"
23
+ IMAGE = "IMAGE"
24
+ MASK = "MASK"
25
+ LATENT = "LATENT"
26
+ BOOLEAN = "BOOLEAN"
27
+ INT = "INT"
28
+ FLOAT = "FLOAT"
29
+ CONDITIONING = "CONDITIONING"
30
+ SAMPLER = "SAMPLER"
31
+ SIGMAS = "SIGMAS"
32
+ GUIDER = "GUIDER"
33
+ NOISE = "NOISE"
34
+ CLIP = "CLIP"
35
+ CONTROL_NET = "CONTROL_NET"
36
+ VAE = "VAE"
37
+ MODEL = "MODEL"
38
+ CLIP_VISION = "CLIP_VISION"
39
+ CLIP_VISION_OUTPUT = "CLIP_VISION_OUTPUT"
40
+ STYLE_MODEL = "STYLE_MODEL"
41
+ GLIGEN = "GLIGEN"
42
+ UPSCALE_MODEL = "UPSCALE_MODEL"
43
+ AUDIO = "AUDIO"
44
+ WEBCAM = "WEBCAM"
45
+ POINT = "POINT"
46
+ FACE_ANALYSIS = "FACE_ANALYSIS"
47
+ BBOX = "BBOX"
48
+ SEGS = "SEGS"
49
+
50
+ ANY = "*"
51
+ """Always matches any type, but at a price.
52
+
53
+ Causes some functionality issues (e.g. reroutes, link types), and should be avoided whenever possible.
54
+ """
55
+ NUMBER = "FLOAT,INT"
56
+ """A float or an int - could be either"""
57
+ PRIMITIVE = "STRING,FLOAT,INT,BOOLEAN"
58
+ """Could be any of: string, float, int, or bool"""
59
+
60
+ def __ne__(self, value: object) -> bool:
61
+ if self == "*" or value == "*":
62
+ return False
63
+ if not isinstance(value, str):
64
+ return True
65
+ a = frozenset(self.split(","))
66
+ b = frozenset(value.split(","))
67
+ return not (b.issubset(a) or a.issubset(b))
68
+
69
+
70
+ class InputTypeOptions(TypedDict):
71
+ """Provides type hinting for the return type of the INPUT_TYPES node function.
72
+
73
+ Due to IDE limitations with unions, for now all options are available for all types (e.g. `label_on` is hinted even when the type is not `IO.BOOLEAN`).
74
+
75
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_datatypes
76
+ """
77
+
78
+ default: bool | str | float | int | list | tuple
79
+ """The default value of the widget"""
80
+ defaultInput: bool
81
+ """Defaults to an input slot rather than a widget"""
82
+ forceInput: bool
83
+ """`defaultInput` and also don't allow converting to a widget"""
84
+ lazy: bool
85
+ """Declares that this input uses lazy evaluation"""
86
+ rawLink: bool
87
+ """When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
88
+ tooltip: str
89
+ """Tooltip for the input (or widget), shown on pointer hover"""
90
+ # class InputTypeNumber(InputTypeOptions):
91
+ # default: float | int
92
+ min: float
93
+ """The minimum value of a number (``FLOAT`` | ``INT``)"""
94
+ max: float
95
+ """The maximum value of a number (``FLOAT`` | ``INT``)"""
96
+ step: float
97
+ """The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
98
+ round: float
99
+ """Floats are rounded by this value (``FLOAT``)"""
100
+ # class InputTypeBoolean(InputTypeOptions):
101
+ # default: bool
102
+ label_on: str
103
+ """The label to use in the UI when the bool is True (``BOOLEAN``)"""
104
+ label_on: str
105
+ """The label to use in the UI when the bool is False (``BOOLEAN``)"""
106
+ # class InputTypeString(InputTypeOptions):
107
+ # default: str
108
+ multiline: bool
109
+ """Use a multiline text box (``STRING``)"""
110
+ placeholder: str
111
+ """Placeholder text to display in the UI when empty (``STRING``)"""
112
+ # Deprecated:
113
+ # defaultVal: str
114
+ dynamicPrompts: bool
115
+ """Causes the front-end to evaluate dynamic prompts (``STRING``)"""
116
+
117
+
118
+ class HiddenInputTypeDict(TypedDict):
119
+ """Provides type hinting for the hidden entry of node INPUT_TYPES."""
120
+
121
+ node_id: Literal["UNIQUE_ID"]
122
+ """UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
123
+ unique_id: Literal["UNIQUE_ID"]
124
+ """UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
125
+ prompt: Literal["PROMPT"]
126
+ """PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
127
+ extra_pnginfo: Literal["EXTRA_PNGINFO"]
128
+ """EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
129
+ dynprompt: Literal["DYNPROMPT"]
130
+ """DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
131
+
132
+
133
+ class InputTypeDict(TypedDict):
134
+ """Provides type hinting for node INPUT_TYPES.
135
+
136
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_more_on_inputs
137
+ """
138
+
139
+ required: dict[str, tuple[IO, InputTypeOptions]]
140
+ """Describes all inputs that must be connected for the node to execute."""
141
+ optional: dict[str, tuple[IO, InputTypeOptions]]
142
+ """Describes inputs which do not need to be connected."""
143
+ hidden: HiddenInputTypeDict
144
+ """Offers advanced functionality and server-client communication.
145
+
146
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_more_on_inputs#hidden-inputs
147
+ """
148
+
149
+
150
+ class ComfyNodeABC(ABC):
151
+ """Abstract base class for Comfy nodes. Includes the names and expected types of attributes.
152
+
153
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview
154
+ """
155
+
156
+ DESCRIPTION: str
157
+ """Node description, shown as a tooltip when hovering over the node.
158
+
159
+ Usage::
160
+
161
+ # Explicitly define the description
162
+ DESCRIPTION = "Example description here."
163
+
164
+ # Use the docstring of the node class.
165
+ DESCRIPTION = cleandoc(__doc__)
166
+ """
167
+ CATEGORY: str
168
+ """The category of the node, as per the "Add Node" menu.
169
+
170
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#category
171
+ """
172
+ EXPERIMENTAL: bool
173
+ """Flags a node as experimental, informing users that it may change or not work as expected."""
174
+ DEPRECATED: bool
175
+ """Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
176
+
177
+ @classmethod
178
+ @abstractmethod
179
+ def INPUT_TYPES(s) -> InputTypeDict:
180
+ """Defines node inputs.
181
+
182
+ * Must include the ``required`` key, which describes all inputs that must be connected for the node to execute.
183
+ * The ``optional`` key can be added to describe inputs which do not need to be connected.
184
+ * The ``hidden`` key offers some advanced functionality. More info at: https://docs.comfy.org/essentials/custom_node_more_on_inputs#hidden-inputs
185
+
186
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#input-types
187
+ """
188
+ return {"required": {}}
189
+
190
+ OUTPUT_NODE: bool
191
+ """Flags this node as an output node, causing any inputs it requires to be executed.
192
+
193
+ If a node is not connected to any output nodes, that node will not be executed. Usage::
194
+
195
+ OUTPUT_NODE = True
196
+
197
+ From the docs:
198
+
199
+ By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
200
+
201
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#output-node
202
+ """
203
+ INPUT_IS_LIST: bool
204
+ """A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
205
+
206
+ All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
207
+
208
+ From the docs:
209
+
210
+ A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
211
+
212
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_lists#list-processing
213
+ """
214
+ OUTPUT_IS_LIST: tuple[bool]
215
+ """A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
216
+
217
+ Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
218
+
219
+ A ``tuple[bool]``, where the items match those in `RETURN_TYPES`::
220
+
221
+ RETURN_TYPES = (IO.INT, IO.INT, IO.STRING)
222
+ OUTPUT_IS_LIST = (True, True, False) # The string output will be handled normally
223
+
224
+ From the docs:
225
+
226
+ In order to tell Comfy that the list being returned should not be wrapped, but treated as a series of data for sequential processing,
227
+ the node should provide a class attribute `OUTPUT_IS_LIST`, which is a ``tuple[bool]``, of the same length as `RETURN_TYPES`,
228
+ specifying which outputs which should be so treated.
229
+
230
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_lists#list-processing
231
+ """
232
+
233
+ RETURN_TYPES: tuple[IO]
234
+ """A tuple representing the outputs of this node.
235
+
236
+ Usage::
237
+
238
+ RETURN_TYPES = (IO.INT, "INT", "CUSTOM_TYPE")
239
+
240
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#return-types
241
+ """
242
+ RETURN_NAMES: tuple[str]
243
+ """The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
244
+
245
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#return-names
246
+ """
247
+ OUTPUT_TOOLTIPS: tuple[str]
248
+ """A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
249
+ FUNCTION: str
250
+ """The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
251
+
252
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_server_overview#function
253
+ """
254
+
255
+
256
+ class CheckLazyMixin:
257
+ """Provides a basic check_lazy_status implementation and type hinting for nodes that use lazy inputs."""
258
+
259
+ def check_lazy_status(self, **kwargs) -> list[str]:
260
+ """Returns a list of input names that should be evaluated.
261
+
262
+ This basic mixin impl. requires all inputs.
263
+
264
+ :kwargs: All node inputs will be included here. If the input is ``None``, it should be assumed that it has not yet been evaluated. \
265
+ When using ``INPUT_IS_LIST = True``, unevaluated will instead be ``(None,)``.
266
+
267
+ Params should match the nodes execution ``FUNCTION`` (self, and all inputs by name).
268
+ Will be executed repeatedly until it returns an empty list, or all requested items were already evaluated (and sent as params).
269
+
270
+ Comfy Docs: https://docs.comfy.org/essentials/custom_node_lazy_evaluation#defining-check-lazy-status
271
+ """
272
+
273
+ need = [name for name in kwargs if kwargs[name] is None]
274
+ return need
comfy/conds.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import math
3
+ import comfy.utils
4
+
5
+
6
+ def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
7
+ return abs(a*b) // math.gcd(a, b)
8
+
9
+ class CONDRegular:
10
+ def __init__(self, cond):
11
+ self.cond = cond
12
+
13
+ def _copy_with(self, cond):
14
+ return self.__class__(cond)
15
+
16
+ def process_cond(self, batch_size, device, **kwargs):
17
+ return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
18
+
19
+ def can_concat(self, other):
20
+ if self.cond.shape != other.cond.shape:
21
+ return False
22
+ return True
23
+
24
+ def concat(self, others):
25
+ conds = [self.cond]
26
+ for x in others:
27
+ conds.append(x.cond)
28
+ return torch.cat(conds)
29
+
30
+ class CONDNoiseShape(CONDRegular):
31
+ def process_cond(self, batch_size, device, area, **kwargs):
32
+ data = self.cond
33
+ if area is not None:
34
+ dims = len(area) // 2
35
+ for i in range(dims):
36
+ data = data.narrow(i + 2, area[i + dims], area[i])
37
+
38
+ return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
39
+
40
+
41
+ class CONDCrossAttn(CONDRegular):
42
+ def can_concat(self, other):
43
+ s1 = self.cond.shape
44
+ s2 = other.cond.shape
45
+ if s1 != s2:
46
+ if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
47
+ return False
48
+
49
+ mult_min = lcm(s1[1], s2[1])
50
+ diff = mult_min // min(s1[1], s2[1])
51
+ if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
52
+ return False
53
+ return True
54
+
55
+ def concat(self, others):
56
+ conds = [self.cond]
57
+ crossattn_max_len = self.cond.shape[1]
58
+ for x in others:
59
+ c = x.cond
60
+ crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
61
+ conds.append(c)
62
+
63
+ out = []
64
+ for c in conds:
65
+ if c.shape[1] < crossattn_max_len:
66
+ c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
67
+ out.append(c)
68
+ return torch.cat(out)
69
+
70
+ class CONDConstant(CONDRegular):
71
+ def __init__(self, cond):
72
+ self.cond = cond
73
+
74
+ def process_cond(self, batch_size, device, **kwargs):
75
+ return self._copy_with(self.cond)
76
+
77
+ def can_concat(self, other):
78
+ if self.cond != other.cond:
79
+ return False
80
+ return True
81
+
82
+ def concat(self, others):
83
+ return self.cond
comfy/controlnet.py ADDED
@@ -0,0 +1,862 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file is part of ComfyUI.
3
+ Copyright (C) 2024 Comfy
4
+
5
+ This program is free software: you can redistribute it and/or modify
6
+ it under the terms of the GNU General Public License as published by
7
+ the Free Software Foundation, either version 3 of the License, or
8
+ (at your option) any later version.
9
+
10
+ This program is distributed in the hope that it will be useful,
11
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
+ GNU General Public License for more details.
14
+
15
+ You should have received a copy of the GNU General Public License
16
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
17
+ """
18
+
19
+
20
+ import torch
21
+ from enum import Enum
22
+ import math
23
+ import os
24
+ import logging
25
+ import comfy.utils
26
+ import comfy.model_management
27
+ import comfy.model_detection
28
+ import comfy.model_patcher
29
+ import comfy.ops
30
+ import comfy.latent_formats
31
+
32
+ import comfy.cldm.cldm
33
+ import comfy.t2i_adapter.adapter
34
+ import comfy.ldm.cascade.controlnet
35
+ import comfy.cldm.mmdit
36
+ import comfy.ldm.hydit.controlnet
37
+ import comfy.ldm.flux.controlnet
38
+ import comfy.cldm.dit_embedder
39
+ from typing import TYPE_CHECKING
40
+ if TYPE_CHECKING:
41
+ from comfy.hooks import HookGroup
42
+
43
+
44
+ def broadcast_image_to(tensor, target_batch_size, batched_number):
45
+ current_batch_size = tensor.shape[0]
46
+ #print(current_batch_size, target_batch_size)
47
+ if current_batch_size == 1:
48
+ return tensor
49
+
50
+ per_batch = target_batch_size // batched_number
51
+ tensor = tensor[:per_batch]
52
+
53
+ if per_batch > tensor.shape[0]:
54
+ tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
55
+
56
+ current_batch_size = tensor.shape[0]
57
+ if current_batch_size == target_batch_size:
58
+ return tensor
59
+ else:
60
+ return torch.cat([tensor] * batched_number, dim=0)
61
+
62
+ class StrengthType(Enum):
63
+ CONSTANT = 1
64
+ LINEAR_UP = 2
65
+
66
+ class ControlBase:
67
+ def __init__(self):
68
+ self.cond_hint_original = None
69
+ self.cond_hint = None
70
+ self.strength = 1.0
71
+ self.timestep_percent_range = (0.0, 1.0)
72
+ self.latent_format = None
73
+ self.vae = None
74
+ self.global_average_pooling = False
75
+ self.timestep_range = None
76
+ self.compression_ratio = 8
77
+ self.upscale_algorithm = 'nearest-exact'
78
+ self.extra_args = {}
79
+ self.previous_controlnet = None
80
+ self.extra_conds = []
81
+ self.strength_type = StrengthType.CONSTANT
82
+ self.concat_mask = False
83
+ self.extra_concat_orig = []
84
+ self.extra_concat = None
85
+ self.extra_hooks: HookGroup = None
86
+ self.preprocess_image = lambda a: a
87
+
88
+ def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
89
+ self.cond_hint_original = cond_hint
90
+ self.strength = strength
91
+ self.timestep_percent_range = timestep_percent_range
92
+ if self.latent_format is not None:
93
+ if vae is None:
94
+ logging.warning("WARNING: no VAE provided to the controlnet apply node when this controlnet requires one.")
95
+ self.vae = vae
96
+ self.extra_concat_orig = extra_concat.copy()
97
+ if self.concat_mask and len(self.extra_concat_orig) == 0:
98
+ self.extra_concat_orig.append(torch.tensor([[[[1.0]]]]))
99
+ return self
100
+
101
+ def pre_run(self, model, percent_to_timestep_function):
102
+ self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
103
+ if self.previous_controlnet is not None:
104
+ self.previous_controlnet.pre_run(model, percent_to_timestep_function)
105
+
106
+ def set_previous_controlnet(self, controlnet):
107
+ self.previous_controlnet = controlnet
108
+ return self
109
+
110
+ def cleanup(self):
111
+ if self.previous_controlnet is not None:
112
+ self.previous_controlnet.cleanup()
113
+
114
+ self.cond_hint = None
115
+ self.extra_concat = None
116
+ self.timestep_range = None
117
+
118
+ def get_models(self):
119
+ out = []
120
+ if self.previous_controlnet is not None:
121
+ out += self.previous_controlnet.get_models()
122
+ return out
123
+
124
+ def get_extra_hooks(self):
125
+ out = []
126
+ if self.extra_hooks is not None:
127
+ out.append(self.extra_hooks)
128
+ if self.previous_controlnet is not None:
129
+ out += self.previous_controlnet.get_extra_hooks()
130
+ return out
131
+
132
+ def copy_to(self, c):
133
+ c.cond_hint_original = self.cond_hint_original
134
+ c.strength = self.strength
135
+ c.timestep_percent_range = self.timestep_percent_range
136
+ c.global_average_pooling = self.global_average_pooling
137
+ c.compression_ratio = self.compression_ratio
138
+ c.upscale_algorithm = self.upscale_algorithm
139
+ c.latent_format = self.latent_format
140
+ c.extra_args = self.extra_args.copy()
141
+ c.vae = self.vae
142
+ c.extra_conds = self.extra_conds.copy()
143
+ c.strength_type = self.strength_type
144
+ c.concat_mask = self.concat_mask
145
+ c.extra_concat_orig = self.extra_concat_orig.copy()
146
+ c.extra_hooks = self.extra_hooks.clone() if self.extra_hooks else None
147
+ c.preprocess_image = self.preprocess_image
148
+
149
+ def inference_memory_requirements(self, dtype):
150
+ if self.previous_controlnet is not None:
151
+ return self.previous_controlnet.inference_memory_requirements(dtype)
152
+ return 0
153
+
154
+ def control_merge(self, control, control_prev, output_dtype):
155
+ out = {'input':[], 'middle':[], 'output': []}
156
+
157
+ for key in control:
158
+ control_output = control[key]
159
+ applied_to = set()
160
+ for i in range(len(control_output)):
161
+ x = control_output[i]
162
+ if x is not None:
163
+ if self.global_average_pooling:
164
+ x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
165
+
166
+ if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
167
+ applied_to.add(x)
168
+ if self.strength_type == StrengthType.CONSTANT:
169
+ x *= self.strength
170
+ elif self.strength_type == StrengthType.LINEAR_UP:
171
+ x *= (self.strength ** float(len(control_output) - i))
172
+
173
+ if output_dtype is not None and x.dtype != output_dtype:
174
+ x = x.to(output_dtype)
175
+
176
+ out[key].append(x)
177
+
178
+ if control_prev is not None:
179
+ for x in ['input', 'middle', 'output']:
180
+ o = out[x]
181
+ for i in range(len(control_prev[x])):
182
+ prev_val = control_prev[x][i]
183
+ if i >= len(o):
184
+ o.append(prev_val)
185
+ elif prev_val is not None:
186
+ if o[i] is None:
187
+ o[i] = prev_val
188
+ else:
189
+ if o[i].shape[0] < prev_val.shape[0]:
190
+ o[i] = prev_val + o[i]
191
+ else:
192
+ o[i] = prev_val + o[i] #TODO: change back to inplace add if shared tensors stop being an issue
193
+ return out
194
+
195
+ def set_extra_arg(self, argument, value=None):
196
+ self.extra_args[argument] = value
197
+
198
+
199
+ class ControlNet(ControlBase):
200
+ def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False, preprocess_image=lambda a: a):
201
+ super().__init__()
202
+ self.control_model = control_model
203
+ self.load_device = load_device
204
+ if control_model is not None:
205
+ self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
206
+
207
+ self.compression_ratio = compression_ratio
208
+ self.global_average_pooling = global_average_pooling
209
+ self.model_sampling_current = None
210
+ self.manual_cast_dtype = manual_cast_dtype
211
+ self.latent_format = latent_format
212
+ self.extra_conds += extra_conds
213
+ self.strength_type = strength_type
214
+ self.concat_mask = concat_mask
215
+ self.preprocess_image = preprocess_image
216
+
217
+ def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
218
+ control_prev = None
219
+ if self.previous_controlnet is not None:
220
+ control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
221
+
222
+ if self.timestep_range is not None:
223
+ if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
224
+ if control_prev is not None:
225
+ return control_prev
226
+ else:
227
+ return None
228
+
229
+ dtype = self.control_model.dtype
230
+ if self.manual_cast_dtype is not None:
231
+ dtype = self.manual_cast_dtype
232
+
233
+ if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
234
+ if self.cond_hint is not None:
235
+ del self.cond_hint
236
+ self.cond_hint = None
237
+ compression_ratio = self.compression_ratio
238
+ if self.vae is not None:
239
+ compression_ratio *= self.vae.downscale_ratio
240
+ else:
241
+ if self.latent_format is not None:
242
+ raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
243
+ self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
244
+ self.cond_hint = self.preprocess_image(self.cond_hint)
245
+ if self.vae is not None:
246
+ loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
247
+ self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
248
+ comfy.model_management.load_models_gpu(loaded_models)
249
+ if self.latent_format is not None:
250
+ self.cond_hint = self.latent_format.process_in(self.cond_hint)
251
+ if len(self.extra_concat_orig) > 0:
252
+ to_concat = []
253
+ for c in self.extra_concat_orig:
254
+ c = c.to(self.cond_hint.device)
255
+ c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
256
+ to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
257
+ self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
258
+
259
+ self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
260
+ if x_noisy.shape[0] != self.cond_hint.shape[0]:
261
+ self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
262
+
263
+ context = cond.get('crossattn_controlnet', cond['c_crossattn'])
264
+ extra = self.extra_args.copy()
265
+ for c in self.extra_conds:
266
+ temp = cond.get(c, None)
267
+ if temp is not None:
268
+ extra[c] = temp.to(dtype)
269
+
270
+ timestep = self.model_sampling_current.timestep(t)
271
+ x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
272
+
273
+ control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
274
+ return self.control_merge(control, control_prev, output_dtype=None)
275
+
276
+ def copy(self):
277
+ c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
278
+ c.control_model = self.control_model
279
+ c.control_model_wrapped = self.control_model_wrapped
280
+ self.copy_to(c)
281
+ return c
282
+
283
+ def get_models(self):
284
+ out = super().get_models()
285
+ out.append(self.control_model_wrapped)
286
+ return out
287
+
288
+ def pre_run(self, model, percent_to_timestep_function):
289
+ super().pre_run(model, percent_to_timestep_function)
290
+ self.model_sampling_current = model.model_sampling
291
+
292
+ def cleanup(self):
293
+ self.model_sampling_current = None
294
+ super().cleanup()
295
+
296
+ class ControlLoraOps:
297
+ class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
298
+ def __init__(self, in_features: int, out_features: int, bias: bool = True,
299
+ device=None, dtype=None) -> None:
300
+ super().__init__()
301
+ self.in_features = in_features
302
+ self.out_features = out_features
303
+ self.weight = None
304
+ self.up = None
305
+ self.down = None
306
+ self.bias = None
307
+
308
+ def forward(self, input):
309
+ weight, bias = comfy.ops.cast_bias_weight(self, input)
310
+ if self.up is not None:
311
+ return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
312
+ else:
313
+ return torch.nn.functional.linear(input, weight, bias)
314
+
315
+ class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
316
+ def __init__(
317
+ self,
318
+ in_channels,
319
+ out_channels,
320
+ kernel_size,
321
+ stride=1,
322
+ padding=0,
323
+ dilation=1,
324
+ groups=1,
325
+ bias=True,
326
+ padding_mode='zeros',
327
+ device=None,
328
+ dtype=None
329
+ ):
330
+ super().__init__()
331
+ self.in_channels = in_channels
332
+ self.out_channels = out_channels
333
+ self.kernel_size = kernel_size
334
+ self.stride = stride
335
+ self.padding = padding
336
+ self.dilation = dilation
337
+ self.transposed = False
338
+ self.output_padding = 0
339
+ self.groups = groups
340
+ self.padding_mode = padding_mode
341
+
342
+ self.weight = None
343
+ self.bias = None
344
+ self.up = None
345
+ self.down = None
346
+
347
+
348
+ def forward(self, input):
349
+ weight, bias = comfy.ops.cast_bias_weight(self, input)
350
+ if self.up is not None:
351
+ return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
352
+ else:
353
+ return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
354
+
355
+
356
+ class ControlLora(ControlNet):
357
+ def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
358
+ ControlBase.__init__(self)
359
+ self.control_weights = control_weights
360
+ self.global_average_pooling = global_average_pooling
361
+ self.extra_conds += ["y"]
362
+
363
+ def pre_run(self, model, percent_to_timestep_function):
364
+ super().pre_run(model, percent_to_timestep_function)
365
+ controlnet_config = model.model_config.unet_config.copy()
366
+ controlnet_config.pop("out_channels")
367
+ controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
368
+ self.manual_cast_dtype = model.manual_cast_dtype
369
+ dtype = model.get_dtype()
370
+ if self.manual_cast_dtype is None:
371
+ class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
372
+ pass
373
+ else:
374
+ class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
375
+ pass
376
+ dtype = self.manual_cast_dtype
377
+
378
+ controlnet_config["operations"] = control_lora_ops
379
+ controlnet_config["dtype"] = dtype
380
+ self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
381
+ self.control_model.to(comfy.model_management.get_torch_device())
382
+ diffusion_model = model.diffusion_model
383
+ sd = diffusion_model.state_dict()
384
+
385
+ for k in sd:
386
+ weight = sd[k]
387
+ try:
388
+ comfy.utils.set_attr_param(self.control_model, k, weight)
389
+ except:
390
+ pass
391
+
392
+ for k in self.control_weights:
393
+ if k not in {"lora_controlnet"}:
394
+ comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
395
+
396
+ def copy(self):
397
+ c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
398
+ self.copy_to(c)
399
+ return c
400
+
401
+ def cleanup(self):
402
+ del self.control_model
403
+ self.control_model = None
404
+ super().cleanup()
405
+
406
+ def get_models(self):
407
+ out = ControlBase.get_models(self)
408
+ return out
409
+
410
+ def inference_memory_requirements(self, dtype):
411
+ return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
412
+
413
+ def controlnet_config(sd, model_options={}):
414
+ model_config = comfy.model_detection.model_config_from_unet(sd, "", True)
415
+
416
+ unet_dtype = model_options.get("dtype", None)
417
+ if unet_dtype is None:
418
+ weight_dtype = comfy.utils.weight_dtype(sd)
419
+
420
+ supported_inference_dtypes = list(model_config.supported_inference_dtypes)
421
+ if weight_dtype is not None:
422
+ supported_inference_dtypes.append(weight_dtype)
423
+
424
+ unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)
425
+
426
+ load_device = comfy.model_management.get_torch_device()
427
+ manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
428
+
429
+ operations = model_options.get("custom_operations", None)
430
+ if operations is None:
431
+ operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
432
+
433
+ offload_device = comfy.model_management.unet_offload_device()
434
+ return model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device
435
+
436
+ def controlnet_load_state_dict(control_model, sd):
437
+ missing, unexpected = control_model.load_state_dict(sd, strict=False)
438
+
439
+ if len(missing) > 0:
440
+ logging.warning("missing controlnet keys: {}".format(missing))
441
+
442
+ if len(unexpected) > 0:
443
+ logging.debug("unexpected controlnet keys: {}".format(unexpected))
444
+ return control_model
445
+
446
+
447
+ def load_controlnet_mmdit(sd, model_options={}):
448
+ new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
449
+ model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
450
+ num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
451
+ for k in sd:
452
+ new_sd[k] = sd[k]
453
+
454
+ concat_mask = False
455
+ control_latent_channels = new_sd.get("pos_embed_input.proj.weight").shape[1]
456
+ if control_latent_channels == 17: #inpaint controlnet
457
+ concat_mask = True
458
+
459
+ control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
460
+ control_model = controlnet_load_state_dict(control_model, new_sd)
461
+
462
+ latent_format = comfy.latent_formats.SD3()
463
+ latent_format.shift_factor = 0 #SD3 controlnet weirdness
464
+ control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
465
+ return control
466
+
467
+
468
+ class ControlNetSD35(ControlNet):
469
+ def pre_run(self, model, percent_to_timestep_function):
470
+ if self.control_model.double_y_emb:
471
+ missing, unexpected = self.control_model.orig_y_embedder.load_state_dict(model.diffusion_model.y_embedder.state_dict(), strict=False)
472
+ else:
473
+ missing, unexpected = self.control_model.x_embedder.load_state_dict(model.diffusion_model.x_embedder.state_dict(), strict=False)
474
+ super().pre_run(model, percent_to_timestep_function)
475
+
476
+ def copy(self):
477
+ c = ControlNetSD35(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
478
+ c.control_model = self.control_model
479
+ c.control_model_wrapped = self.control_model_wrapped
480
+ self.copy_to(c)
481
+ return c
482
+
483
+ def load_controlnet_sd35(sd, model_options={}):
484
+ control_type = -1
485
+ if "control_type" in sd:
486
+ control_type = round(sd.pop("control_type").item())
487
+
488
+ # blur_cnet = control_type == 0
489
+ canny_cnet = control_type == 1
490
+ depth_cnet = control_type == 2
491
+
492
+ new_sd = {}
493
+ for k in comfy.utils.MMDIT_MAP_BASIC:
494
+ if k[1] in sd:
495
+ new_sd[k[0]] = sd.pop(k[1])
496
+ for k in sd:
497
+ new_sd[k] = sd[k]
498
+ sd = new_sd
499
+
500
+ y_emb_shape = sd["y_embedder.mlp.0.weight"].shape
501
+ depth = y_emb_shape[0] // 64
502
+ hidden_size = 64 * depth
503
+ num_heads = depth
504
+ head_dim = hidden_size // num_heads
505
+ num_blocks = comfy.model_detection.count_blocks(new_sd, 'transformer_blocks.{}.')
506
+
507
+ load_device = comfy.model_management.get_torch_device()
508
+ offload_device = comfy.model_management.unet_offload_device()
509
+ unet_dtype = comfy.model_management.unet_dtype(model_params=-1)
510
+
511
+ manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
512
+
513
+ operations = model_options.get("custom_operations", None)
514
+ if operations is None:
515
+ operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
516
+
517
+ control_model = comfy.cldm.dit_embedder.ControlNetEmbedder(img_size=None,
518
+ patch_size=2,
519
+ in_chans=16,
520
+ num_layers=num_blocks,
521
+ main_model_double=depth,
522
+ double_y_emb=y_emb_shape[0] == y_emb_shape[1],
523
+ attention_head_dim=head_dim,
524
+ num_attention_heads=num_heads,
525
+ adm_in_channels=2048,
526
+ device=offload_device,
527
+ dtype=unet_dtype,
528
+ operations=operations)
529
+
530
+ control_model = controlnet_load_state_dict(control_model, sd)
531
+
532
+ latent_format = comfy.latent_formats.SD3()
533
+ preprocess_image = lambda a: a
534
+ if canny_cnet:
535
+ preprocess_image = lambda a: (a * 255 * 0.5 + 0.5)
536
+ elif depth_cnet:
537
+ preprocess_image = lambda a: 1.0 - a
538
+
539
+ control = ControlNetSD35(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, preprocess_image=preprocess_image)
540
+ return control
541
+
542
+
543
+
544
+ def load_controlnet_hunyuandit(controlnet_data, model_options={}):
545
+ model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(controlnet_data, model_options=model_options)
546
+
547
+ control_model = comfy.ldm.hydit.controlnet.HunYuanControlNet(operations=operations, device=offload_device, dtype=unet_dtype)
548
+ control_model = controlnet_load_state_dict(control_model, controlnet_data)
549
+
550
+ latent_format = comfy.latent_formats.SDXL()
551
+ extra_conds = ['text_embedding_mask', 'encoder_hidden_states_t5', 'text_embedding_mask_t5', 'image_meta_size', 'style', 'cos_cis_img', 'sin_cis_img']
552
+ control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
553
+ return control
554
+
555
+ def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
556
+ model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
557
+ control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
558
+ control_model = controlnet_load_state_dict(control_model, sd)
559
+ extra_conds = ['y', 'guidance']
560
+ control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
561
+ return control
562
+
563
+ def load_controlnet_flux_instantx(sd, model_options={}):
564
+ new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
565
+ model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
566
+ for k in sd:
567
+ new_sd[k] = sd[k]
568
+
569
+ num_union_modes = 0
570
+ union_cnet = "controlnet_mode_embedder.weight"
571
+ if union_cnet in new_sd:
572
+ num_union_modes = new_sd[union_cnet].shape[0]
573
+
574
+ control_latent_channels = new_sd.get("pos_embed_input.weight").shape[1] // 4
575
+ concat_mask = False
576
+ if control_latent_channels == 17:
577
+ concat_mask = True
578
+
579
+ control_model = comfy.ldm.flux.controlnet.ControlNetFlux(latent_input=True, num_union_modes=num_union_modes, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
580
+ control_model = controlnet_load_state_dict(control_model, new_sd)
581
+
582
+ latent_format = comfy.latent_formats.Flux()
583
+ extra_conds = ['y', 'guidance']
584
+ control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
585
+ return control
586
+
587
+ def convert_mistoline(sd):
588
+ return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
589
+
590
+
591
+ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
592
+ controlnet_data = state_dict
593
+ if 'after_proj_list.18.bias' in controlnet_data.keys(): #Hunyuan DiT
594
+ return load_controlnet_hunyuandit(controlnet_data, model_options=model_options)
595
+
596
+ if "lora_controlnet" in controlnet_data:
597
+ return ControlLora(controlnet_data, model_options=model_options)
598
+
599
+ controlnet_config = None
600
+ supported_inference_dtypes = None
601
+
602
+ if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
603
+ controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
604
+ diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
605
+ diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
606
+ diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
607
+
608
+ count = 0
609
+ loop = True
610
+ while loop:
611
+ suffix = [".weight", ".bias"]
612
+ for s in suffix:
613
+ k_in = "controlnet_down_blocks.{}{}".format(count, s)
614
+ k_out = "zero_convs.{}.0{}".format(count, s)
615
+ if k_in not in controlnet_data:
616
+ loop = False
617
+ break
618
+ diffusers_keys[k_in] = k_out
619
+ count += 1
620
+
621
+ count = 0
622
+ loop = True
623
+ while loop:
624
+ suffix = [".weight", ".bias"]
625
+ for s in suffix:
626
+ if count == 0:
627
+ k_in = "controlnet_cond_embedding.conv_in{}".format(s)
628
+ else:
629
+ k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
630
+ k_out = "input_hint_block.{}{}".format(count * 2, s)
631
+ if k_in not in controlnet_data:
632
+ k_in = "controlnet_cond_embedding.conv_out{}".format(s)
633
+ loop = False
634
+ diffusers_keys[k_in] = k_out
635
+ count += 1
636
+
637
+ new_sd = {}
638
+ for k in diffusers_keys:
639
+ if k in controlnet_data:
640
+ new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
641
+
642
+ if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
643
+ controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
644
+ for k in list(controlnet_data.keys()):
645
+ new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
646
+ new_sd[new_k] = controlnet_data.pop(k)
647
+
648
+ leftover_keys = controlnet_data.keys()
649
+ if len(leftover_keys) > 0:
650
+ logging.warning("leftover keys: {}".format(leftover_keys))
651
+ controlnet_data = new_sd
652
+ elif "controlnet_blocks.0.weight" in controlnet_data:
653
+ if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
654
+ return load_controlnet_flux_xlabs_mistoline(controlnet_data, model_options=model_options)
655
+ elif "pos_embed_input.proj.weight" in controlnet_data:
656
+ if "transformer_blocks.0.adaLN_modulation.1.bias" in controlnet_data:
657
+ return load_controlnet_sd35(controlnet_data, model_options=model_options) #Stability sd3.5 format
658
+ else:
659
+ return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
660
+ elif "controlnet_x_embedder.weight" in controlnet_data:
661
+ return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
662
+ elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
663
+ return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)
664
+
665
+ pth_key = 'control_model.zero_convs.0.0.weight'
666
+ pth = False
667
+ key = 'zero_convs.0.0.weight'
668
+ if pth_key in controlnet_data:
669
+ pth = True
670
+ key = pth_key
671
+ prefix = "control_model."
672
+ elif key in controlnet_data:
673
+ prefix = ""
674
+ else:
675
+ net = load_t2i_adapter(controlnet_data, model_options=model_options)
676
+ if net is None:
677
+ logging.error("error could not detect control model type.")
678
+ return net
679
+
680
+ if controlnet_config is None:
681
+ model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
682
+ supported_inference_dtypes = list(model_config.supported_inference_dtypes)
683
+ controlnet_config = model_config.unet_config
684
+
685
+ unet_dtype = model_options.get("dtype", None)
686
+ if unet_dtype is None:
687
+ weight_dtype = comfy.utils.weight_dtype(controlnet_data)
688
+
689
+ if supported_inference_dtypes is None:
690
+ supported_inference_dtypes = [comfy.model_management.unet_dtype()]
691
+
692
+ if weight_dtype is not None:
693
+ supported_inference_dtypes.append(weight_dtype)
694
+
695
+ unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)
696
+
697
+ load_device = comfy.model_management.get_torch_device()
698
+
699
+ manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
700
+ operations = model_options.get("custom_operations", None)
701
+ if operations is None:
702
+ operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype)
703
+
704
+ controlnet_config["operations"] = operations
705
+ controlnet_config["dtype"] = unet_dtype
706
+ controlnet_config["device"] = comfy.model_management.unet_offload_device()
707
+ controlnet_config.pop("out_channels")
708
+ controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
709
+ control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
710
+
711
+ if pth:
712
+ if 'difference' in controlnet_data:
713
+ if model is not None:
714
+ comfy.model_management.load_models_gpu([model])
715
+ model_sd = model.model_state_dict()
716
+ for x in controlnet_data:
717
+ c_m = "control_model."
718
+ if x.startswith(c_m):
719
+ sd_key = "diffusion_model.{}".format(x[len(c_m):])
720
+ if sd_key in model_sd:
721
+ cd = controlnet_data[x]
722
+ cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
723
+ else:
724
+ logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
725
+
726
+ class WeightsLoader(torch.nn.Module):
727
+ pass
728
+ w = WeightsLoader()
729
+ w.control_model = control_model
730
+ missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
731
+ else:
732
+ missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
733
+
734
+ if len(missing) > 0:
735
+ logging.warning("missing controlnet keys: {}".format(missing))
736
+
737
+ if len(unexpected) > 0:
738
+ logging.debug("unexpected controlnet keys: {}".format(unexpected))
739
+
740
+ global_average_pooling = model_options.get("global_average_pooling", False)
741
+ control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
742
+ return control
743
+
744
+ def load_controlnet(ckpt_path, model=None, model_options={}):
745
+ if "global_average_pooling" not in model_options:
746
+ filename = os.path.splitext(ckpt_path)[0]
747
+ if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
748
+ model_options["global_average_pooling"] = True
749
+
750
+ cnet = load_controlnet_state_dict(comfy.utils.load_torch_file(ckpt_path, safe_load=True), model=model, model_options=model_options)
751
+ if cnet is None:
752
+ logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
753
+ return cnet
754
+
755
+ class T2IAdapter(ControlBase):
756
+ def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
757
+ super().__init__()
758
+ self.t2i_model = t2i_model
759
+ self.channels_in = channels_in
760
+ self.control_input = None
761
+ self.compression_ratio = compression_ratio
762
+ self.upscale_algorithm = upscale_algorithm
763
+ if device is None:
764
+ device = comfy.model_management.get_torch_device()
765
+ self.device = device
766
+
767
+ def scale_image_to(self, width, height):
768
+ unshuffle_amount = self.t2i_model.unshuffle_amount
769
+ width = math.ceil(width / unshuffle_amount) * unshuffle_amount
770
+ height = math.ceil(height / unshuffle_amount) * unshuffle_amount
771
+ return width, height
772
+
773
+ def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
774
+ control_prev = None
775
+ if self.previous_controlnet is not None:
776
+ control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
777
+
778
+ if self.timestep_range is not None:
779
+ if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
780
+ if control_prev is not None:
781
+ return control_prev
782
+ else:
783
+ return None
784
+
785
+ if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
786
+ if self.cond_hint is not None:
787
+ del self.cond_hint
788
+ self.control_input = None
789
+ self.cond_hint = None
790
+ width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio)
791
+ self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device)
792
+ if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
793
+ self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
794
+ if x_noisy.shape[0] != self.cond_hint.shape[0]:
795
+ self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
796
+ if self.control_input is None:
797
+ self.t2i_model.to(x_noisy.dtype)
798
+ self.t2i_model.to(self.device)
799
+ self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
800
+ self.t2i_model.cpu()
801
+
802
+ control_input = {}
803
+ for k in self.control_input:
804
+ control_input[k] = list(map(lambda a: None if a is None else a.clone(), self.control_input[k]))
805
+
806
+ return self.control_merge(control_input, control_prev, x_noisy.dtype)
807
+
808
+ def copy(self):
809
+ c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm)
810
+ self.copy_to(c)
811
+ return c
812
+
813
+ def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
814
+ compression_ratio = 8
815
+ upscale_algorithm = 'nearest-exact'
816
+
817
+ if 'adapter' in t2i_data:
818
+ t2i_data = t2i_data['adapter']
819
+ if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
820
+ prefix_replace = {}
821
+ for i in range(4):
822
+ for j in range(2):
823
+ prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
824
+ prefix_replace["adapter.body.{}.".format(i, )] = "body.{}.".format(i * 2)
825
+ prefix_replace["adapter."] = ""
826
+ t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
827
+ keys = t2i_data.keys()
828
+
829
+ if "body.0.in_conv.weight" in keys:
830
+ cin = t2i_data['body.0.in_conv.weight'].shape[1]
831
+ model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
832
+ elif 'conv_in.weight' in keys:
833
+ cin = t2i_data['conv_in.weight'].shape[1]
834
+ channel = t2i_data['conv_in.weight'].shape[0]
835
+ ksize = t2i_data['body.0.block2.weight'].shape[2]
836
+ use_conv = False
837
+ down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
838
+ if len(down_opts) > 0:
839
+ use_conv = True
840
+ xl = False
841
+ if cin == 256 or cin == 768:
842
+ xl = True
843
+ model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
844
+ elif "backbone.0.0.weight" in keys:
845
+ model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
846
+ compression_ratio = 32
847
+ upscale_algorithm = 'bilinear'
848
+ elif "backbone.10.blocks.0.weight" in keys:
849
+ model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
850
+ compression_ratio = 1
851
+ upscale_algorithm = 'nearest-exact'
852
+ else:
853
+ return None
854
+
855
+ missing, unexpected = model_ad.load_state_dict(t2i_data)
856
+ if len(missing) > 0:
857
+ logging.warning("t2i missing {}".format(missing))
858
+
859
+ if len(unexpected) > 0:
860
+ logging.debug("t2i unexpected {}".format(unexpected))
861
+
862
+ return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)
comfy/diffusers_convert.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import torch
3
+ import logging
4
+
5
+ # conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
6
+
7
+ # =================#
8
+ # UNet Conversion #
9
+ # =================#
10
+
11
+ unet_conversion_map = [
12
+ # (stable-diffusion, HF Diffusers)
13
+ ("time_embed.0.weight", "time_embedding.linear_1.weight"),
14
+ ("time_embed.0.bias", "time_embedding.linear_1.bias"),
15
+ ("time_embed.2.weight", "time_embedding.linear_2.weight"),
16
+ ("time_embed.2.bias", "time_embedding.linear_2.bias"),
17
+ ("input_blocks.0.0.weight", "conv_in.weight"),
18
+ ("input_blocks.0.0.bias", "conv_in.bias"),
19
+ ("out.0.weight", "conv_norm_out.weight"),
20
+ ("out.0.bias", "conv_norm_out.bias"),
21
+ ("out.2.weight", "conv_out.weight"),
22
+ ("out.2.bias", "conv_out.bias"),
23
+ ]
24
+
25
+ unet_conversion_map_resnet = [
26
+ # (stable-diffusion, HF Diffusers)
27
+ ("in_layers.0", "norm1"),
28
+ ("in_layers.2", "conv1"),
29
+ ("out_layers.0", "norm2"),
30
+ ("out_layers.3", "conv2"),
31
+ ("emb_layers.1", "time_emb_proj"),
32
+ ("skip_connection", "conv_shortcut"),
33
+ ]
34
+
35
+ unet_conversion_map_layer = []
36
+ # hardcoded number of downblocks and resnets/attentions...
37
+ # would need smarter logic for other networks.
38
+ for i in range(4):
39
+ # loop over downblocks/upblocks
40
+
41
+ for j in range(2):
42
+ # loop over resnets/attentions for downblocks
43
+ hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
44
+ sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
45
+ unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
46
+
47
+ if i < 3:
48
+ # no attention layers in down_blocks.3
49
+ hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
50
+ sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
51
+ unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
52
+
53
+ for j in range(3):
54
+ # loop over resnets/attentions for upblocks
55
+ hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
56
+ sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
57
+ unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
58
+
59
+ if i > 0:
60
+ # no attention layers in up_blocks.0
61
+ hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
62
+ sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
63
+ unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
64
+
65
+ if i < 3:
66
+ # no downsample in down_blocks.3
67
+ hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
68
+ sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
69
+ unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
70
+
71
+ # no upsample in up_blocks.3
72
+ hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
73
+ sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
74
+ unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
75
+
76
+ hf_mid_atn_prefix = "mid_block.attentions.0."
77
+ sd_mid_atn_prefix = "middle_block.1."
78
+ unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
79
+
80
+ for j in range(2):
81
+ hf_mid_res_prefix = f"mid_block.resnets.{j}."
82
+ sd_mid_res_prefix = f"middle_block.{2 * j}."
83
+ unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
84
+
85
+
86
+ def convert_unet_state_dict(unet_state_dict):
87
+ # buyer beware: this is a *brittle* function,
88
+ # and correct output requires that all of these pieces interact in
89
+ # the exact order in which I have arranged them.
90
+ mapping = {k: k for k in unet_state_dict.keys()}
91
+ for sd_name, hf_name in unet_conversion_map:
92
+ mapping[hf_name] = sd_name
93
+ for k, v in mapping.items():
94
+ if "resnets" in k:
95
+ for sd_part, hf_part in unet_conversion_map_resnet:
96
+ v = v.replace(hf_part, sd_part)
97
+ mapping[k] = v
98
+ for k, v in mapping.items():
99
+ for sd_part, hf_part in unet_conversion_map_layer:
100
+ v = v.replace(hf_part, sd_part)
101
+ mapping[k] = v
102
+ new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
103
+ return new_state_dict
104
+
105
+
106
+ # ================#
107
+ # VAE Conversion #
108
+ # ================#
109
+
110
+ vae_conversion_map = [
111
+ # (stable-diffusion, HF Diffusers)
112
+ ("nin_shortcut", "conv_shortcut"),
113
+ ("norm_out", "conv_norm_out"),
114
+ ("mid.attn_1.", "mid_block.attentions.0."),
115
+ ]
116
+
117
+ for i in range(4):
118
+ # down_blocks have two resnets
119
+ for j in range(2):
120
+ hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
121
+ sd_down_prefix = f"encoder.down.{i}.block.{j}."
122
+ vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
123
+
124
+ if i < 3:
125
+ hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
126
+ sd_downsample_prefix = f"down.{i}.downsample."
127
+ vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
128
+
129
+ hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
130
+ sd_upsample_prefix = f"up.{3 - i}.upsample."
131
+ vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
132
+
133
+ # up_blocks have three resnets
134
+ # also, up blocks in hf are numbered in reverse from sd
135
+ for j in range(3):
136
+ hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
137
+ sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
138
+ vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
139
+
140
+ # this part accounts for mid blocks in both the encoder and the decoder
141
+ for i in range(2):
142
+ hf_mid_res_prefix = f"mid_block.resnets.{i}."
143
+ sd_mid_res_prefix = f"mid.block_{i + 1}."
144
+ vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
145
+
146
+ vae_conversion_map_attn = [
147
+ # (stable-diffusion, HF Diffusers)
148
+ ("norm.", "group_norm."),
149
+ ("q.", "query."),
150
+ ("k.", "key."),
151
+ ("v.", "value."),
152
+ ("q.", "to_q."),
153
+ ("k.", "to_k."),
154
+ ("v.", "to_v."),
155
+ ("proj_out.", "to_out.0."),
156
+ ("proj_out.", "proj_attn."),
157
+ ]
158
+
159
+
160
+ def reshape_weight_for_sd(w, conv3d=False):
161
+ # convert HF linear weights to SD conv2d weights
162
+ if conv3d:
163
+ return w.reshape(*w.shape, 1, 1, 1)
164
+ else:
165
+ return w.reshape(*w.shape, 1, 1)
166
+
167
+
168
+ def convert_vae_state_dict(vae_state_dict):
169
+ mapping = {k: k for k in vae_state_dict.keys()}
170
+ conv3d = False
171
+ for k, v in mapping.items():
172
+ for sd_part, hf_part in vae_conversion_map:
173
+ v = v.replace(hf_part, sd_part)
174
+ if v.endswith(".conv.weight"):
175
+ if not conv3d and vae_state_dict[k].ndim == 5:
176
+ conv3d = True
177
+ mapping[k] = v
178
+ for k, v in mapping.items():
179
+ if "attentions" in k:
180
+ for sd_part, hf_part in vae_conversion_map_attn:
181
+ v = v.replace(hf_part, sd_part)
182
+ mapping[k] = v
183
+ new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
184
+ weights_to_convert = ["q", "k", "v", "proj_out"]
185
+ for k, v in new_state_dict.items():
186
+ for weight_name in weights_to_convert:
187
+ if f"mid.attn_1.{weight_name}.weight" in k:
188
+ logging.debug(f"Reshaping {k} for SD format")
189
+ new_state_dict[k] = reshape_weight_for_sd(v, conv3d=conv3d)
190
+ return new_state_dict
191
+
192
+
193
+ # =========================#
194
+ # Text Encoder Conversion #
195
+ # =========================#
196
+
197
+
198
+ textenc_conversion_lst = [
199
+ # (stable-diffusion, HF Diffusers)
200
+ ("resblocks.", "text_model.encoder.layers."),
201
+ ("ln_1", "layer_norm1"),
202
+ ("ln_2", "layer_norm2"),
203
+ (".c_fc.", ".fc1."),
204
+ (".c_proj.", ".fc2."),
205
+ (".attn", ".self_attn"),
206
+ ("ln_final.", "transformer.text_model.final_layer_norm."),
207
+ ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
208
+ ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
209
+ ]
210
+ protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
211
+ textenc_pattern = re.compile("|".join(protected.keys()))
212
+
213
+ # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
214
+ code2idx = {"q": 0, "k": 1, "v": 2}
215
+
216
+ # This function exists because at the time of writing torch.cat can't do fp8 with cuda
217
+ def cat_tensors(tensors):
218
+ x = 0
219
+ for t in tensors:
220
+ x += t.shape[0]
221
+
222
+ shape = [x] + list(tensors[0].shape)[1:]
223
+ out = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype)
224
+
225
+ x = 0
226
+ for t in tensors:
227
+ out[x:x + t.shape[0]] = t
228
+ x += t.shape[0]
229
+
230
+ return out
231
+
232
+ def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
233
+ new_state_dict = {}
234
+ capture_qkv_weight = {}
235
+ capture_qkv_bias = {}
236
+ for k, v in text_enc_dict.items():
237
+ if not k.startswith(prefix):
238
+ continue
239
+ if (
240
+ k.endswith(".self_attn.q_proj.weight")
241
+ or k.endswith(".self_attn.k_proj.weight")
242
+ or k.endswith(".self_attn.v_proj.weight")
243
+ ):
244
+ k_pre = k[: -len(".q_proj.weight")]
245
+ k_code = k[-len("q_proj.weight")]
246
+ if k_pre not in capture_qkv_weight:
247
+ capture_qkv_weight[k_pre] = [None, None, None]
248
+ capture_qkv_weight[k_pre][code2idx[k_code]] = v
249
+ continue
250
+
251
+ if (
252
+ k.endswith(".self_attn.q_proj.bias")
253
+ or k.endswith(".self_attn.k_proj.bias")
254
+ or k.endswith(".self_attn.v_proj.bias")
255
+ ):
256
+ k_pre = k[: -len(".q_proj.bias")]
257
+ k_code = k[-len("q_proj.bias")]
258
+ if k_pre not in capture_qkv_bias:
259
+ capture_qkv_bias[k_pre] = [None, None, None]
260
+ capture_qkv_bias[k_pre][code2idx[k_code]] = v
261
+ continue
262
+
263
+ text_proj = "transformer.text_projection.weight"
264
+ if k.endswith(text_proj):
265
+ new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous()
266
+ else:
267
+ relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
268
+ new_state_dict[relabelled_key] = v
269
+
270
+ for k_pre, tensors in capture_qkv_weight.items():
271
+ if None in tensors:
272
+ raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
273
+ relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
274
+ new_state_dict[relabelled_key + ".in_proj_weight"] = cat_tensors(tensors)
275
+
276
+ for k_pre, tensors in capture_qkv_bias.items():
277
+ if None in tensors:
278
+ raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
279
+ relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
280
+ new_state_dict[relabelled_key + ".in_proj_bias"] = cat_tensors(tensors)
281
+
282
+ return new_state_dict
283
+
284
+
285
+ def convert_text_enc_state_dict(text_enc_dict):
286
+ return text_enc_dict
287
+
288
+
comfy/diffusers_load.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import comfy.sd
4
+
5
+ def first_file(path, filenames):
6
+ for f in filenames:
7
+ p = os.path.join(path, f)
8
+ if os.path.exists(p):
9
+ return p
10
+ return None
11
+
12
+ def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
13
+ diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
14
+ unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
15
+ vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
16
+
17
+ text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
18
+ text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
19
+ text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
20
+
21
+ text_encoder_paths = [text_encoder1_path]
22
+ if text_encoder2_path is not None:
23
+ text_encoder_paths.append(text_encoder2_path)
24
+
25
+ unet = comfy.sd.load_diffusion_model(unet_path)
26
+
27
+ clip = None
28
+ if output_clip:
29
+ clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
30
+
31
+ vae = None
32
+ if output_vae:
33
+ sd = comfy.utils.load_torch_file(vae_path)
34
+ vae = comfy.sd.VAE(sd=sd)
35
+
36
+ return (unet, clip, vae)
comfy/extra_samplers/uni_pc.py ADDED
@@ -0,0 +1,873 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #code taken from: https://github.com/wl-zhao/UniPC and modified
2
+
3
+ import torch
4
+ import math
5
+ import logging
6
+
7
+ from tqdm.auto import trange
8
+
9
+
10
+ class NoiseScheduleVP:
11
+ def __init__(
12
+ self,
13
+ schedule='discrete',
14
+ betas=None,
15
+ alphas_cumprod=None,
16
+ continuous_beta_0=0.1,
17
+ continuous_beta_1=20.,
18
+ ):
19
+ r"""Create a wrapper class for the forward SDE (VP type).
20
+
21
+ ***
22
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
23
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
24
+ ***
25
+
26
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
27
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
28
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
29
+
30
+ log_alpha_t = self.marginal_log_mean_coeff(t)
31
+ sigma_t = self.marginal_std(t)
32
+ lambda_t = self.marginal_lambda(t)
33
+
34
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
35
+
36
+ t = self.inverse_lambda(lambda_t)
37
+
38
+ ===============================================================
39
+
40
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
41
+
42
+ 1. For discrete-time DPMs:
43
+
44
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
45
+ t_i = (i + 1) / N
46
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
47
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
48
+
49
+ Args:
50
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
51
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
52
+
53
+ Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
54
+
55
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
56
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
57
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
58
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
59
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
60
+ and
61
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
62
+
63
+
64
+ 2. For continuous-time DPMs:
65
+
66
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
67
+ schedule are the default settings in DDPM and improved-DDPM:
68
+
69
+ Args:
70
+ beta_min: A `float` number. The smallest beta for the linear schedule.
71
+ beta_max: A `float` number. The largest beta for the linear schedule.
72
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
73
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
74
+ T: A `float` number. The ending time of the forward process.
75
+
76
+ ===============================================================
77
+
78
+ Args:
79
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
80
+ 'linear' or 'cosine' for continuous-time DPMs.
81
+ Returns:
82
+ A wrapper object of the forward SDE (VP type).
83
+
84
+ ===============================================================
85
+
86
+ Example:
87
+
88
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
89
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
90
+
91
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
92
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
93
+
94
+ # For continuous-time DPMs (VPSDE), linear schedule:
95
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
96
+
97
+ """
98
+
99
+ if schedule not in ['discrete', 'linear', 'cosine']:
100
+ raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
101
+
102
+ self.schedule = schedule
103
+ if schedule == 'discrete':
104
+ if betas is not None:
105
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
106
+ else:
107
+ assert alphas_cumprod is not None
108
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
109
+ self.total_N = len(log_alphas)
110
+ self.T = 1.
111
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
112
+ self.log_alpha_array = log_alphas.reshape((1, -1,))
113
+ else:
114
+ self.total_N = 1000
115
+ self.beta_0 = continuous_beta_0
116
+ self.beta_1 = continuous_beta_1
117
+ self.cosine_s = 0.008
118
+ self.cosine_beta_max = 999.
119
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
120
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
121
+ self.schedule = schedule
122
+ if schedule == 'cosine':
123
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
124
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
125
+ self.T = 0.9946
126
+ else:
127
+ self.T = 1.
128
+
129
+ def marginal_log_mean_coeff(self, t):
130
+ """
131
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
132
+ """
133
+ if self.schedule == 'discrete':
134
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
135
+ elif self.schedule == 'linear':
136
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
137
+ elif self.schedule == 'cosine':
138
+ log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
139
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
140
+ return log_alpha_t
141
+
142
+ def marginal_alpha(self, t):
143
+ """
144
+ Compute alpha_t of a given continuous-time label t in [0, T].
145
+ """
146
+ return torch.exp(self.marginal_log_mean_coeff(t))
147
+
148
+ def marginal_std(self, t):
149
+ """
150
+ Compute sigma_t of a given continuous-time label t in [0, T].
151
+ """
152
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
153
+
154
+ def marginal_lambda(self, t):
155
+ """
156
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
157
+ """
158
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
159
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
160
+ return log_mean_coeff - log_std
161
+
162
+ def inverse_lambda(self, lamb):
163
+ """
164
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
165
+ """
166
+ if self.schedule == 'linear':
167
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
168
+ Delta = self.beta_0**2 + tmp
169
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
170
+ elif self.schedule == 'discrete':
171
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
172
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
173
+ return t.reshape((-1,))
174
+ else:
175
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
176
+ t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
177
+ t = t_fn(log_alpha)
178
+ return t
179
+
180
+
181
+ def model_wrapper(
182
+ model,
183
+ noise_schedule,
184
+ model_type="noise",
185
+ model_kwargs={},
186
+ guidance_type="uncond",
187
+ condition=None,
188
+ unconditional_condition=None,
189
+ guidance_scale=1.,
190
+ classifier_fn=None,
191
+ classifier_kwargs={},
192
+ ):
193
+ """Create a wrapper function for the noise prediction model.
194
+
195
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
196
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
197
+
198
+ We support four types of the diffusion model by setting `model_type`:
199
+
200
+ 1. "noise": noise prediction model. (Trained by predicting noise).
201
+
202
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
203
+
204
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
205
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
206
+
207
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
208
+ arXiv preprint arXiv:2202.00512 (2022).
209
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
210
+ arXiv preprint arXiv:2210.02303 (2022).
211
+
212
+ 4. "score": marginal score function. (Trained by denoising score matching).
213
+ Note that the score function and the noise prediction model follows a simple relationship:
214
+ ```
215
+ noise(x_t, t) = -sigma_t * score(x_t, t)
216
+ ```
217
+
218
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
219
+ 1. "uncond": unconditional sampling by DPMs.
220
+ The input `model` has the following format:
221
+ ``
222
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
223
+ ``
224
+
225
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
226
+ The input `model` has the following format:
227
+ ``
228
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
229
+ ``
230
+
231
+ The input `classifier_fn` has the following format:
232
+ ``
233
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
234
+ ``
235
+
236
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
237
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
238
+
239
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
240
+ The input `model` has the following format:
241
+ ``
242
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
243
+ ``
244
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
245
+
246
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
247
+ arXiv preprint arXiv:2207.12598 (2022).
248
+
249
+
250
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
251
+ or continuous-time labels (i.e. epsilon to T).
252
+
253
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
254
+ ``
255
+ def model_fn(x, t_continuous) -> noise:
256
+ t_input = get_model_input_time(t_continuous)
257
+ return noise_pred(model, x, t_input, **model_kwargs)
258
+ ``
259
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
260
+
261
+ ===============================================================
262
+
263
+ Args:
264
+ model: A diffusion model with the corresponding format described above.
265
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
266
+ model_type: A `str`. The parameterization type of the diffusion model.
267
+ "noise" or "x_start" or "v" or "score".
268
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
269
+ guidance_type: A `str`. The type of the guidance for sampling.
270
+ "uncond" or "classifier" or "classifier-free".
271
+ condition: A pytorch tensor. The condition for the guided sampling.
272
+ Only used for "classifier" or "classifier-free" guidance type.
273
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
274
+ Only used for "classifier-free" guidance type.
275
+ guidance_scale: A `float`. The scale for the guided sampling.
276
+ classifier_fn: A classifier function. Only used for the classifier guidance.
277
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
278
+ Returns:
279
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
280
+ """
281
+
282
+ def get_model_input_time(t_continuous):
283
+ """
284
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
285
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
286
+ For continuous-time DPMs, we just use `t_continuous`.
287
+ """
288
+ if noise_schedule.schedule == 'discrete':
289
+ return (t_continuous - 1. / noise_schedule.total_N) * 1000.
290
+ else:
291
+ return t_continuous
292
+
293
+ def noise_pred_fn(x, t_continuous, cond=None):
294
+ if t_continuous.reshape((-1,)).shape[0] == 1:
295
+ t_continuous = t_continuous.expand((x.shape[0]))
296
+ t_input = get_model_input_time(t_continuous)
297
+ output = model(x, t_input, **model_kwargs)
298
+ if model_type == "noise":
299
+ return output
300
+ elif model_type == "x_start":
301
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
302
+ dims = x.dim()
303
+ return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
304
+ elif model_type == "v":
305
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
306
+ dims = x.dim()
307
+ return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
308
+ elif model_type == "score":
309
+ sigma_t = noise_schedule.marginal_std(t_continuous)
310
+ dims = x.dim()
311
+ return -expand_dims(sigma_t, dims) * output
312
+
313
+ def cond_grad_fn(x, t_input):
314
+ """
315
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
316
+ """
317
+ with torch.enable_grad():
318
+ x_in = x.detach().requires_grad_(True)
319
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
320
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
321
+
322
+ def model_fn(x, t_continuous):
323
+ """
324
+ The noise predicition model function that is used for DPM-Solver.
325
+ """
326
+ if t_continuous.reshape((-1,)).shape[0] == 1:
327
+ t_continuous = t_continuous.expand((x.shape[0]))
328
+ if guidance_type == "uncond":
329
+ return noise_pred_fn(x, t_continuous)
330
+ elif guidance_type == "classifier":
331
+ assert classifier_fn is not None
332
+ t_input = get_model_input_time(t_continuous)
333
+ cond_grad = cond_grad_fn(x, t_input)
334
+ sigma_t = noise_schedule.marginal_std(t_continuous)
335
+ noise = noise_pred_fn(x, t_continuous)
336
+ return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
337
+ elif guidance_type == "classifier-free":
338
+ if guidance_scale == 1. or unconditional_condition is None:
339
+ return noise_pred_fn(x, t_continuous, cond=condition)
340
+ else:
341
+ x_in = torch.cat([x] * 2)
342
+ t_in = torch.cat([t_continuous] * 2)
343
+ c_in = torch.cat([unconditional_condition, condition])
344
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
345
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
346
+
347
+ assert model_type in ["noise", "x_start", "v"]
348
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
349
+ return model_fn
350
+
351
+
352
+ class UniPC:
353
+ def __init__(
354
+ self,
355
+ model_fn,
356
+ noise_schedule,
357
+ predict_x0=True,
358
+ thresholding=False,
359
+ max_val=1.,
360
+ variant='bh1',
361
+ ):
362
+ """Construct a UniPC.
363
+
364
+ We support both data_prediction and noise_prediction.
365
+ """
366
+ self.model = model_fn
367
+ self.noise_schedule = noise_schedule
368
+ self.variant = variant
369
+ self.predict_x0 = predict_x0
370
+ self.thresholding = thresholding
371
+ self.max_val = max_val
372
+
373
+ def dynamic_thresholding_fn(self, x0, t=None):
374
+ """
375
+ The dynamic thresholding method.
376
+ """
377
+ dims = x0.dim()
378
+ p = self.dynamic_thresholding_ratio
379
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
380
+ s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
381
+ x0 = torch.clamp(x0, -s, s) / s
382
+ return x0
383
+
384
+ def noise_prediction_fn(self, x, t):
385
+ """
386
+ Return the noise prediction model.
387
+ """
388
+ return self.model(x, t)
389
+
390
+ def data_prediction_fn(self, x, t):
391
+ """
392
+ Return the data prediction model (with thresholding).
393
+ """
394
+ noise = self.noise_prediction_fn(x, t)
395
+ dims = x.dim()
396
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
397
+ x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
398
+ if self.thresholding:
399
+ p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
400
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
401
+ s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
402
+ x0 = torch.clamp(x0, -s, s) / s
403
+ return x0
404
+
405
+ def model_fn(self, x, t):
406
+ """
407
+ Convert the model to the noise prediction model or the data prediction model.
408
+ """
409
+ if self.predict_x0:
410
+ return self.data_prediction_fn(x, t)
411
+ else:
412
+ return self.noise_prediction_fn(x, t)
413
+
414
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
415
+ """Compute the intermediate time steps for sampling.
416
+ """
417
+ if skip_type == 'logSNR':
418
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
419
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
420
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
421
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
422
+ elif skip_type == 'time_uniform':
423
+ return torch.linspace(t_T, t_0, N + 1).to(device)
424
+ elif skip_type == 'time_quadratic':
425
+ t_order = 2
426
+ t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
427
+ return t
428
+ else:
429
+ raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
430
+
431
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
432
+ """
433
+ Get the order of each step for sampling by the singlestep DPM-Solver.
434
+ """
435
+ if order == 3:
436
+ K = steps // 3 + 1
437
+ if steps % 3 == 0:
438
+ orders = [3,] * (K - 2) + [2, 1]
439
+ elif steps % 3 == 1:
440
+ orders = [3,] * (K - 1) + [1]
441
+ else:
442
+ orders = [3,] * (K - 1) + [2]
443
+ elif order == 2:
444
+ if steps % 2 == 0:
445
+ K = steps // 2
446
+ orders = [2,] * K
447
+ else:
448
+ K = steps // 2 + 1
449
+ orders = [2,] * (K - 1) + [1]
450
+ elif order == 1:
451
+ K = steps
452
+ orders = [1,] * steps
453
+ else:
454
+ raise ValueError("'order' must be '1' or '2' or '3'.")
455
+ if skip_type == 'logSNR':
456
+ # To reproduce the results in DPM-Solver paper
457
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
458
+ else:
459
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
460
+ return timesteps_outer, orders
461
+
462
+ def denoise_to_zero_fn(self, x, s):
463
+ """
464
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
465
+ """
466
+ return self.data_prediction_fn(x, s)
467
+
468
+ def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
469
+ if len(t.shape) == 0:
470
+ t = t.view(-1)
471
+ if 'bh' in self.variant:
472
+ return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
473
+ else:
474
+ assert self.variant == 'vary_coeff'
475
+ return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
476
+
477
+ def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
478
+ logging.info(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
479
+ ns = self.noise_schedule
480
+ assert order <= len(model_prev_list)
481
+
482
+ # first compute rks
483
+ t_prev_0 = t_prev_list[-1]
484
+ lambda_prev_0 = ns.marginal_lambda(t_prev_0)
485
+ lambda_t = ns.marginal_lambda(t)
486
+ model_prev_0 = model_prev_list[-1]
487
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
488
+ log_alpha_t = ns.marginal_log_mean_coeff(t)
489
+ alpha_t = torch.exp(log_alpha_t)
490
+
491
+ h = lambda_t - lambda_prev_0
492
+
493
+ rks = []
494
+ D1s = []
495
+ for i in range(1, order):
496
+ t_prev_i = t_prev_list[-(i + 1)]
497
+ model_prev_i = model_prev_list[-(i + 1)]
498
+ lambda_prev_i = ns.marginal_lambda(t_prev_i)
499
+ rk = (lambda_prev_i - lambda_prev_0) / h
500
+ rks.append(rk)
501
+ D1s.append((model_prev_i - model_prev_0) / rk)
502
+
503
+ rks.append(1.)
504
+ rks = torch.tensor(rks, device=x.device)
505
+
506
+ K = len(rks)
507
+ # build C matrix
508
+ C = []
509
+
510
+ col = torch.ones_like(rks)
511
+ for k in range(1, K + 1):
512
+ C.append(col)
513
+ col = col * rks / (k + 1)
514
+ C = torch.stack(C, dim=1)
515
+
516
+ if len(D1s) > 0:
517
+ D1s = torch.stack(D1s, dim=1) # (B, K)
518
+ C_inv_p = torch.linalg.inv(C[:-1, :-1])
519
+ A_p = C_inv_p
520
+
521
+ if use_corrector:
522
+ C_inv = torch.linalg.inv(C)
523
+ A_c = C_inv
524
+
525
+ hh = -h if self.predict_x0 else h
526
+ h_phi_1 = torch.expm1(hh)
527
+ h_phi_ks = []
528
+ factorial_k = 1
529
+ h_phi_k = h_phi_1
530
+ for k in range(1, K + 2):
531
+ h_phi_ks.append(h_phi_k)
532
+ h_phi_k = h_phi_k / hh - 1 / factorial_k
533
+ factorial_k *= (k + 1)
534
+
535
+ model_t = None
536
+ if self.predict_x0:
537
+ x_t_ = (
538
+ sigma_t / sigma_prev_0 * x
539
+ - alpha_t * h_phi_1 * model_prev_0
540
+ )
541
+ # now predictor
542
+ x_t = x_t_
543
+ if len(D1s) > 0:
544
+ # compute the residuals for predictor
545
+ for k in range(K - 1):
546
+ x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
547
+ # now corrector
548
+ if use_corrector:
549
+ model_t = self.model_fn(x_t, t)
550
+ D1_t = (model_t - model_prev_0)
551
+ x_t = x_t_
552
+ k = 0
553
+ for k in range(K - 1):
554
+ x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
555
+ x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
556
+ else:
557
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
558
+ x_t_ = (
559
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
560
+ - (sigma_t * h_phi_1) * model_prev_0
561
+ )
562
+ # now predictor
563
+ x_t = x_t_
564
+ if len(D1s) > 0:
565
+ # compute the residuals for predictor
566
+ for k in range(K - 1):
567
+ x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
568
+ # now corrector
569
+ if use_corrector:
570
+ model_t = self.model_fn(x_t, t)
571
+ D1_t = (model_t - model_prev_0)
572
+ x_t = x_t_
573
+ k = 0
574
+ for k in range(K - 1):
575
+ x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
576
+ x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
577
+ return x_t, model_t
578
+
579
+ def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
580
+ # print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
581
+ ns = self.noise_schedule
582
+ assert order <= len(model_prev_list)
583
+ dims = x.dim()
584
+
585
+ # first compute rks
586
+ t_prev_0 = t_prev_list[-1]
587
+ lambda_prev_0 = ns.marginal_lambda(t_prev_0)
588
+ lambda_t = ns.marginal_lambda(t)
589
+ model_prev_0 = model_prev_list[-1]
590
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
591
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
592
+ alpha_t = torch.exp(log_alpha_t)
593
+
594
+ h = lambda_t - lambda_prev_0
595
+
596
+ rks = []
597
+ D1s = []
598
+ for i in range(1, order):
599
+ t_prev_i = t_prev_list[-(i + 1)]
600
+ model_prev_i = model_prev_list[-(i + 1)]
601
+ lambda_prev_i = ns.marginal_lambda(t_prev_i)
602
+ rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
603
+ rks.append(rk)
604
+ D1s.append((model_prev_i - model_prev_0) / rk)
605
+
606
+ rks.append(1.)
607
+ rks = torch.tensor(rks, device=x.device)
608
+
609
+ R = []
610
+ b = []
611
+
612
+ hh = -h[0] if self.predict_x0 else h[0]
613
+ h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
614
+ h_phi_k = h_phi_1 / hh - 1
615
+
616
+ factorial_i = 1
617
+
618
+ if self.variant == 'bh1':
619
+ B_h = hh
620
+ elif self.variant == 'bh2':
621
+ B_h = torch.expm1(hh)
622
+ else:
623
+ raise NotImplementedError()
624
+
625
+ for i in range(1, order + 1):
626
+ R.append(torch.pow(rks, i - 1))
627
+ b.append(h_phi_k * factorial_i / B_h)
628
+ factorial_i *= (i + 1)
629
+ h_phi_k = h_phi_k / hh - 1 / factorial_i
630
+
631
+ R = torch.stack(R)
632
+ b = torch.tensor(b, device=x.device)
633
+
634
+ # now predictor
635
+ use_predictor = len(D1s) > 0 and x_t is None
636
+ if len(D1s) > 0:
637
+ D1s = torch.stack(D1s, dim=1) # (B, K)
638
+ if x_t is None:
639
+ # for order 2, we use a simplified version
640
+ if order == 2:
641
+ rhos_p = torch.tensor([0.5], device=b.device)
642
+ else:
643
+ rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
644
+ else:
645
+ D1s = None
646
+
647
+ if use_corrector:
648
+ # print('using corrector')
649
+ # for order 1, we use a simplified version
650
+ if order == 1:
651
+ rhos_c = torch.tensor([0.5], device=b.device)
652
+ else:
653
+ rhos_c = torch.linalg.solve(R, b)
654
+
655
+ model_t = None
656
+ if self.predict_x0:
657
+ x_t_ = (
658
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
659
+ - expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
660
+ )
661
+
662
+ if x_t is None:
663
+ if use_predictor:
664
+ pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0])) # torch.einsum('k,bkchw->bchw', rhos_p, D1s)
665
+ else:
666
+ pred_res = 0
667
+ x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
668
+
669
+ if use_corrector:
670
+ model_t = self.model_fn(x_t, t)
671
+ if D1s is not None:
672
+ corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0])) # torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
673
+ else:
674
+ corr_res = 0
675
+ D1_t = (model_t - model_prev_0)
676
+ x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
677
+ else:
678
+ x_t_ = (
679
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
680
+ - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
681
+ )
682
+ if x_t is None:
683
+ if use_predictor:
684
+ pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
685
+ else:
686
+ pred_res = 0
687
+ x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
688
+
689
+ if use_corrector:
690
+ model_t = self.model_fn(x_t, t)
691
+ if D1s is not None:
692
+ corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
693
+ else:
694
+ corr_res = 0
695
+ D1_t = (model_t - model_prev_0)
696
+ x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
697
+ return x_t, model_t
698
+
699
+
700
+ def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
701
+ method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
702
+ atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
703
+ ):
704
+ # t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
705
+ # t_T = self.noise_schedule.T if t_start is None else t_start
706
+ steps = len(timesteps) - 1
707
+ if method == 'multistep':
708
+ assert steps >= order
709
+ # timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
710
+ assert timesteps.shape[0] - 1 == steps
711
+ # with torch.no_grad():
712
+ for step_index in trange(steps, disable=disable_pbar):
713
+ if step_index == 0:
714
+ vec_t = timesteps[0].expand((x.shape[0]))
715
+ model_prev_list = [self.model_fn(x, vec_t)]
716
+ t_prev_list = [vec_t]
717
+ elif step_index < order:
718
+ init_order = step_index
719
+ # Init the first `order` values by lower order multistep DPM-Solver.
720
+ # for init_order in range(1, order):
721
+ vec_t = timesteps[init_order].expand(x.shape[0])
722
+ x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
723
+ if model_x is None:
724
+ model_x = self.model_fn(x, vec_t)
725
+ model_prev_list.append(model_x)
726
+ t_prev_list.append(vec_t)
727
+ else:
728
+ extra_final_step = 0
729
+ if step_index == (steps - 1):
730
+ extra_final_step = 1
731
+ for step in range(step_index, step_index + 1 + extra_final_step):
732
+ vec_t = timesteps[step].expand(x.shape[0])
733
+ if lower_order_final:
734
+ step_order = min(order, steps + 1 - step)
735
+ else:
736
+ step_order = order
737
+ # print('this step order:', step_order)
738
+ if step == steps:
739
+ # print('do not run corrector at the last step')
740
+ use_corrector = False
741
+ else:
742
+ use_corrector = True
743
+ x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
744
+ for i in range(order - 1):
745
+ t_prev_list[i] = t_prev_list[i + 1]
746
+ model_prev_list[i] = model_prev_list[i + 1]
747
+ t_prev_list[-1] = vec_t
748
+ # We do not need to evaluate the final model value.
749
+ if step < steps:
750
+ if model_x is None:
751
+ model_x = self.model_fn(x, vec_t)
752
+ model_prev_list[-1] = model_x
753
+ if callback is not None:
754
+ callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]})
755
+ else:
756
+ raise NotImplementedError()
757
+ # if denoise_to_zero:
758
+ # x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
759
+ return x
760
+
761
+
762
+ #############################################################
763
+ # other utility functions
764
+ #############################################################
765
+
766
+ def interpolate_fn(x, xp, yp):
767
+ """
768
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
769
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
770
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
771
+
772
+ Args:
773
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
774
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
775
+ yp: PyTorch tensor with shape [C, K].
776
+ Returns:
777
+ The function values f(x), with shape [N, C].
778
+ """
779
+ N, K = x.shape[0], xp.shape[1]
780
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
781
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
782
+ x_idx = torch.argmin(x_indices, dim=2)
783
+ cand_start_idx = x_idx - 1
784
+ start_idx = torch.where(
785
+ torch.eq(x_idx, 0),
786
+ torch.tensor(1, device=x.device),
787
+ torch.where(
788
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
789
+ ),
790
+ )
791
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
792
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
793
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
794
+ start_idx2 = torch.where(
795
+ torch.eq(x_idx, 0),
796
+ torch.tensor(0, device=x.device),
797
+ torch.where(
798
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
799
+ ),
800
+ )
801
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
802
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
803
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
804
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
805
+ return cand
806
+
807
+
808
+ def expand_dims(v, dims):
809
+ """
810
+ Expand the tensor `v` to the dim `dims`.
811
+
812
+ Args:
813
+ `v`: a PyTorch tensor with shape [N].
814
+ `dim`: a `int`.
815
+ Returns:
816
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
817
+ """
818
+ return v[(...,) + (None,)*(dims - 1)]
819
+
820
+
821
+ class SigmaConvert:
822
+ schedule = ""
823
+ def marginal_log_mean_coeff(self, sigma):
824
+ return 0.5 * torch.log(1 / ((sigma * sigma) + 1))
825
+
826
+ def marginal_alpha(self, t):
827
+ return torch.exp(self.marginal_log_mean_coeff(t))
828
+
829
+ def marginal_std(self, t):
830
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
831
+
832
+ def marginal_lambda(self, t):
833
+ """
834
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
835
+ """
836
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
837
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
838
+ return log_mean_coeff - log_std
839
+
840
+ def predict_eps_sigma(model, input, sigma_in, **kwargs):
841
+ sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1))
842
+ input = input * ((sigma ** 2 + 1.0) ** 0.5)
843
+ return (input - model(input, sigma_in, **kwargs)) / sigma
844
+
845
+
846
+ def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
847
+ timesteps = sigmas.clone()
848
+ if sigmas[-1] == 0:
849
+ timesteps = sigmas[:]
850
+ timesteps[-1] = 0.001
851
+ else:
852
+ timesteps = sigmas.clone()
853
+ ns = SigmaConvert()
854
+
855
+ noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0)
856
+ model_type = "noise"
857
+
858
+ model_fn = model_wrapper(
859
+ lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs),
860
+ ns,
861
+ model_type=model_type,
862
+ guidance_type="uncond",
863
+ model_kwargs=extra_args,
864
+ )
865
+
866
+ order = min(3, len(timesteps) - 2)
867
+ uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant)
868
+ x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
869
+ x /= ns.marginal_alpha(timesteps[-1])
870
+ return x
871
+
872
+ def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False):
873
+ return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2')
comfy/float.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None):
4
+ mantissa_scaled = torch.where(
5
+ normal_mask,
6
+ (abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
7
+ (abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
8
+ )
9
+
10
+ mantissa_scaled += torch.rand(mantissa_scaled.size(), dtype=mantissa_scaled.dtype, layout=mantissa_scaled.layout, device=mantissa_scaled.device, generator=generator)
11
+ return mantissa_scaled.floor() / (2**MANTISSA_BITS)
12
+
13
+ #Not 100% sure about this
14
+ def manual_stochastic_round_to_float8(x, dtype, generator=None):
15
+ if dtype == torch.float8_e4m3fn:
16
+ EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7
17
+ elif dtype == torch.float8_e5m2:
18
+ EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15
19
+ else:
20
+ raise ValueError("Unsupported dtype")
21
+
22
+ x = x.half()
23
+ sign = torch.sign(x)
24
+ abs_x = x.abs()
25
+ sign = torch.where(abs_x == 0, 0, sign)
26
+
27
+ # Combine exponent calculation and clamping
28
+ exponent = torch.clamp(
29
+ torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS,
30
+ 0, 2**EXPONENT_BITS - 1
31
+ )
32
+
33
+ # Combine mantissa calculation and rounding
34
+ normal_mask = ~(exponent == 0)
35
+
36
+ abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=generator)
37
+
38
+ sign *= torch.where(
39
+ normal_mask,
40
+ (2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x),
41
+ (2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
42
+ )
43
+
44
+ inf = torch.finfo(dtype)
45
+ torch.clamp(sign, min=inf.min, max=inf.max, out=sign)
46
+ return sign
47
+
48
+
49
+
50
+ def stochastic_rounding(value, dtype, seed=0):
51
+ if dtype == torch.float32:
52
+ return value.to(dtype=torch.float32)
53
+ if dtype == torch.float16:
54
+ return value.to(dtype=torch.float16)
55
+ if dtype == torch.bfloat16:
56
+ return value.to(dtype=torch.bfloat16)
57
+ if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
58
+ generator = torch.Generator(device=value.device)
59
+ generator.manual_seed(seed)
60
+ output = torch.empty_like(value, dtype=dtype)
61
+ num_slices = max(1, (value.numel() / (4096 * 4096)))
62
+ slice_size = max(1, round(value.shape[0] / num_slices))
63
+ for i in range(0, value.shape[0], slice_size):
64
+ output[i:i+slice_size].copy_(manual_stochastic_round_to_float8(value[i:i+slice_size], dtype, generator=generator))
65
+ return output
66
+
67
+ return value.to(dtype=dtype)
comfy/gligen.py ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from .ldm.modules.attention import CrossAttention
5
+ from inspect import isfunction
6
+ import comfy.ops
7
+ ops = comfy.ops.manual_cast
8
+
9
+ def exists(val):
10
+ return val is not None
11
+
12
+
13
+ def uniq(arr):
14
+ return{el: True for el in arr}.keys()
15
+
16
+
17
+ def default(val, d):
18
+ if exists(val):
19
+ return val
20
+ return d() if isfunction(d) else d
21
+
22
+
23
+ # feedforward
24
+ class GEGLU(nn.Module):
25
+ def __init__(self, dim_in, dim_out):
26
+ super().__init__()
27
+ self.proj = ops.Linear(dim_in, dim_out * 2)
28
+
29
+ def forward(self, x):
30
+ x, gate = self.proj(x).chunk(2, dim=-1)
31
+ return x * torch.nn.functional.gelu(gate)
32
+
33
+
34
+ class FeedForward(nn.Module):
35
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
36
+ super().__init__()
37
+ inner_dim = int(dim * mult)
38
+ dim_out = default(dim_out, dim)
39
+ project_in = nn.Sequential(
40
+ ops.Linear(dim, inner_dim),
41
+ nn.GELU()
42
+ ) if not glu else GEGLU(dim, inner_dim)
43
+
44
+ self.net = nn.Sequential(
45
+ project_in,
46
+ nn.Dropout(dropout),
47
+ ops.Linear(inner_dim, dim_out)
48
+ )
49
+
50
+ def forward(self, x):
51
+ return self.net(x)
52
+
53
+
54
+ class GatedCrossAttentionDense(nn.Module):
55
+ def __init__(self, query_dim, context_dim, n_heads, d_head):
56
+ super().__init__()
57
+
58
+ self.attn = CrossAttention(
59
+ query_dim=query_dim,
60
+ context_dim=context_dim,
61
+ heads=n_heads,
62
+ dim_head=d_head,
63
+ operations=ops)
64
+ self.ff = FeedForward(query_dim, glu=True)
65
+
66
+ self.norm1 = ops.LayerNorm(query_dim)
67
+ self.norm2 = ops.LayerNorm(query_dim)
68
+
69
+ self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
70
+ self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
71
+
72
+ # this can be useful: we can externally change magnitude of tanh(alpha)
73
+ # for example, when it is set to 0, then the entire model is same as
74
+ # original one
75
+ self.scale = 1
76
+
77
+ def forward(self, x, objs):
78
+
79
+ x = x + self.scale * \
80
+ torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs)
81
+ x = x + self.scale * \
82
+ torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
83
+
84
+ return x
85
+
86
+
87
+ class GatedSelfAttentionDense(nn.Module):
88
+ def __init__(self, query_dim, context_dim, n_heads, d_head):
89
+ super().__init__()
90
+
91
+ # we need a linear projection since we need cat visual feature and obj
92
+ # feature
93
+ self.linear = ops.Linear(context_dim, query_dim)
94
+
95
+ self.attn = CrossAttention(
96
+ query_dim=query_dim,
97
+ context_dim=query_dim,
98
+ heads=n_heads,
99
+ dim_head=d_head,
100
+ operations=ops)
101
+ self.ff = FeedForward(query_dim, glu=True)
102
+
103
+ self.norm1 = ops.LayerNorm(query_dim)
104
+ self.norm2 = ops.LayerNorm(query_dim)
105
+
106
+ self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
107
+ self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
108
+
109
+ # this can be useful: we can externally change magnitude of tanh(alpha)
110
+ # for example, when it is set to 0, then the entire model is same as
111
+ # original one
112
+ self.scale = 1
113
+
114
+ def forward(self, x, objs):
115
+
116
+ N_visual = x.shape[1]
117
+ objs = self.linear(objs)
118
+
119
+ x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn(
120
+ self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :]
121
+ x = x + self.scale * \
122
+ torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
123
+
124
+ return x
125
+
126
+
127
+ class GatedSelfAttentionDense2(nn.Module):
128
+ def __init__(self, query_dim, context_dim, n_heads, d_head):
129
+ super().__init__()
130
+
131
+ # we need a linear projection since we need cat visual feature and obj
132
+ # feature
133
+ self.linear = ops.Linear(context_dim, query_dim)
134
+
135
+ self.attn = CrossAttention(
136
+ query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops)
137
+ self.ff = FeedForward(query_dim, glu=True)
138
+
139
+ self.norm1 = ops.LayerNorm(query_dim)
140
+ self.norm2 = ops.LayerNorm(query_dim)
141
+
142
+ self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
143
+ self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
144
+
145
+ # this can be useful: we can externally change magnitude of tanh(alpha)
146
+ # for example, when it is set to 0, then the entire model is same as
147
+ # original one
148
+ self.scale = 1
149
+
150
+ def forward(self, x, objs):
151
+
152
+ B, N_visual, _ = x.shape
153
+ B, N_ground, _ = objs.shape
154
+
155
+ objs = self.linear(objs)
156
+
157
+ # sanity check
158
+ size_v = math.sqrt(N_visual)
159
+ size_g = math.sqrt(N_ground)
160
+ assert int(size_v) == size_v, "Visual tokens must be square rootable"
161
+ assert int(size_g) == size_g, "Grounding tokens must be square rootable"
162
+ size_v = int(size_v)
163
+ size_g = int(size_g)
164
+
165
+ # select grounding token and resize it to visual token size as residual
166
+ out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[
167
+ :, N_visual:, :]
168
+ out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g)
169
+ out = torch.nn.functional.interpolate(
170
+ out, (size_v, size_v), mode='bicubic')
171
+ residual = out.reshape(B, -1, N_visual).permute(0, 2, 1)
172
+
173
+ # add residual to visual feature
174
+ x = x + self.scale * torch.tanh(self.alpha_attn) * residual
175
+ x = x + self.scale * \
176
+ torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
177
+
178
+ return x
179
+
180
+
181
+ class FourierEmbedder():
182
+ def __init__(self, num_freqs=64, temperature=100):
183
+
184
+ self.num_freqs = num_freqs
185
+ self.temperature = temperature
186
+ self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs)
187
+
188
+ @torch.no_grad()
189
+ def __call__(self, x, cat_dim=-1):
190
+ "x: arbitrary shape of tensor. dim: cat dim"
191
+ out = []
192
+ for freq in self.freq_bands:
193
+ out.append(torch.sin(freq * x))
194
+ out.append(torch.cos(freq * x))
195
+ return torch.cat(out, cat_dim)
196
+
197
+
198
+ class PositionNet(nn.Module):
199
+ def __init__(self, in_dim, out_dim, fourier_freqs=8):
200
+ super().__init__()
201
+ self.in_dim = in_dim
202
+ self.out_dim = out_dim
203
+
204
+ self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
205
+ self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy
206
+
207
+ self.linears = nn.Sequential(
208
+ ops.Linear(self.in_dim + self.position_dim, 512),
209
+ nn.SiLU(),
210
+ ops.Linear(512, 512),
211
+ nn.SiLU(),
212
+ ops.Linear(512, out_dim),
213
+ )
214
+
215
+ self.null_positive_feature = torch.nn.Parameter(
216
+ torch.zeros([self.in_dim]))
217
+ self.null_position_feature = torch.nn.Parameter(
218
+ torch.zeros([self.position_dim]))
219
+
220
+ def forward(self, boxes, masks, positive_embeddings):
221
+ B, N, _ = boxes.shape
222
+ masks = masks.unsqueeze(-1)
223
+ positive_embeddings = positive_embeddings
224
+
225
+ # embedding position (it may includes padding as placeholder)
226
+ xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
227
+
228
+ # learnable null embedding
229
+ positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
230
+ xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
231
+
232
+ # replace padding with learnable null embedding
233
+ positive_embeddings = positive_embeddings * \
234
+ masks + (1 - masks) * positive_null
235
+ xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
236
+
237
+ objs = self.linears(
238
+ torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
239
+ assert objs.shape == torch.Size([B, N, self.out_dim])
240
+ return objs
241
+
242
+
243
+ class Gligen(nn.Module):
244
+ def __init__(self, modules, position_net, key_dim):
245
+ super().__init__()
246
+ self.module_list = nn.ModuleList(modules)
247
+ self.position_net = position_net
248
+ self.key_dim = key_dim
249
+ self.max_objs = 30
250
+ self.current_device = torch.device("cpu")
251
+
252
+ def _set_position(self, boxes, masks, positive_embeddings):
253
+ objs = self.position_net(boxes, masks, positive_embeddings)
254
+ def func(x, extra_options):
255
+ key = extra_options["transformer_index"]
256
+ module = self.module_list[key]
257
+ return module(x, objs.to(device=x.device, dtype=x.dtype))
258
+ return func
259
+
260
+ def set_position(self, latent_image_shape, position_params, device):
261
+ batch, c, h, w = latent_image_shape
262
+ masks = torch.zeros([self.max_objs], device="cpu")
263
+ boxes = []
264
+ positive_embeddings = []
265
+ for p in position_params:
266
+ x1 = (p[4]) / w
267
+ y1 = (p[3]) / h
268
+ x2 = (p[4] + p[2]) / w
269
+ y2 = (p[3] + p[1]) / h
270
+ masks[len(boxes)] = 1.0
271
+ boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)]
272
+ positive_embeddings += [p[0]]
273
+ append_boxes = []
274
+ append_conds = []
275
+ if len(boxes) < self.max_objs:
276
+ append_boxes = [torch.zeros(
277
+ [self.max_objs - len(boxes), 4], device="cpu")]
278
+ append_conds = [torch.zeros(
279
+ [self.max_objs - len(boxes), self.key_dim], device="cpu")]
280
+
281
+ box_out = torch.cat(
282
+ boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1)
283
+ masks = masks.unsqueeze(0).repeat(batch, 1)
284
+ conds = torch.cat(positive_embeddings +
285
+ append_conds).unsqueeze(0).repeat(batch, 1, 1)
286
+ return self._set_position(
287
+ box_out.to(device),
288
+ masks.to(device),
289
+ conds.to(device))
290
+
291
+ def set_empty(self, latent_image_shape, device):
292
+ batch, c, h, w = latent_image_shape
293
+ masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1)
294
+ box_out = torch.zeros([self.max_objs, 4],
295
+ device="cpu").repeat(batch, 1, 1)
296
+ conds = torch.zeros([self.max_objs, self.key_dim],
297
+ device="cpu").repeat(batch, 1, 1)
298
+ return self._set_position(
299
+ box_out.to(device),
300
+ masks.to(device),
301
+ conds.to(device))
302
+
303
+
304
+ def load_gligen(sd):
305
+ sd_k = sd.keys()
306
+ output_list = []
307
+ key_dim = 768
308
+ for a in ["input_blocks", "middle_block", "output_blocks"]:
309
+ for b in range(20):
310
+ k_temp = filter(lambda k: "{}.{}.".format(a, b)
311
+ in k and ".fuser." in k, sd_k)
312
+ k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp)
313
+
314
+ n_sd = {}
315
+ for k in k_temp:
316
+ n_sd[k[1]] = sd[k[0]]
317
+ if len(n_sd) > 0:
318
+ query_dim = n_sd["linear.weight"].shape[0]
319
+ key_dim = n_sd["linear.weight"].shape[1]
320
+
321
+ if key_dim == 768: # SD1.x
322
+ n_heads = 8
323
+ d_head = query_dim // n_heads
324
+ else:
325
+ d_head = 64
326
+ n_heads = query_dim // d_head
327
+
328
+ gated = GatedSelfAttentionDense(
329
+ query_dim, key_dim, n_heads, d_head)
330
+ gated.load_state_dict(n_sd, strict=False)
331
+ output_list.append(gated)
332
+
333
+ if "position_net.null_positive_feature" in sd_k:
334
+ in_dim = sd["position_net.null_positive_feature"].shape[0]
335
+ out_dim = sd["position_net.linears.4.weight"].shape[0]
336
+
337
+ class WeightsLoader(torch.nn.Module):
338
+ pass
339
+ w = WeightsLoader()
340
+ w.position_net = PositionNet(in_dim, out_dim)
341
+ w.load_state_dict(sd, strict=False)
342
+
343
+ gligen = Gligen(output_list, w.position_net, key_dim)
344
+ return gligen
comfy/hooks.py ADDED
@@ -0,0 +1,785 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import TYPE_CHECKING, Callable
3
+ import enum
4
+ import math
5
+ import torch
6
+ import numpy as np
7
+ import itertools
8
+ import logging
9
+
10
+ if TYPE_CHECKING:
11
+ from comfy.model_patcher import ModelPatcher, PatcherInjection
12
+ from comfy.model_base import BaseModel
13
+ from comfy.sd import CLIP
14
+ import comfy.lora
15
+ import comfy.model_management
16
+ import comfy.patcher_extension
17
+ from node_helpers import conditioning_set_values
18
+
19
+ # #######################################################################################################
20
+ # Hooks explanation
21
+ # -------------------
22
+ # The purpose of hooks is to allow conds to influence sampling without the need for ComfyUI core code to
23
+ # make explicit special cases like it does for ControlNet and GLIGEN.
24
+ #
25
+ # This is necessary for nodes/features that are intended for use with masked or scheduled conds, or those
26
+ # that should run special code when a 'marked' cond is used in sampling.
27
+ # #######################################################################################################
28
+
29
+ class EnumHookMode(enum.Enum):
30
+ '''
31
+ Priority of hook memory optimization vs. speed, mostly related to WeightHooks.
32
+
33
+ MinVram: No caching will occur for any operations related to hooks.
34
+ MaxSpeed: Excess VRAM (and RAM, once VRAM is sufficiently depleted) will be used to cache hook weights when switching hook groups.
35
+ '''
36
+ MinVram = "minvram"
37
+ MaxSpeed = "maxspeed"
38
+
39
+ class EnumHookType(enum.Enum):
40
+ '''
41
+ Hook types, each of which has different expected behavior.
42
+ '''
43
+ Weight = "weight"
44
+ ObjectPatch = "object_patch"
45
+ AdditionalModels = "add_models"
46
+ TransformerOptions = "transformer_options"
47
+ Injections = "add_injections"
48
+
49
+ class EnumWeightTarget(enum.Enum):
50
+ Model = "model"
51
+ Clip = "clip"
52
+
53
+ class EnumHookScope(enum.Enum):
54
+ '''
55
+ Determines if hook should be limited in its influence over sampling.
56
+
57
+ AllConditioning: hook will affect all conds used in sampling.
58
+ HookedOnly: hook will only affect the conds it was attached to.
59
+ '''
60
+ AllConditioning = "all_conditioning"
61
+ HookedOnly = "hooked_only"
62
+
63
+
64
+ class _HookRef:
65
+ pass
66
+
67
+
68
+ def default_should_register(hook: Hook, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
69
+ '''Example for how custom_should_register function can look like.'''
70
+ return True
71
+
72
+
73
+ def create_target_dict(target: EnumWeightTarget=None, **kwargs) -> dict[str]:
74
+ '''Creates base dictionary for use with Hooks' target param.'''
75
+ d = {}
76
+ if target is not None:
77
+ d['target'] = target
78
+ d.update(kwargs)
79
+ return d
80
+
81
+
82
+ class Hook:
83
+ def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None, hook_id: str=None,
84
+ hook_keyframe: HookKeyframeGroup=None, hook_scope=EnumHookScope.AllConditioning):
85
+ self.hook_type = hook_type
86
+ '''Enum identifying the general class of this hook.'''
87
+ self.hook_ref = hook_ref if hook_ref else _HookRef()
88
+ '''Reference shared between hook clones that have the same value. Should NOT be modified.'''
89
+ self.hook_id = hook_id
90
+ '''Optional string ID to identify hook; useful if need to consolidate duplicates at registration time.'''
91
+ self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup()
92
+ '''Keyframe storage that can be referenced to get strength for current sampling step.'''
93
+ self.hook_scope = hook_scope
94
+ '''Scope of where this hook should apply in terms of the conds used in sampling run.'''
95
+ self.custom_should_register = default_should_register
96
+ '''Can be overriden with a compatible function to decide if this hook should be registered without the need to override .should_register'''
97
+
98
+ @property
99
+ def strength(self):
100
+ return self.hook_keyframe.strength
101
+
102
+ def initialize_timesteps(self, model: BaseModel):
103
+ self.reset()
104
+ self.hook_keyframe.initialize_timesteps(model)
105
+
106
+ def reset(self):
107
+ self.hook_keyframe.reset()
108
+
109
+ def clone(self):
110
+ c: Hook = self.__class__()
111
+ c.hook_type = self.hook_type
112
+ c.hook_ref = self.hook_ref
113
+ c.hook_id = self.hook_id
114
+ c.hook_keyframe = self.hook_keyframe
115
+ c.hook_scope = self.hook_scope
116
+ c.custom_should_register = self.custom_should_register
117
+ return c
118
+
119
+ def should_register(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
120
+ return self.custom_should_register(self, model, model_options, target_dict, registered)
121
+
122
+ def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
123
+ raise NotImplementedError("add_hook_patches should be defined for Hook subclasses")
124
+
125
+ def __eq__(self, other: Hook):
126
+ return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref
127
+
128
+ def __hash__(self):
129
+ return hash(self.hook_ref)
130
+
131
+ class WeightHook(Hook):
132
+ '''
133
+ Hook responsible for tracking weights to be applied to some model/clip.
134
+
135
+ Note, value of hook_scope is ignored and is treated as HookedOnly.
136
+ '''
137
+ def __init__(self, strength_model=1.0, strength_clip=1.0):
138
+ super().__init__(hook_type=EnumHookType.Weight, hook_scope=EnumHookScope.HookedOnly)
139
+ self.weights: dict = None
140
+ self.weights_clip: dict = None
141
+ self.need_weight_init = True
142
+ self._strength_model = strength_model
143
+ self._strength_clip = strength_clip
144
+ self.hook_scope = EnumHookScope.HookedOnly # this value does not matter for WeightHooks, just for docs
145
+
146
+ @property
147
+ def strength_model(self):
148
+ return self._strength_model * self.strength
149
+
150
+ @property
151
+ def strength_clip(self):
152
+ return self._strength_clip * self.strength
153
+
154
+ def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
155
+ if not self.should_register(model, model_options, target_dict, registered):
156
+ return False
157
+ weights = None
158
+
159
+ target = target_dict.get('target', None)
160
+ if target == EnumWeightTarget.Clip:
161
+ strength = self._strength_clip
162
+ else:
163
+ strength = self._strength_model
164
+
165
+ if self.need_weight_init:
166
+ key_map = {}
167
+ if target == EnumWeightTarget.Clip:
168
+ key_map = comfy.lora.model_lora_keys_clip(model.model, key_map)
169
+ else:
170
+ key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
171
+ weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False)
172
+ else:
173
+ if target == EnumWeightTarget.Clip:
174
+ weights = self.weights_clip
175
+ else:
176
+ weights = self.weights
177
+ model.add_hook_patches(hook=self, patches=weights, strength_patch=strength)
178
+ registered.add(self)
179
+ return True
180
+ # TODO: add logs about any keys that were not applied
181
+
182
+ def clone(self):
183
+ c: WeightHook = super().clone()
184
+ c.weights = self.weights
185
+ c.weights_clip = self.weights_clip
186
+ c.need_weight_init = self.need_weight_init
187
+ c._strength_model = self._strength_model
188
+ c._strength_clip = self._strength_clip
189
+ return c
190
+
191
+ class ObjectPatchHook(Hook):
192
+ def __init__(self, object_patches: dict[str]=None,
193
+ hook_scope=EnumHookScope.AllConditioning):
194
+ super().__init__(hook_type=EnumHookType.ObjectPatch)
195
+ self.object_patches = object_patches
196
+ self.hook_scope = hook_scope
197
+
198
+ def clone(self):
199
+ c: ObjectPatchHook = super().clone()
200
+ c.object_patches = self.object_patches
201
+ return c
202
+
203
+ def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
204
+ raise NotImplementedError("ObjectPatchHook is not supported yet in ComfyUI.")
205
+
206
+ class AdditionalModelsHook(Hook):
207
+ '''
208
+ Hook responsible for telling model management any additional models that should be loaded.
209
+
210
+ Note, value of hook_scope is ignored and is treated as AllConditioning.
211
+ '''
212
+ def __init__(self, models: list[ModelPatcher]=None, key: str=None):
213
+ super().__init__(hook_type=EnumHookType.AdditionalModels)
214
+ self.models = models
215
+ self.key = key
216
+
217
+ def clone(self):
218
+ c: AdditionalModelsHook = super().clone()
219
+ c.models = self.models.copy() if self.models else self.models
220
+ c.key = self.key
221
+ return c
222
+
223
+ def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
224
+ if not self.should_register(model, model_options, target_dict, registered):
225
+ return False
226
+ registered.add(self)
227
+ return True
228
+
229
+ class TransformerOptionsHook(Hook):
230
+ '''
231
+ Hook responsible for adding wrappers, callbacks, patches, or anything else related to transformer_options.
232
+ '''
233
+ def __init__(self, transformers_dict: dict[str, dict[str, dict[str, list[Callable]]]]=None,
234
+ hook_scope=EnumHookScope.AllConditioning):
235
+ super().__init__(hook_type=EnumHookType.TransformerOptions)
236
+ self.transformers_dict = transformers_dict
237
+ self.hook_scope = hook_scope
238
+ self._skip_adding = False
239
+ '''Internal value used to avoid double load of transformer_options when hook_scope is AllConditioning.'''
240
+
241
+ def clone(self):
242
+ c: TransformerOptionsHook = super().clone()
243
+ c.transformers_dict = self.transformers_dict
244
+ c._skip_adding = self._skip_adding
245
+ return c
246
+
247
+ def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
248
+ if not self.should_register(model, model_options, target_dict, registered):
249
+ return False
250
+ # NOTE: to_load_options will be used to manually load patches/wrappers/callbacks from hooks
251
+ self._skip_adding = False
252
+ if self.hook_scope == EnumHookScope.AllConditioning:
253
+ add_model_options = {"transformer_options": self.transformers_dict,
254
+ "to_load_options": self.transformers_dict}
255
+ # skip_adding if included in AllConditioning to avoid double loading
256
+ self._skip_adding = True
257
+ else:
258
+ add_model_options = {"to_load_options": self.transformers_dict}
259
+ registered.add(self)
260
+ comfy.patcher_extension.merge_nested_dicts(model_options, add_model_options, copy_dict1=False)
261
+ return True
262
+
263
+ def on_apply_hooks(self, model: ModelPatcher, transformer_options: dict[str]):
264
+ if not self._skip_adding:
265
+ comfy.patcher_extension.merge_nested_dicts(transformer_options, self.transformers_dict, copy_dict1=False)
266
+
267
+ WrapperHook = TransformerOptionsHook
268
+ '''Only here for backwards compatibility, WrapperHook is identical to TransformerOptionsHook.'''
269
+
270
+ class InjectionsHook(Hook):
271
+ def __init__(self, key: str=None, injections: list[PatcherInjection]=None,
272
+ hook_scope=EnumHookScope.AllConditioning):
273
+ super().__init__(hook_type=EnumHookType.Injections)
274
+ self.key = key
275
+ self.injections = injections
276
+ self.hook_scope = hook_scope
277
+
278
+ def clone(self):
279
+ c: InjectionsHook = super().clone()
280
+ c.key = self.key
281
+ c.injections = self.injections.copy() if self.injections else self.injections
282
+ return c
283
+
284
+ def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
285
+ raise NotImplementedError("InjectionsHook is not supported yet in ComfyUI.")
286
+
287
+ class HookGroup:
288
+ '''
289
+ Stores groups of hooks, and allows them to be queried by type.
290
+
291
+ To prevent breaking their functionality, never modify the underlying self.hooks or self._hook_dict vars directly;
292
+ always use the provided functions on HookGroup.
293
+ '''
294
+ def __init__(self):
295
+ self.hooks: list[Hook] = []
296
+ self._hook_dict: dict[EnumHookType, list[Hook]] = {}
297
+
298
+ def __len__(self):
299
+ return len(self.hooks)
300
+
301
+ def add(self, hook: Hook):
302
+ if hook not in self.hooks:
303
+ self.hooks.append(hook)
304
+ self._hook_dict.setdefault(hook.hook_type, []).append(hook)
305
+
306
+ def remove(self, hook: Hook):
307
+ if hook in self.hooks:
308
+ self.hooks.remove(hook)
309
+ self._hook_dict[hook.hook_type].remove(hook)
310
+
311
+ def get_type(self, hook_type: EnumHookType):
312
+ return self._hook_dict.get(hook_type, [])
313
+
314
+ def contains(self, hook: Hook):
315
+ return hook in self.hooks
316
+
317
+ def is_subset_of(self, other: HookGroup):
318
+ self_hooks = set(self.hooks)
319
+ other_hooks = set(other.hooks)
320
+ return self_hooks.issubset(other_hooks)
321
+
322
+ def new_with_common_hooks(self, other: HookGroup):
323
+ c = HookGroup()
324
+ for hook in self.hooks:
325
+ if other.contains(hook):
326
+ c.add(hook.clone())
327
+ return c
328
+
329
+ def clone(self):
330
+ c = HookGroup()
331
+ for hook in self.hooks:
332
+ c.add(hook.clone())
333
+ return c
334
+
335
+ def clone_and_combine(self, other: HookGroup):
336
+ c = self.clone()
337
+ if other is not None:
338
+ for hook in other.hooks:
339
+ c.add(hook.clone())
340
+ return c
341
+
342
+ def set_keyframes_on_hooks(self, hook_kf: HookKeyframeGroup):
343
+ if hook_kf is None:
344
+ hook_kf = HookKeyframeGroup()
345
+ else:
346
+ hook_kf = hook_kf.clone()
347
+ for hook in self.hooks:
348
+ hook.hook_keyframe = hook_kf
349
+
350
+ def get_hooks_for_clip_schedule(self):
351
+ scheduled_hooks: dict[WeightHook, list[tuple[tuple[float,float], HookKeyframe]]] = {}
352
+ # only care about WeightHooks, for now
353
+ for hook in self.get_type(EnumHookType.Weight):
354
+ hook: WeightHook
355
+ hook_schedule = []
356
+ # if no hook keyframes, assign default value
357
+ if len(hook.hook_keyframe.keyframes) == 0:
358
+ hook_schedule.append(((0.0, 1.0), None))
359
+ scheduled_hooks[hook] = hook_schedule
360
+ continue
361
+ # find ranges of values
362
+ prev_keyframe = hook.hook_keyframe.keyframes[0]
363
+ for keyframe in hook.hook_keyframe.keyframes:
364
+ if keyframe.start_percent > prev_keyframe.start_percent and not math.isclose(keyframe.strength, prev_keyframe.strength):
365
+ hook_schedule.append(((prev_keyframe.start_percent, keyframe.start_percent), prev_keyframe))
366
+ prev_keyframe = keyframe
367
+ elif keyframe.start_percent == prev_keyframe.start_percent:
368
+ prev_keyframe = keyframe
369
+ # create final range, assuming last start_percent was not 1.0
370
+ if not math.isclose(prev_keyframe.start_percent, 1.0):
371
+ hook_schedule.append(((prev_keyframe.start_percent, 1.0), prev_keyframe))
372
+ scheduled_hooks[hook] = hook_schedule
373
+ # hooks should not have their schedules in a list of tuples
374
+ all_ranges: list[tuple[float, float]] = []
375
+ for range_kfs in scheduled_hooks.values():
376
+ for t_range, keyframe in range_kfs:
377
+ all_ranges.append(t_range)
378
+ # turn list of ranges into boundaries
379
+ boundaries_set = set(itertools.chain.from_iterable(all_ranges))
380
+ boundaries_set.add(0.0)
381
+ boundaries = sorted(boundaries_set)
382
+ real_ranges = [(boundaries[i], boundaries[i + 1]) for i in range(len(boundaries) - 1)]
383
+ # with real ranges defined, give appropriate hooks w/ keyframes for each range
384
+ scheduled_keyframes: list[tuple[tuple[float,float], list[tuple[WeightHook, HookKeyframe]]]] = []
385
+ for t_range in real_ranges:
386
+ hooks_schedule = []
387
+ for hook, val in scheduled_hooks.items():
388
+ keyframe = None
389
+ # check if is a keyframe that works for the current t_range
390
+ for stored_range, stored_kf in val:
391
+ # if stored start is less than current end, then fits - give it assigned keyframe
392
+ if stored_range[0] < t_range[1] and stored_range[1] > t_range[0]:
393
+ keyframe = stored_kf
394
+ break
395
+ hooks_schedule.append((hook, keyframe))
396
+ scheduled_keyframes.append((t_range, hooks_schedule))
397
+ return scheduled_keyframes
398
+
399
+ def reset(self):
400
+ for hook in self.hooks:
401
+ hook.reset()
402
+
403
+ @staticmethod
404
+ def combine_all_hooks(hooks_list: list[HookGroup], require_count=0) -> HookGroup:
405
+ actual: list[HookGroup] = []
406
+ for group in hooks_list:
407
+ if group is not None:
408
+ actual.append(group)
409
+ if len(actual) < require_count:
410
+ raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.")
411
+ # if no hooks, then return None
412
+ if len(actual) == 0:
413
+ return None
414
+ # if only 1 hook, just return itself without cloning
415
+ elif len(actual) == 1:
416
+ return actual[0]
417
+ final_hook: HookGroup = None
418
+ for hook in actual:
419
+ if final_hook is None:
420
+ final_hook = hook.clone()
421
+ else:
422
+ final_hook = final_hook.clone_and_combine(hook)
423
+ return final_hook
424
+
425
+
426
+ class HookKeyframe:
427
+ def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1):
428
+ self.strength = strength
429
+ # scheduling
430
+ self.start_percent = float(start_percent)
431
+ self.start_t = 999999999.9
432
+ self.guarantee_steps = guarantee_steps
433
+
434
+ def get_effective_guarantee_steps(self, max_sigma: torch.Tensor):
435
+ '''If keyframe starts before current sampling range (max_sigma), treat as 0.'''
436
+ if self.start_t > max_sigma:
437
+ return 0
438
+ return self.guarantee_steps
439
+
440
+ def clone(self):
441
+ c = HookKeyframe(strength=self.strength,
442
+ start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
443
+ c.start_t = self.start_t
444
+ return c
445
+
446
+ class HookKeyframeGroup:
447
+ def __init__(self):
448
+ self.keyframes: list[HookKeyframe] = []
449
+ self._current_keyframe: HookKeyframe = None
450
+ self._current_used_steps = 0
451
+ self._current_index = 0
452
+ self._current_strength = None
453
+ self._curr_t = -1.
454
+
455
+ # properties shadow those of HookWeightsKeyframe
456
+ @property
457
+ def strength(self):
458
+ if self._current_keyframe is not None:
459
+ return self._current_keyframe.strength
460
+ return 1.0
461
+
462
+ def reset(self):
463
+ self._current_keyframe = None
464
+ self._current_used_steps = 0
465
+ self._current_index = 0
466
+ self._current_strength = None
467
+ self.curr_t = -1.
468
+ self._set_first_as_current()
469
+
470
+ def add(self, keyframe: HookKeyframe):
471
+ # add to end of list, then sort
472
+ self.keyframes.append(keyframe)
473
+ self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
474
+ self._set_first_as_current()
475
+
476
+ def _set_first_as_current(self):
477
+ if len(self.keyframes) > 0:
478
+ self._current_keyframe = self.keyframes[0]
479
+ else:
480
+ self._current_keyframe = None
481
+
482
+ def has_guarantee_steps(self):
483
+ for kf in self.keyframes:
484
+ if kf.guarantee_steps > 0:
485
+ return True
486
+ return False
487
+
488
+ def has_index(self, index: int):
489
+ return index >= 0 and index < len(self.keyframes)
490
+
491
+ def is_empty(self):
492
+ return len(self.keyframes) == 0
493
+
494
+ def clone(self):
495
+ c = HookKeyframeGroup()
496
+ for keyframe in self.keyframes:
497
+ c.keyframes.append(keyframe.clone())
498
+ c._set_first_as_current()
499
+ return c
500
+
501
+ def initialize_timesteps(self, model: BaseModel):
502
+ for keyframe in self.keyframes:
503
+ keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
504
+
505
+ def prepare_current_keyframe(self, curr_t: float, transformer_options: dict[str, torch.Tensor]) -> bool:
506
+ if self.is_empty():
507
+ return False
508
+ if curr_t == self._curr_t:
509
+ return False
510
+ max_sigma = torch.max(transformer_options["sample_sigmas"])
511
+ prev_index = self._current_index
512
+ prev_strength = self._current_strength
513
+ # if met guaranteed steps, look for next keyframe in case need to switch
514
+ if self._current_used_steps >= self._current_keyframe.get_effective_guarantee_steps(max_sigma):
515
+ # if has next index, loop through and see if need to switch
516
+ if self.has_index(self._current_index+1):
517
+ for i in range(self._current_index+1, len(self.keyframes)):
518
+ eval_c = self.keyframes[i]
519
+ # check if start_t is greater or equal to curr_t
520
+ # NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
521
+ if eval_c.start_t >= curr_t:
522
+ self._current_index = i
523
+ self._current_strength = eval_c.strength
524
+ self._current_keyframe = eval_c
525
+ self._current_used_steps = 0
526
+ # if guarantee_steps greater than zero, stop searching for other keyframes
527
+ if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0:
528
+ break
529
+ # if eval_c is outside the percent range, stop looking further
530
+ else: break
531
+ # update steps current context is used
532
+ self._current_used_steps += 1
533
+ # update current timestep this was performed on
534
+ self._curr_t = curr_t
535
+ # return True if keyframe changed, False if no change
536
+ return prev_index != self._current_index and prev_strength != self._current_strength
537
+
538
+
539
+ class InterpolationMethod:
540
+ LINEAR = "linear"
541
+ EASE_IN = "ease_in"
542
+ EASE_OUT = "ease_out"
543
+ EASE_IN_OUT = "ease_in_out"
544
+
545
+ _LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
546
+
547
+ @classmethod
548
+ def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
549
+ diff = num_to - num_from
550
+ if method == cls.LINEAR:
551
+ weights = torch.linspace(num_from, num_to, length)
552
+ elif method == cls.EASE_IN:
553
+ index = torch.linspace(0, 1, length)
554
+ weights = diff * np.power(index, 2) + num_from
555
+ elif method == cls.EASE_OUT:
556
+ index = torch.linspace(0, 1, length)
557
+ weights = diff * (1 - np.power(1 - index, 2)) + num_from
558
+ elif method == cls.EASE_IN_OUT:
559
+ index = torch.linspace(0, 1, length)
560
+ weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
561
+ else:
562
+ raise ValueError(f"Unrecognized interpolation method '{method}'.")
563
+ if reverse:
564
+ weights = weights.flip(dims=(0,))
565
+ return weights
566
+
567
+ def get_sorted_list_via_attr(objects: list, attr: str) -> list:
568
+ if not objects:
569
+ return objects
570
+ elif len(objects) <= 1:
571
+ return [x for x in objects]
572
+ # now that we know we have to sort, do it following these rules:
573
+ # a) if objects have same value of attribute, maintain their relative order
574
+ # b) perform sorting of the groups of objects with same attributes
575
+ unique_attrs = {}
576
+ for o in objects:
577
+ val_attr = getattr(o, attr)
578
+ attr_list: list = unique_attrs.get(val_attr, list())
579
+ attr_list.append(o)
580
+ if val_attr not in unique_attrs:
581
+ unique_attrs[val_attr] = attr_list
582
+ # now that we have the unique attr values grouped together in relative order, sort them by key
583
+ sorted_attrs = dict(sorted(unique_attrs.items()))
584
+ # now flatten out the dict into a list to return
585
+ sorted_list = []
586
+ for object_list in sorted_attrs.values():
587
+ sorted_list.extend(object_list)
588
+ return sorted_list
589
+
590
+ def create_transformer_options_from_hooks(model: ModelPatcher, hooks: HookGroup, transformer_options: dict[str]=None):
591
+ # if no hooks or is not a ModelPatcher for sampling, return empty dict
592
+ if hooks is None or model.is_clip:
593
+ return {}
594
+ if transformer_options is None:
595
+ transformer_options = {}
596
+ for hook in hooks.get_type(EnumHookType.TransformerOptions):
597
+ hook: TransformerOptionsHook
598
+ hook.on_apply_hooks(model, transformer_options)
599
+ return transformer_options
600
+
601
+ def create_hook_lora(lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float):
602
+ hook_group = HookGroup()
603
+ hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
604
+ hook_group.add(hook)
605
+ hook.weights = lora
606
+ return hook_group
607
+
608
+ def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float):
609
+ hook_group = HookGroup()
610
+ hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
611
+ hook_group.add(hook)
612
+ patches_model = None
613
+ patches_clip = None
614
+ if weights_model is not None:
615
+ patches_model = {}
616
+ for key in weights_model:
617
+ patches_model[key] = ("model_as_lora", (weights_model[key],))
618
+ if weights_clip is not None:
619
+ patches_clip = {}
620
+ for key in weights_clip:
621
+ patches_clip[key] = ("model_as_lora", (weights_clip[key],))
622
+ hook.weights = patches_model
623
+ hook.weights_clip = patches_clip
624
+ hook.need_weight_init = False
625
+ return hook_group
626
+
627
+ def get_patch_weights_from_model(model: ModelPatcher, discard_model_sampling=True):
628
+ if model is None:
629
+ return None
630
+ patches_model: dict[str, torch.Tensor] = model.model.state_dict()
631
+ if discard_model_sampling:
632
+ # do not include ANY model_sampling components of the model that should act as a patch
633
+ for key in list(patches_model.keys()):
634
+ if key.startswith("model_sampling"):
635
+ patches_model.pop(key, None)
636
+ return patches_model
637
+
638
+ # NOTE: this function shows how to register weight hooks directly on the ModelPatchers
639
+ def load_hook_lora_for_models(model: ModelPatcher, clip: CLIP, lora: dict[str, torch.Tensor],
640
+ strength_model: float, strength_clip: float):
641
+ key_map = {}
642
+ if model is not None:
643
+ key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
644
+ if clip is not None:
645
+ key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
646
+
647
+ hook_group = HookGroup()
648
+ hook = WeightHook()
649
+ hook_group.add(hook)
650
+ loaded: dict[str] = comfy.lora.load_lora(lora, key_map)
651
+ if model is not None:
652
+ new_modelpatcher = model.clone()
653
+ k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model)
654
+ else:
655
+ k = ()
656
+ new_modelpatcher = None
657
+
658
+ if clip is not None:
659
+ new_clip = clip.clone()
660
+ k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip)
661
+ else:
662
+ k1 = ()
663
+ new_clip = None
664
+ k = set(k)
665
+ k1 = set(k1)
666
+ for x in loaded:
667
+ if (x not in k) and (x not in k1):
668
+ logging.warning(f"NOT LOADED {x}")
669
+ return (new_modelpatcher, new_clip, hook_group)
670
+
671
+ def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):
672
+ hooks_key = 'hooks'
673
+ # if hooks only exist in one dict, do what's needed so that it ends up in c_dict
674
+ if hooks_key not in values:
675
+ return
676
+ if hooks_key not in c_dict:
677
+ hooks_value = values.get(hooks_key, None)
678
+ if hooks_value is not None:
679
+ c_dict[hooks_key] = hooks_value
680
+ return
681
+ # otherwise, need to combine with minimum duplication via cache
682
+ hooks_tuple = (c_dict[hooks_key], values[hooks_key])
683
+ cached_hooks = cache.get(hooks_tuple, None)
684
+ if cached_hooks is None:
685
+ new_hooks = hooks_tuple[0].clone_and_combine(hooks_tuple[1])
686
+ cache[hooks_tuple] = new_hooks
687
+ c_dict[hooks_key] = new_hooks
688
+ else:
689
+ c_dict[hooks_key] = cache[hooks_tuple]
690
+
691
+ def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True,
692
+ cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
693
+ c = []
694
+ if cache is None:
695
+ cache = {}
696
+ for t in conditioning:
697
+ n = [t[0], t[1].copy()]
698
+ for k in values:
699
+ if append_hooks and k == 'hooks':
700
+ _combine_hooks_from_values(n[1], values, cache)
701
+ else:
702
+ n[1][k] = values[k]
703
+ c.append(n)
704
+
705
+ return c
706
+
707
+ def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True, cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
708
+ if hooks is None:
709
+ return cond
710
+ return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks, cache=cache)
711
+
712
+ def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]):
713
+ if timestep_range is None:
714
+ return cond
715
+ return conditioning_set_values(cond, {"start_percent": timestep_range[0],
716
+ "end_percent": timestep_range[1]})
717
+
718
+ def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float):
719
+ if mask is None:
720
+ return cond
721
+ set_area_to_bounds = False
722
+ if set_cond_area != 'default':
723
+ set_area_to_bounds = True
724
+ if len(mask.shape) < 3:
725
+ mask = mask.unsqueeze(0)
726
+ return conditioning_set_values(cond, {'mask': mask,
727
+ 'set_area_to_bounds': set_area_to_bounds,
728
+ 'mask_strength': strength})
729
+
730
+ def combine_conditioning(conds: list):
731
+ combined_conds = []
732
+ for cond in conds:
733
+ combined_conds.extend(cond)
734
+ return combined_conds
735
+
736
+ def combine_with_new_conds(conds: list, new_conds: list):
737
+ combined_conds = []
738
+ for c, new_c in zip(conds, new_conds):
739
+ combined_conds.append(combine_conditioning([c, new_c]))
740
+ return combined_conds
741
+
742
+ def set_conds_props(conds: list, strength: float, set_cond_area: str,
743
+ mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
744
+ final_conds = []
745
+ cache = {}
746
+ for c in conds:
747
+ # first, apply lora_hook to conditioning, if provided
748
+ c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks, cache=cache)
749
+ # next, apply mask to conditioning
750
+ c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area)
751
+ # apply timesteps, if present
752
+ c = set_timesteps_for_conditioning(cond=c, timestep_range=timesteps_range)
753
+ # finally, apply mask to conditioning and store
754
+ final_conds.append(c)
755
+ return final_conds
756
+
757
+ def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default",
758
+ mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
759
+ combined_conds = []
760
+ cache = {}
761
+ for c, masked_c in zip(conds, new_conds):
762
+ # first, apply lora_hook to new conditioning, if provided
763
+ masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks, cache=cache)
764
+ # next, apply mask to new conditioning, if provided
765
+ masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength)
766
+ # apply timesteps, if present
767
+ masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=timesteps_range)
768
+ # finally, combine with existing conditioning and store
769
+ combined_conds.append(combine_conditioning([c, masked_c]))
770
+ return combined_conds
771
+
772
+ def set_default_conds_and_combine(conds: list, new_conds: list,
773
+ hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
774
+ combined_conds = []
775
+ cache = {}
776
+ for c, new_c in zip(conds, new_conds):
777
+ # first, apply lora_hook to new conditioning, if provided
778
+ new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks, cache=cache)
779
+ # next, add default_cond key to cond so that during sampling, it can be identified
780
+ new_c = conditioning_set_values(new_c, {'default': True})
781
+ # apply timesteps, if present
782
+ new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=timesteps_range)
783
+ # finally, combine with existing conditioning and store
784
+ combined_conds.append(combine_conditioning([c, new_c]))
785
+ return combined_conds
comfy/k_diffusion/deis.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #Taken from: https://github.com/zju-pi/diff-sampler/blob/main/gits-main/solver_utils.py
2
+ #under Apache 2 license
3
+ import torch
4
+ import numpy as np
5
+
6
+ # A pytorch reimplementation of DEIS (https://github.com/qsh-zh/deis).
7
+ #############################
8
+ ### Utils for DEIS solver ###
9
+ #############################
10
+ #----------------------------------------------------------------------------
11
+ # Transfer from the input time (sigma) used in EDM to that (t) used in DEIS.
12
+
13
+ def edm2t(edm_steps, epsilon_s=1e-3, sigma_min=0.002, sigma_max=80):
14
+ vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d
15
+ vp_beta_d = 2 * (np.log(torch.tensor(sigma_min).cpu() ** 2 + 1) / epsilon_s - np.log(torch.tensor(sigma_max).cpu() ** 2 + 1)) / (epsilon_s - 1)
16
+ vp_beta_min = np.log(torch.tensor(sigma_max).cpu() ** 2 + 1) - 0.5 * vp_beta_d
17
+ t_steps = vp_sigma_inv(vp_beta_d.clone().detach().cpu(), vp_beta_min.clone().detach().cpu())(edm_steps.clone().detach().cpu())
18
+ return t_steps, vp_beta_min, vp_beta_d + vp_beta_min
19
+
20
+ #----------------------------------------------------------------------------
21
+
22
+ def cal_poly(prev_t, j, taus):
23
+ poly = 1
24
+ for k in range(prev_t.shape[0]):
25
+ if k == j:
26
+ continue
27
+ poly *= (taus - prev_t[k]) / (prev_t[j] - prev_t[k])
28
+ return poly
29
+
30
+ #----------------------------------------------------------------------------
31
+ # Transfer from t to alpha_t.
32
+
33
+ def t2alpha_fn(beta_0, beta_1, t):
34
+ return torch.exp(-0.5 * t ** 2 * (beta_1 - beta_0) - t * beta_0)
35
+
36
+ #----------------------------------------------------------------------------
37
+
38
+ def cal_intergrand(beta_0, beta_1, taus):
39
+ with torch.inference_mode(mode=False):
40
+ taus = taus.clone()
41
+ beta_0 = beta_0.clone()
42
+ beta_1 = beta_1.clone()
43
+ with torch.enable_grad():
44
+ taus.requires_grad_(True)
45
+ alpha = t2alpha_fn(beta_0, beta_1, taus)
46
+ log_alpha = alpha.log()
47
+ log_alpha.sum().backward()
48
+ d_log_alpha_dtau = taus.grad
49
+ integrand = -0.5 * d_log_alpha_dtau / torch.sqrt(alpha * (1 - alpha))
50
+ return integrand
51
+
52
+ #----------------------------------------------------------------------------
53
+
54
+ def get_deis_coeff_list(t_steps, max_order, N=10000, deis_mode='tab'):
55
+ """
56
+ Get the coefficient list for DEIS sampling.
57
+
58
+ Args:
59
+ t_steps: A pytorch tensor. The time steps for sampling.
60
+ max_order: A `int`. Maximum order of the solver. 1 <= max_order <= 4
61
+ N: A `int`. Use how many points to perform the numerical integration when deis_mode=='tab'.
62
+ deis_mode: A `str`. Select between 'tab' and 'rhoab'. Type of DEIS.
63
+ Returns:
64
+ A pytorch tensor. A batch of generated samples or sampling trajectories if return_inters=True.
65
+ """
66
+ if deis_mode == 'tab':
67
+ t_steps, beta_0, beta_1 = edm2t(t_steps)
68
+ C = []
69
+ for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
70
+ order = min(i+1, max_order)
71
+ if order == 1:
72
+ C.append([])
73
+ else:
74
+ taus = torch.linspace(t_cur, t_next, N) # split the interval for integral appximation
75
+ dtau = (t_next - t_cur) / N
76
+ prev_t = t_steps[[i - k for k in range(order)]]
77
+ coeff_temp = []
78
+ integrand = cal_intergrand(beta_0, beta_1, taus)
79
+ for j in range(order):
80
+ poly = cal_poly(prev_t, j, taus)
81
+ coeff_temp.append(torch.sum(integrand * poly) * dtau)
82
+ C.append(coeff_temp)
83
+
84
+ elif deis_mode == 'rhoab':
85
+ # Analytical solution, second order
86
+ def get_def_intergral_2(a, b, start, end, c):
87
+ coeff = (end**3 - start**3) / 3 - (end**2 - start**2) * (a + b) / 2 + (end - start) * a * b
88
+ return coeff / ((c - a) * (c - b))
89
+
90
+ # Analytical solution, third order
91
+ def get_def_intergral_3(a, b, c, start, end, d):
92
+ coeff = (end**4 - start**4) / 4 - (end**3 - start**3) * (a + b + c) / 3 \
93
+ + (end**2 - start**2) * (a*b + a*c + b*c) / 2 - (end - start) * a * b * c
94
+ return coeff / ((d - a) * (d - b) * (d - c))
95
+
96
+ C = []
97
+ for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
98
+ order = min(i, max_order)
99
+ if order == 0:
100
+ C.append([])
101
+ else:
102
+ prev_t = t_steps[[i - k for k in range(order+1)]]
103
+ if order == 1:
104
+ coeff_cur = ((t_next - prev_t[1])**2 - (t_cur - prev_t[1])**2) / (2 * (t_cur - prev_t[1]))
105
+ coeff_prev1 = (t_next - t_cur)**2 / (2 * (prev_t[1] - t_cur))
106
+ coeff_temp = [coeff_cur, coeff_prev1]
107
+ elif order == 2:
108
+ coeff_cur = get_def_intergral_2(prev_t[1], prev_t[2], t_cur, t_next, t_cur)
109
+ coeff_prev1 = get_def_intergral_2(t_cur, prev_t[2], t_cur, t_next, prev_t[1])
110
+ coeff_prev2 = get_def_intergral_2(t_cur, prev_t[1], t_cur, t_next, prev_t[2])
111
+ coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2]
112
+ elif order == 3:
113
+ coeff_cur = get_def_intergral_3(prev_t[1], prev_t[2], prev_t[3], t_cur, t_next, t_cur)
114
+ coeff_prev1 = get_def_intergral_3(t_cur, prev_t[2], prev_t[3], t_cur, t_next, prev_t[1])
115
+ coeff_prev2 = get_def_intergral_3(t_cur, prev_t[1], prev_t[3], t_cur, t_next, prev_t[2])
116
+ coeff_prev3 = get_def_intergral_3(t_cur, prev_t[1], prev_t[2], t_cur, t_next, prev_t[3])
117
+ coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3]
118
+ C.append(coeff_temp)
119
+ return C
120
+
comfy/k_diffusion/sampling.py ADDED
@@ -0,0 +1,1338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ from scipy import integrate
4
+ import torch
5
+ from torch import nn
6
+ import torchsde
7
+ from tqdm.auto import trange, tqdm
8
+
9
+ from . import utils
10
+ from . import deis
11
+ import comfy.model_patcher
12
+ import comfy.model_sampling
13
+
14
+ def append_zero(x):
15
+ return torch.cat([x, x.new_zeros([1])])
16
+
17
+
18
+ def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
19
+ """Constructs the noise schedule of Karras et al. (2022)."""
20
+ ramp = torch.linspace(0, 1, n, device=device)
21
+ min_inv_rho = sigma_min ** (1 / rho)
22
+ max_inv_rho = sigma_max ** (1 / rho)
23
+ sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
24
+ return append_zero(sigmas).to(device)
25
+
26
+
27
+ def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
28
+ """Constructs an exponential noise schedule."""
29
+ sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
30
+ return append_zero(sigmas)
31
+
32
+
33
+ def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
34
+ """Constructs an polynomial in log sigma noise schedule."""
35
+ ramp = torch.linspace(1, 0, n, device=device) ** rho
36
+ sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
37
+ return append_zero(sigmas)
38
+
39
+
40
+ def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
41
+ """Constructs a continuous VP noise schedule."""
42
+ t = torch.linspace(1, eps_s, n, device=device)
43
+ sigmas = torch.sqrt(torch.special.expm1(beta_d * t ** 2 / 2 + beta_min * t))
44
+ return append_zero(sigmas)
45
+
46
+
47
+ def get_sigmas_laplace(n, sigma_min, sigma_max, mu=0., beta=0.5, device='cpu'):
48
+ """Constructs the noise schedule proposed by Tiankai et al. (2024). """
49
+ epsilon = 1e-5 # avoid log(0)
50
+ x = torch.linspace(0, 1, n, device=device)
51
+ clamp = lambda x: torch.clamp(x, min=sigma_min, max=sigma_max)
52
+ lmb = mu - beta * torch.sign(0.5-x) * torch.log(1 - 2 * torch.abs(0.5-x) + epsilon)
53
+ sigmas = clamp(torch.exp(lmb))
54
+ return sigmas
55
+
56
+
57
+
58
+ def to_d(x, sigma, denoised):
59
+ """Converts a denoiser output to a Karras ODE derivative."""
60
+ return (x - denoised) / utils.append_dims(sigma, x.ndim)
61
+
62
+
63
+ def get_ancestral_step(sigma_from, sigma_to, eta=1.):
64
+ """Calculates the noise level (sigma_down) to step down to and the amount
65
+ of noise to add (sigma_up) when doing an ancestral sampling step."""
66
+ if not eta:
67
+ return sigma_to, 0.
68
+ sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
69
+ sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
70
+ return sigma_down, sigma_up
71
+
72
+
73
+ def default_noise_sampler(x, seed=None):
74
+ if seed is not None:
75
+ generator = torch.Generator(device=x.device)
76
+ generator.manual_seed(seed)
77
+ else:
78
+ generator = None
79
+
80
+ return lambda sigma, sigma_next: torch.randn(x.size(), dtype=x.dtype, layout=x.layout, device=x.device, generator=generator)
81
+
82
+
83
+ class BatchedBrownianTree:
84
+ """A wrapper around torchsde.BrownianTree that enables batches of entropy."""
85
+
86
+ def __init__(self, x, t0, t1, seed=None, **kwargs):
87
+ self.cpu_tree = True
88
+ if "cpu" in kwargs:
89
+ self.cpu_tree = kwargs.pop("cpu")
90
+ t0, t1, self.sign = self.sort(t0, t1)
91
+ w0 = kwargs.get('w0', torch.zeros_like(x))
92
+ if seed is None:
93
+ seed = torch.randint(0, 2 ** 63 - 1, []).item()
94
+ self.batched = True
95
+ try:
96
+ assert len(seed) == x.shape[0]
97
+ w0 = w0[0]
98
+ except TypeError:
99
+ seed = [seed]
100
+ self.batched = False
101
+ if self.cpu_tree:
102
+ self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
103
+ else:
104
+ self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
105
+
106
+ @staticmethod
107
+ def sort(a, b):
108
+ return (a, b, 1) if a < b else (b, a, -1)
109
+
110
+ def __call__(self, t0, t1):
111
+ t0, t1, sign = self.sort(t0, t1)
112
+ if self.cpu_tree:
113
+ w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
114
+ else:
115
+ w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
116
+
117
+ return w if self.batched else w[0]
118
+
119
+
120
+ class BrownianTreeNoiseSampler:
121
+ """A noise sampler backed by a torchsde.BrownianTree.
122
+
123
+ Args:
124
+ x (Tensor): The tensor whose shape, device and dtype to use to generate
125
+ random samples.
126
+ sigma_min (float): The low end of the valid interval.
127
+ sigma_max (float): The high end of the valid interval.
128
+ seed (int or List[int]): The random seed. If a list of seeds is
129
+ supplied instead of a single integer, then the noise sampler will
130
+ use one BrownianTree per batch item, each with its own seed.
131
+ transform (callable): A function that maps sigma to the sampler's
132
+ internal timestep.
133
+ """
134
+
135
+ def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
136
+ self.transform = transform
137
+ t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
138
+ self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
139
+
140
+ def __call__(self, sigma, sigma_next):
141
+ t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
142
+ return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
143
+
144
+
145
+ @torch.no_grad()
146
+ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
147
+ """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
148
+ extra_args = {} if extra_args is None else extra_args
149
+ s_in = x.new_ones([x.shape[0]])
150
+ for i in trange(len(sigmas) - 1, disable=disable):
151
+ if s_churn > 0:
152
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
153
+ sigma_hat = sigmas[i] * (gamma + 1)
154
+ else:
155
+ gamma = 0
156
+ sigma_hat = sigmas[i]
157
+
158
+ if gamma > 0:
159
+ eps = torch.randn_like(x) * s_noise
160
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
161
+ denoised = model(x, sigma_hat * s_in, **extra_args)
162
+ d = to_d(x, sigma_hat, denoised)
163
+ if callback is not None:
164
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
165
+ dt = sigmas[i + 1] - sigma_hat
166
+ # Euler method
167
+ x = x + d * dt
168
+ return x
169
+
170
+
171
+ @torch.no_grad()
172
+ def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
173
+ if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
174
+ return sample_euler_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
175
+ """Ancestral sampling with Euler method steps."""
176
+ extra_args = {} if extra_args is None else extra_args
177
+ seed = extra_args.get("seed", None)
178
+ noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
179
+ s_in = x.new_ones([x.shape[0]])
180
+ for i in trange(len(sigmas) - 1, disable=disable):
181
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
182
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
183
+ if callback is not None:
184
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
185
+
186
+ if sigma_down == 0:
187
+ x = denoised
188
+ else:
189
+ d = to_d(x, sigmas[i], denoised)
190
+ # Euler method
191
+ dt = sigma_down - sigmas[i]
192
+ x = x + d * dt + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
193
+ return x
194
+
195
+ @torch.no_grad()
196
+ def sample_euler_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1., noise_sampler=None):
197
+ """Ancestral sampling with Euler method steps."""
198
+ extra_args = {} if extra_args is None else extra_args
199
+ seed = extra_args.get("seed", None)
200
+ noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
201
+ s_in = x.new_ones([x.shape[0]])
202
+ for i in trange(len(sigmas) - 1, disable=disable):
203
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
204
+ # sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
205
+ if callback is not None:
206
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
207
+
208
+ if sigmas[i + 1] == 0:
209
+ x = denoised
210
+ else:
211
+ downstep_ratio = 1 + (sigmas[i + 1] / sigmas[i] - 1) * eta
212
+ sigma_down = sigmas[i + 1] * downstep_ratio
213
+ alpha_ip1 = 1 - sigmas[i + 1]
214
+ alpha_down = 1 - sigma_down
215
+ renoise_coeff = (sigmas[i + 1]**2 - sigma_down**2 * alpha_ip1**2 / alpha_down**2)**0.5
216
+ # Euler method
217
+ sigma_down_i_ratio = sigma_down / sigmas[i]
218
+ x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * denoised
219
+ if eta > 0:
220
+ x = (alpha_ip1 / alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
221
+ return x
222
+
223
+ @torch.no_grad()
224
+ def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
225
+ """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
226
+ extra_args = {} if extra_args is None else extra_args
227
+ s_in = x.new_ones([x.shape[0]])
228
+ for i in trange(len(sigmas) - 1, disable=disable):
229
+ if s_churn > 0:
230
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
231
+ sigma_hat = sigmas[i] * (gamma + 1)
232
+ else:
233
+ gamma = 0
234
+ sigma_hat = sigmas[i]
235
+
236
+ sigma_hat = sigmas[i] * (gamma + 1)
237
+ if gamma > 0:
238
+ eps = torch.randn_like(x) * s_noise
239
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
240
+ denoised = model(x, sigma_hat * s_in, **extra_args)
241
+ d = to_d(x, sigma_hat, denoised)
242
+ if callback is not None:
243
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
244
+ dt = sigmas[i + 1] - sigma_hat
245
+ if sigmas[i + 1] == 0:
246
+ # Euler method
247
+ x = x + d * dt
248
+ else:
249
+ # Heun's method
250
+ x_2 = x + d * dt
251
+ denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
252
+ d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
253
+ d_prime = (d + d_2) / 2
254
+ x = x + d_prime * dt
255
+ return x
256
+
257
+
258
+ @torch.no_grad()
259
+ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
260
+ """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
261
+ extra_args = {} if extra_args is None else extra_args
262
+ s_in = x.new_ones([x.shape[0]])
263
+ for i in trange(len(sigmas) - 1, disable=disable):
264
+ if s_churn > 0:
265
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
266
+ sigma_hat = sigmas[i] * (gamma + 1)
267
+ else:
268
+ gamma = 0
269
+ sigma_hat = sigmas[i]
270
+
271
+ if gamma > 0:
272
+ eps = torch.randn_like(x) * s_noise
273
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
274
+ denoised = model(x, sigma_hat * s_in, **extra_args)
275
+ d = to_d(x, sigma_hat, denoised)
276
+ if callback is not None:
277
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
278
+ if sigmas[i + 1] == 0:
279
+ # Euler method
280
+ dt = sigmas[i + 1] - sigma_hat
281
+ x = x + d * dt
282
+ else:
283
+ # DPM-Solver-2
284
+ sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
285
+ dt_1 = sigma_mid - sigma_hat
286
+ dt_2 = sigmas[i + 1] - sigma_hat
287
+ x_2 = x + d * dt_1
288
+ denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
289
+ d_2 = to_d(x_2, sigma_mid, denoised_2)
290
+ x = x + d_2 * dt_2
291
+ return x
292
+
293
+
294
+ @torch.no_grad()
295
+ def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
296
+ if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
297
+ return sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
298
+
299
+ """Ancestral sampling with DPM-Solver second-order steps."""
300
+ extra_args = {} if extra_args is None else extra_args
301
+ seed = extra_args.get("seed", None)
302
+ noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
303
+ s_in = x.new_ones([x.shape[0]])
304
+ for i in trange(len(sigmas) - 1, disable=disable):
305
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
306
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
307
+ if callback is not None:
308
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
309
+ d = to_d(x, sigmas[i], denoised)
310
+ if sigma_down == 0:
311
+ # Euler method
312
+ dt = sigma_down - sigmas[i]
313
+ x = x + d * dt
314
+ else:
315
+ # DPM-Solver-2
316
+ sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
317
+ dt_1 = sigma_mid - sigmas[i]
318
+ dt_2 = sigma_down - sigmas[i]
319
+ x_2 = x + d * dt_1
320
+ denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
321
+ d_2 = to_d(x_2, sigma_mid, denoised_2)
322
+ x = x + d_2 * dt_2
323
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
324
+ return x
325
+
326
+ @torch.no_grad()
327
+ def sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
328
+ """Ancestral sampling with DPM-Solver second-order steps."""
329
+ extra_args = {} if extra_args is None else extra_args
330
+ seed = extra_args.get("seed", None)
331
+ noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
332
+ s_in = x.new_ones([x.shape[0]])
333
+ for i in trange(len(sigmas) - 1, disable=disable):
334
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
335
+ downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
336
+ sigma_down = sigmas[i+1] * downstep_ratio
337
+ alpha_ip1 = 1 - sigmas[i+1]
338
+ alpha_down = 1 - sigma_down
339
+ renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
340
+
341
+ if callback is not None:
342
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
343
+ d = to_d(x, sigmas[i], denoised)
344
+ if sigma_down == 0:
345
+ # Euler method
346
+ dt = sigma_down - sigmas[i]
347
+ x = x + d * dt
348
+ else:
349
+ # DPM-Solver-2
350
+ sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
351
+ dt_1 = sigma_mid - sigmas[i]
352
+ dt_2 = sigma_down - sigmas[i]
353
+ x_2 = x + d * dt_1
354
+ denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
355
+ d_2 = to_d(x_2, sigma_mid, denoised_2)
356
+ x = x + d_2 * dt_2
357
+ x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
358
+ return x
359
+
360
+ def linear_multistep_coeff(order, t, i, j):
361
+ if order - 1 > i:
362
+ raise ValueError(f'Order {order} too high for step {i}')
363
+ def fn(tau):
364
+ prod = 1.
365
+ for k in range(order):
366
+ if j == k:
367
+ continue
368
+ prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
369
+ return prod
370
+ return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
371
+
372
+
373
+ @torch.no_grad()
374
+ def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
375
+ extra_args = {} if extra_args is None else extra_args
376
+ s_in = x.new_ones([x.shape[0]])
377
+ sigmas_cpu = sigmas.detach().cpu().numpy()
378
+ ds = []
379
+ for i in trange(len(sigmas) - 1, disable=disable):
380
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
381
+ d = to_d(x, sigmas[i], denoised)
382
+ ds.append(d)
383
+ if len(ds) > order:
384
+ ds.pop(0)
385
+ if callback is not None:
386
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
387
+ cur_order = min(i + 1, order)
388
+ coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
389
+ x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
390
+ return x
391
+
392
+
393
+ class PIDStepSizeController:
394
+ """A PID controller for ODE adaptive step size control."""
395
+ def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
396
+ self.h = h
397
+ self.b1 = (pcoeff + icoeff + dcoeff) / order
398
+ self.b2 = -(pcoeff + 2 * dcoeff) / order
399
+ self.b3 = dcoeff / order
400
+ self.accept_safety = accept_safety
401
+ self.eps = eps
402
+ self.errs = []
403
+
404
+ def limiter(self, x):
405
+ return 1 + math.atan(x - 1)
406
+
407
+ def propose_step(self, error):
408
+ inv_error = 1 / (float(error) + self.eps)
409
+ if not self.errs:
410
+ self.errs = [inv_error, inv_error, inv_error]
411
+ self.errs[0] = inv_error
412
+ factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
413
+ factor = self.limiter(factor)
414
+ accept = factor >= self.accept_safety
415
+ if accept:
416
+ self.errs[2] = self.errs[1]
417
+ self.errs[1] = self.errs[0]
418
+ self.h *= factor
419
+ return accept
420
+
421
+
422
+ class DPMSolver(nn.Module):
423
+ """DPM-Solver. See https://arxiv.org/abs/2206.00927."""
424
+
425
+ def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
426
+ super().__init__()
427
+ self.model = model
428
+ self.extra_args = {} if extra_args is None else extra_args
429
+ self.eps_callback = eps_callback
430
+ self.info_callback = info_callback
431
+
432
+ def t(self, sigma):
433
+ return -sigma.log()
434
+
435
+ def sigma(self, t):
436
+ return t.neg().exp()
437
+
438
+ def eps(self, eps_cache, key, x, t, *args, **kwargs):
439
+ if key in eps_cache:
440
+ return eps_cache[key], eps_cache
441
+ sigma = self.sigma(t) * x.new_ones([x.shape[0]])
442
+ eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
443
+ if self.eps_callback is not None:
444
+ self.eps_callback()
445
+ return eps, {key: eps, **eps_cache}
446
+
447
+ def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
448
+ eps_cache = {} if eps_cache is None else eps_cache
449
+ h = t_next - t
450
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
451
+ x_1 = x - self.sigma(t_next) * h.expm1() * eps
452
+ return x_1, eps_cache
453
+
454
+ def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
455
+ eps_cache = {} if eps_cache is None else eps_cache
456
+ h = t_next - t
457
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
458
+ s1 = t + r1 * h
459
+ u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
460
+ eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
461
+ x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
462
+ return x_2, eps_cache
463
+
464
+ def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
465
+ eps_cache = {} if eps_cache is None else eps_cache
466
+ h = t_next - t
467
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
468
+ s1 = t + r1 * h
469
+ s2 = t + r2 * h
470
+ u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
471
+ eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
472
+ u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
473
+ eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
474
+ x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
475
+ return x_3, eps_cache
476
+
477
+ def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
478
+ noise_sampler = default_noise_sampler(x, seed=self.extra_args.get("seed", None)) if noise_sampler is None else noise_sampler
479
+ if not t_end > t_start and eta:
480
+ raise ValueError('eta must be 0 for reverse sampling')
481
+
482
+ m = math.floor(nfe / 3) + 1
483
+ ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
484
+
485
+ if nfe % 3 == 0:
486
+ orders = [3] * (m - 2) + [2, 1]
487
+ else:
488
+ orders = [3] * (m - 1) + [nfe % 3]
489
+
490
+ for i in range(len(orders)):
491
+ eps_cache = {}
492
+ t, t_next = ts[i], ts[i + 1]
493
+ if eta:
494
+ sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
495
+ t_next_ = torch.minimum(t_end, self.t(sd))
496
+ su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
497
+ else:
498
+ t_next_, su = t_next, 0.
499
+
500
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
501
+ denoised = x - self.sigma(t) * eps
502
+ if self.info_callback is not None:
503
+ self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
504
+
505
+ if orders[i] == 1:
506
+ x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
507
+ elif orders[i] == 2:
508
+ x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
509
+ else:
510
+ x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
511
+
512
+ x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
513
+
514
+ return x
515
+
516
+ def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
517
+ noise_sampler = default_noise_sampler(x, seed=self.extra_args.get("seed", None)) if noise_sampler is None else noise_sampler
518
+ if order not in {2, 3}:
519
+ raise ValueError('order should be 2 or 3')
520
+ forward = t_end > t_start
521
+ if not forward and eta:
522
+ raise ValueError('eta must be 0 for reverse sampling')
523
+ h_init = abs(h_init) * (1 if forward else -1)
524
+ atol = torch.tensor(atol)
525
+ rtol = torch.tensor(rtol)
526
+ s = t_start
527
+ x_prev = x
528
+ accept = True
529
+ pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
530
+ info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
531
+
532
+ while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
533
+ eps_cache = {}
534
+ t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
535
+ if eta:
536
+ sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
537
+ t_ = torch.minimum(t_end, self.t(sd))
538
+ su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
539
+ else:
540
+ t_, su = t, 0.
541
+
542
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
543
+ denoised = x - self.sigma(s) * eps
544
+
545
+ if order == 2:
546
+ x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
547
+ x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
548
+ else:
549
+ x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
550
+ x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
551
+ delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
552
+ error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
553
+ accept = pid.propose_step(error)
554
+ if accept:
555
+ x_prev = x_low
556
+ x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
557
+ s = t
558
+ info['n_accept'] += 1
559
+ else:
560
+ info['n_reject'] += 1
561
+ info['nfe'] += order
562
+ info['steps'] += 1
563
+
564
+ if self.info_callback is not None:
565
+ self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
566
+
567
+ return x, info
568
+
569
+
570
+ @torch.no_grad()
571
+ def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
572
+ """DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
573
+ if sigma_min <= 0 or sigma_max <= 0:
574
+ raise ValueError('sigma_min and sigma_max must not be 0')
575
+ with tqdm(total=n, disable=disable) as pbar:
576
+ dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
577
+ if callback is not None:
578
+ dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
579
+ return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
580
+
581
+
582
+ @torch.no_grad()
583
+ def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
584
+ """DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
585
+ if sigma_min <= 0 or sigma_max <= 0:
586
+ raise ValueError('sigma_min and sigma_max must not be 0')
587
+ with tqdm(disable=disable) as pbar:
588
+ dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
589
+ if callback is not None:
590
+ dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
591
+ x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
592
+ if return_info:
593
+ return x, info
594
+ return x
595
+
596
+
597
+ @torch.no_grad()
598
+ def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
599
+ if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
600
+ return sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
601
+
602
+ """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
603
+ extra_args = {} if extra_args is None else extra_args
604
+ seed = extra_args.get("seed", None)
605
+ noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
606
+ s_in = x.new_ones([x.shape[0]])
607
+ sigma_fn = lambda t: t.neg().exp()
608
+ t_fn = lambda sigma: sigma.log().neg()
609
+
610
+ for i in trange(len(sigmas) - 1, disable=disable):
611
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
612
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
613
+ if callback is not None:
614
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
615
+ if sigma_down == 0:
616
+ # Euler method
617
+ d = to_d(x, sigmas[i], denoised)
618
+ dt = sigma_down - sigmas[i]
619
+ x = x + d * dt
620
+ else:
621
+ # DPM-Solver++(2S)
622
+ t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
623
+ r = 1 / 2
624
+ h = t_next - t
625
+ s = t + r * h
626
+ x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
627
+ denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
628
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
629
+ # Noise addition
630
+ if sigmas[i + 1] > 0:
631
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
632
+ return x
633
+
634
+
635
+ @torch.no_grad()
636
+ def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
637
+ """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
638
+ extra_args = {} if extra_args is None else extra_args
639
+ seed = extra_args.get("seed", None)
640
+ noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
641
+ s_in = x.new_ones([x.shape[0]])
642
+ sigma_fn = lambda lbda: (lbda.exp() + 1) ** -1
643
+ lambda_fn = lambda sigma: ((1-sigma)/sigma).log()
644
+
645
+ # logged_x = x.unsqueeze(0)
646
+
647
+ for i in trange(len(sigmas) - 1, disable=disable):
648
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
649
+ downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
650
+ sigma_down = sigmas[i+1] * downstep_ratio
651
+ alpha_ip1 = 1 - sigmas[i+1]
652
+ alpha_down = 1 - sigma_down
653
+ renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
654
+ # sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
655
+ if callback is not None:
656
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
657
+ if sigmas[i + 1] == 0:
658
+ # Euler method
659
+ d = to_d(x, sigmas[i], denoised)
660
+ dt = sigma_down - sigmas[i]
661
+ x = x + d * dt
662
+ else:
663
+ # DPM-Solver++(2S)
664
+ if sigmas[i] == 1.0:
665
+ sigma_s = 0.9999
666
+ else:
667
+ t_i, t_down = lambda_fn(sigmas[i]), lambda_fn(sigma_down)
668
+ r = 1 / 2
669
+ h = t_down - t_i
670
+ s = t_i + r * h
671
+ sigma_s = sigma_fn(s)
672
+ # sigma_s = sigmas[i+1]
673
+ sigma_s_i_ratio = sigma_s / sigmas[i]
674
+ u = sigma_s_i_ratio * x + (1 - sigma_s_i_ratio) * denoised
675
+ D_i = model(u, sigma_s * s_in, **extra_args)
676
+ sigma_down_i_ratio = sigma_down / sigmas[i]
677
+ x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * D_i
678
+ # print("sigma_i", sigmas[i], "sigma_ip1", sigmas[i+1],"sigma_down", sigma_down, "sigma_down_i_ratio", sigma_down_i_ratio, "sigma_s_i_ratio", sigma_s_i_ratio, "renoise_coeff", renoise_coeff)
679
+ # Noise addition
680
+ if sigmas[i + 1] > 0 and eta > 0:
681
+ x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
682
+ # logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
683
+ return x
684
+
685
+ @torch.no_grad()
686
+ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
687
+ """DPM-Solver++ (stochastic)."""
688
+ if len(sigmas) <= 1:
689
+ return x
690
+
691
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
692
+ seed = extra_args.get("seed", None)
693
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
694
+ extra_args = {} if extra_args is None else extra_args
695
+ s_in = x.new_ones([x.shape[0]])
696
+ sigma_fn = lambda t: t.neg().exp()
697
+ t_fn = lambda sigma: sigma.log().neg()
698
+
699
+ for i in trange(len(sigmas) - 1, disable=disable):
700
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
701
+ if callback is not None:
702
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
703
+ if sigmas[i + 1] == 0:
704
+ # Euler method
705
+ d = to_d(x, sigmas[i], denoised)
706
+ dt = sigmas[i + 1] - sigmas[i]
707
+ x = x + d * dt
708
+ else:
709
+ # DPM-Solver++
710
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
711
+ h = t_next - t
712
+ s = t + h * r
713
+ fac = 1 / (2 * r)
714
+
715
+ # Step 1
716
+ sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
717
+ s_ = t_fn(sd)
718
+ x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
719
+ x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
720
+ denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
721
+
722
+ # Step 2
723
+ sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
724
+ t_next_ = t_fn(sd)
725
+ denoised_d = (1 - fac) * denoised + fac * denoised_2
726
+ x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
727
+ x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
728
+ return x
729
+
730
+
731
+ @torch.no_grad()
732
+ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
733
+ """DPM-Solver++(2M)."""
734
+ extra_args = {} if extra_args is None else extra_args
735
+ s_in = x.new_ones([x.shape[0]])
736
+ sigma_fn = lambda t: t.neg().exp()
737
+ t_fn = lambda sigma: sigma.log().neg()
738
+ old_denoised = None
739
+
740
+ for i in trange(len(sigmas) - 1, disable=disable):
741
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
742
+ if callback is not None:
743
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
744
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
745
+ h = t_next - t
746
+ if old_denoised is None or sigmas[i + 1] == 0:
747
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
748
+ else:
749
+ h_last = t - t_fn(sigmas[i - 1])
750
+ r = h_last / h
751
+ denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
752
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
753
+ old_denoised = denoised
754
+ return x
755
+
756
+ @torch.no_grad()
757
+ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
758
+ """DPM-Solver++(2M) SDE."""
759
+ if len(sigmas) <= 1:
760
+ return x
761
+
762
+ if solver_type not in {'heun', 'midpoint'}:
763
+ raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
764
+
765
+ seed = extra_args.get("seed", None)
766
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
767
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
768
+ extra_args = {} if extra_args is None else extra_args
769
+ s_in = x.new_ones([x.shape[0]])
770
+
771
+ old_denoised = None
772
+ h_last = None
773
+ h = None
774
+
775
+ for i in trange(len(sigmas) - 1, disable=disable):
776
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
777
+ if callback is not None:
778
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
779
+ if sigmas[i + 1] == 0:
780
+ # Denoising step
781
+ x = denoised
782
+ else:
783
+ # DPM-Solver++(2M) SDE
784
+ t, s = -sigmas[i].log(), -sigmas[i + 1].log()
785
+ h = s - t
786
+ eta_h = eta * h
787
+
788
+ x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
789
+
790
+ if old_denoised is not None:
791
+ r = h_last / h
792
+ if solver_type == 'heun':
793
+ x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
794
+ elif solver_type == 'midpoint':
795
+ x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
796
+
797
+ if eta:
798
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
799
+
800
+ old_denoised = denoised
801
+ h_last = h
802
+ return x
803
+
804
+ @torch.no_grad()
805
+ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
806
+ """DPM-Solver++(3M) SDE."""
807
+
808
+ if len(sigmas) <= 1:
809
+ return x
810
+
811
+ seed = extra_args.get("seed", None)
812
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
813
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
814
+ extra_args = {} if extra_args is None else extra_args
815
+ s_in = x.new_ones([x.shape[0]])
816
+
817
+ denoised_1, denoised_2 = None, None
818
+ h, h_1, h_2 = None, None, None
819
+
820
+ for i in trange(len(sigmas) - 1, disable=disable):
821
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
822
+ if callback is not None:
823
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
824
+ if sigmas[i + 1] == 0:
825
+ # Denoising step
826
+ x = denoised
827
+ else:
828
+ t, s = -sigmas[i].log(), -sigmas[i + 1].log()
829
+ h = s - t
830
+ h_eta = h * (eta + 1)
831
+
832
+ x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
833
+
834
+ if h_2 is not None:
835
+ r0 = h_1 / h
836
+ r1 = h_2 / h
837
+ d1_0 = (denoised - denoised_1) / r0
838
+ d1_1 = (denoised_1 - denoised_2) / r1
839
+ d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
840
+ d2 = (d1_0 - d1_1) / (r0 + r1)
841
+ phi_2 = h_eta.neg().expm1() / h_eta + 1
842
+ phi_3 = phi_2 / h_eta - 0.5
843
+ x = x + phi_2 * d1 - phi_3 * d2
844
+ elif h_1 is not None:
845
+ r = h_1 / h
846
+ d = (denoised - denoised_1) / r
847
+ phi_2 = h_eta.neg().expm1() / h_eta + 1
848
+ x = x + phi_2 * d
849
+
850
+ if eta:
851
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
852
+
853
+ denoised_1, denoised_2 = denoised, denoised_1
854
+ h_1, h_2 = h, h_1
855
+ return x
856
+
857
+ @torch.no_grad()
858
+ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
859
+ if len(sigmas) <= 1:
860
+ return x
861
+
862
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
863
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
864
+ return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
865
+
866
+ @torch.no_grad()
867
+ def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
868
+ if len(sigmas) <= 1:
869
+ return x
870
+
871
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
872
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
873
+ return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
874
+
875
+ @torch.no_grad()
876
+ def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
877
+ if len(sigmas) <= 1:
878
+ return x
879
+
880
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
881
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
882
+ return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
883
+
884
+
885
+ def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
886
+ alpha_cumprod = 1 / ((sigma * sigma) + 1)
887
+ alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1)
888
+ alpha = (alpha_cumprod / alpha_cumprod_prev)
889
+
890
+ mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt())
891
+ if sigma_prev > 0:
892
+ mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev)
893
+ return mu
894
+
895
+ def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
896
+ extra_args = {} if extra_args is None else extra_args
897
+ seed = extra_args.get("seed", None)
898
+ noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
899
+ s_in = x.new_ones([x.shape[0]])
900
+
901
+ for i in trange(len(sigmas) - 1, disable=disable):
902
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
903
+ if callback is not None:
904
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
905
+ x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler)
906
+ if sigmas[i + 1] != 0:
907
+ x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0)
908
+ return x
909
+
910
+
911
+ @torch.no_grad()
912
+ def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
913
+ return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
914
+
915
+ @torch.no_grad()
916
+ def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
917
+ extra_args = {} if extra_args is None else extra_args
918
+ seed = extra_args.get("seed", None)
919
+ noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
920
+ s_in = x.new_ones([x.shape[0]])
921
+ for i in trange(len(sigmas) - 1, disable=disable):
922
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
923
+ if callback is not None:
924
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
925
+
926
+ x = denoised
927
+ if sigmas[i + 1] > 0:
928
+ x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x)
929
+ return x
930
+
931
+
932
+
933
+ @torch.no_grad()
934
+ def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
935
+ # From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
936
+ extra_args = {} if extra_args is None else extra_args
937
+ s_in = x.new_ones([x.shape[0]])
938
+ s_end = sigmas[-1]
939
+ for i in trange(len(sigmas) - 1, disable=disable):
940
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
941
+ eps = torch.randn_like(x) * s_noise
942
+ sigma_hat = sigmas[i] * (gamma + 1)
943
+ if gamma > 0:
944
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
945
+ denoised = model(x, sigma_hat * s_in, **extra_args)
946
+ d = to_d(x, sigma_hat, denoised)
947
+ if callback is not None:
948
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
949
+ dt = sigmas[i + 1] - sigma_hat
950
+ if sigmas[i + 1] == s_end:
951
+ # Euler method
952
+ x = x + d * dt
953
+ elif sigmas[i + 2] == s_end:
954
+
955
+ # Heun's method
956
+ x_2 = x + d * dt
957
+ denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
958
+ d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
959
+
960
+ w = 2 * sigmas[0]
961
+ w2 = sigmas[i+1]/w
962
+ w1 = 1 - w2
963
+
964
+ d_prime = d * w1 + d_2 * w2
965
+
966
+
967
+ x = x + d_prime * dt
968
+
969
+ else:
970
+ # Heun++
971
+ x_2 = x + d * dt
972
+ denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
973
+ d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
974
+ dt_2 = sigmas[i + 2] - sigmas[i + 1]
975
+
976
+ x_3 = x_2 + d_2 * dt_2
977
+ denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
978
+ d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
979
+
980
+ w = 3 * sigmas[0]
981
+ w2 = sigmas[i + 1] / w
982
+ w3 = sigmas[i + 2] / w
983
+ w1 = 1 - w2 - w3
984
+
985
+ d_prime = w1 * d + w2 * d_2 + w3 * d_3
986
+ x = x + d_prime * dt
987
+ return x
988
+
989
+
990
+ #From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
991
+ #under Apache 2 license
992
+ def sample_ipndm(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=4):
993
+ extra_args = {} if extra_args is None else extra_args
994
+ s_in = x.new_ones([x.shape[0]])
995
+
996
+ x_next = x
997
+
998
+ buffer_model = []
999
+ for i in trange(len(sigmas) - 1, disable=disable):
1000
+ t_cur = sigmas[i]
1001
+ t_next = sigmas[i + 1]
1002
+
1003
+ x_cur = x_next
1004
+
1005
+ denoised = model(x_cur, t_cur * s_in, **extra_args)
1006
+ if callback is not None:
1007
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1008
+
1009
+ d_cur = (x_cur - denoised) / t_cur
1010
+
1011
+ order = min(max_order, i+1)
1012
+ if order == 1: # First Euler step.
1013
+ x_next = x_cur + (t_next - t_cur) * d_cur
1014
+ elif order == 2: # Use one history point.
1015
+ x_next = x_cur + (t_next - t_cur) * (3 * d_cur - buffer_model[-1]) / 2
1016
+ elif order == 3: # Use two history points.
1017
+ x_next = x_cur + (t_next - t_cur) * (23 * d_cur - 16 * buffer_model[-1] + 5 * buffer_model[-2]) / 12
1018
+ elif order == 4: # Use three history points.
1019
+ x_next = x_cur + (t_next - t_cur) * (55 * d_cur - 59 * buffer_model[-1] + 37 * buffer_model[-2] - 9 * buffer_model[-3]) / 24
1020
+
1021
+ if len(buffer_model) == max_order - 1:
1022
+ for k in range(max_order - 2):
1023
+ buffer_model[k] = buffer_model[k+1]
1024
+ buffer_model[-1] = d_cur
1025
+ else:
1026
+ buffer_model.append(d_cur)
1027
+
1028
+ return x_next
1029
+
1030
+ #From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
1031
+ #under Apache 2 license
1032
+ def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=4):
1033
+ extra_args = {} if extra_args is None else extra_args
1034
+ s_in = x.new_ones([x.shape[0]])
1035
+
1036
+ x_next = x
1037
+ t_steps = sigmas
1038
+
1039
+ buffer_model = []
1040
+ for i in trange(len(sigmas) - 1, disable=disable):
1041
+ t_cur = sigmas[i]
1042
+ t_next = sigmas[i + 1]
1043
+
1044
+ x_cur = x_next
1045
+
1046
+ denoised = model(x_cur, t_cur * s_in, **extra_args)
1047
+ if callback is not None:
1048
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1049
+
1050
+ d_cur = (x_cur - denoised) / t_cur
1051
+
1052
+ order = min(max_order, i+1)
1053
+ if order == 1: # First Euler step.
1054
+ x_next = x_cur + (t_next - t_cur) * d_cur
1055
+ elif order == 2: # Use one history point.
1056
+ h_n = (t_next - t_cur)
1057
+ h_n_1 = (t_cur - t_steps[i-1])
1058
+ coeff1 = (2 + (h_n / h_n_1)) / 2
1059
+ coeff2 = -(h_n / h_n_1) / 2
1060
+ x_next = x_cur + (t_next - t_cur) * (coeff1 * d_cur + coeff2 * buffer_model[-1])
1061
+ elif order == 3: # Use two history points.
1062
+ h_n = (t_next - t_cur)
1063
+ h_n_1 = (t_cur - t_steps[i-1])
1064
+ h_n_2 = (t_steps[i-1] - t_steps[i-2])
1065
+ temp = (1 - h_n / (3 * (h_n + h_n_1)) * (h_n * (h_n + h_n_1)) / (h_n_1 * (h_n_1 + h_n_2))) / 2
1066
+ coeff1 = (2 + (h_n / h_n_1)) / 2 + temp
1067
+ coeff2 = -(h_n / h_n_1) / 2 - (1 + h_n_1 / h_n_2) * temp
1068
+ coeff3 = temp * h_n_1 / h_n_2
1069
+ x_next = x_cur + (t_next - t_cur) * (coeff1 * d_cur + coeff2 * buffer_model[-1] + coeff3 * buffer_model[-2])
1070
+ elif order == 4: # Use three history points.
1071
+ h_n = (t_next - t_cur)
1072
+ h_n_1 = (t_cur - t_steps[i-1])
1073
+ h_n_2 = (t_steps[i-1] - t_steps[i-2])
1074
+ h_n_3 = (t_steps[i-2] - t_steps[i-3])
1075
+ temp1 = (1 - h_n / (3 * (h_n + h_n_1)) * (h_n * (h_n + h_n_1)) / (h_n_1 * (h_n_1 + h_n_2))) / 2
1076
+ temp2 = ((1 - h_n / (3 * (h_n + h_n_1))) / 2 + (1 - h_n / (2 * (h_n + h_n_1))) * h_n / (6 * (h_n + h_n_1 + h_n_2))) \
1077
+ * (h_n * (h_n + h_n_1) * (h_n + h_n_1 + h_n_2)) / (h_n_1 * (h_n_1 + h_n_2) * (h_n_1 + h_n_2 + h_n_3))
1078
+ coeff1 = (2 + (h_n / h_n_1)) / 2 + temp1 + temp2
1079
+ coeff2 = -(h_n / h_n_1) / 2 - (1 + h_n_1 / h_n_2) * temp1 - (1 + (h_n_1 / h_n_2) + (h_n_1 * (h_n_1 + h_n_2) / (h_n_2 * (h_n_2 + h_n_3)))) * temp2
1080
+ coeff3 = temp1 * h_n_1 / h_n_2 + ((h_n_1 / h_n_2) + (h_n_1 * (h_n_1 + h_n_2) / (h_n_2 * (h_n_2 + h_n_3))) * (1 + h_n_2 / h_n_3)) * temp2
1081
+ coeff4 = -temp2 * (h_n_1 * (h_n_1 + h_n_2) / (h_n_2 * (h_n_2 + h_n_3))) * h_n_1 / h_n_2
1082
+ x_next = x_cur + (t_next - t_cur) * (coeff1 * d_cur + coeff2 * buffer_model[-1] + coeff3 * buffer_model[-2] + coeff4 * buffer_model[-3])
1083
+
1084
+ if len(buffer_model) == max_order - 1:
1085
+ for k in range(max_order - 2):
1086
+ buffer_model[k] = buffer_model[k+1]
1087
+ buffer_model[-1] = d_cur.detach()
1088
+ else:
1089
+ buffer_model.append(d_cur.detach())
1090
+
1091
+ return x_next
1092
+
1093
+ #From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
1094
+ #under Apache 2 license
1095
+ @torch.no_grad()
1096
+ def sample_deis(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=3, deis_mode='tab'):
1097
+ extra_args = {} if extra_args is None else extra_args
1098
+ s_in = x.new_ones([x.shape[0]])
1099
+
1100
+ x_next = x
1101
+ t_steps = sigmas
1102
+
1103
+ coeff_list = deis.get_deis_coeff_list(t_steps, max_order, deis_mode=deis_mode)
1104
+
1105
+ buffer_model = []
1106
+ for i in trange(len(sigmas) - 1, disable=disable):
1107
+ t_cur = sigmas[i]
1108
+ t_next = sigmas[i + 1]
1109
+
1110
+ x_cur = x_next
1111
+
1112
+ denoised = model(x_cur, t_cur * s_in, **extra_args)
1113
+ if callback is not None:
1114
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1115
+
1116
+ d_cur = (x_cur - denoised) / t_cur
1117
+
1118
+ order = min(max_order, i+1)
1119
+ if t_next <= 0:
1120
+ order = 1
1121
+
1122
+ if order == 1: # First Euler step.
1123
+ x_next = x_cur + (t_next - t_cur) * d_cur
1124
+ elif order == 2: # Use one history point.
1125
+ coeff_cur, coeff_prev1 = coeff_list[i]
1126
+ x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1]
1127
+ elif order == 3: # Use two history points.
1128
+ coeff_cur, coeff_prev1, coeff_prev2 = coeff_list[i]
1129
+ x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1] + coeff_prev2 * buffer_model[-2]
1130
+ elif order == 4: # Use three history points.
1131
+ coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3 = coeff_list[i]
1132
+ x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1] + coeff_prev2 * buffer_model[-2] + coeff_prev3 * buffer_model[-3]
1133
+
1134
+ if len(buffer_model) == max_order - 1:
1135
+ for k in range(max_order - 2):
1136
+ buffer_model[k] = buffer_model[k+1]
1137
+ buffer_model[-1] = d_cur.detach()
1138
+ else:
1139
+ buffer_model.append(d_cur.detach())
1140
+
1141
+ return x_next
1142
+
1143
+ @torch.no_grad()
1144
+ def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
1145
+ extra_args = {} if extra_args is None else extra_args
1146
+
1147
+ temp = [0]
1148
+ def post_cfg_function(args):
1149
+ temp[0] = args["uncond_denoised"]
1150
+ return args["denoised"]
1151
+
1152
+ model_options = extra_args.get("model_options", {}).copy()
1153
+ extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
1154
+
1155
+ s_in = x.new_ones([x.shape[0]])
1156
+ for i in trange(len(sigmas) - 1, disable=disable):
1157
+ sigma_hat = sigmas[i]
1158
+ denoised = model(x, sigma_hat * s_in, **extra_args)
1159
+ d = to_d(x, sigma_hat, temp[0])
1160
+ if callback is not None:
1161
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
1162
+ # Euler method
1163
+ x = denoised + d * sigmas[i + 1]
1164
+ return x
1165
+
1166
+ @torch.no_grad()
1167
+ def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
1168
+ """Ancestral sampling with Euler method steps."""
1169
+ extra_args = {} if extra_args is None else extra_args
1170
+ seed = extra_args.get("seed", None)
1171
+ noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
1172
+
1173
+ temp = [0]
1174
+ def post_cfg_function(args):
1175
+ temp[0] = args["uncond_denoised"]
1176
+ return args["denoised"]
1177
+
1178
+ model_options = extra_args.get("model_options", {}).copy()
1179
+ extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
1180
+
1181
+ s_in = x.new_ones([x.shape[0]])
1182
+ for i in trange(len(sigmas) - 1, disable=disable):
1183
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1184
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
1185
+ if callback is not None:
1186
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1187
+ d = to_d(x, sigmas[i], temp[0])
1188
+ # Euler method
1189
+ x = denoised + d * sigma_down
1190
+ if sigmas[i + 1] > 0:
1191
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
1192
+ return x
1193
+ @torch.no_grad()
1194
+ def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
1195
+ """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
1196
+ extra_args = {} if extra_args is None else extra_args
1197
+ seed = extra_args.get("seed", None)
1198
+ noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
1199
+
1200
+ temp = [0]
1201
+ def post_cfg_function(args):
1202
+ temp[0] = args["uncond_denoised"]
1203
+ return args["denoised"]
1204
+
1205
+ model_options = extra_args.get("model_options", {}).copy()
1206
+ extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
1207
+
1208
+ s_in = x.new_ones([x.shape[0]])
1209
+ sigma_fn = lambda t: t.neg().exp()
1210
+ t_fn = lambda sigma: sigma.log().neg()
1211
+
1212
+ for i in trange(len(sigmas) - 1, disable=disable):
1213
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1214
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
1215
+ if callback is not None:
1216
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1217
+ if sigma_down == 0:
1218
+ # Euler method
1219
+ d = to_d(x, sigmas[i], temp[0])
1220
+ x = denoised + d * sigma_down
1221
+ else:
1222
+ # DPM-Solver++(2S)
1223
+ t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
1224
+ # r = torch.sinh(1 + (2 - eta) * (t_next - t) / (t - t_fn(sigma_up))) works only on non-cfgpp, weird
1225
+ r = 1 / 2
1226
+ h = t_next - t
1227
+ s = t + r * h
1228
+ x_2 = (sigma_fn(s) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h * r).expm1() * denoised
1229
+ denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
1230
+ x = (sigma_fn(t_next) / sigma_fn(t)) * (x + (denoised - temp[0])) - (-h).expm1() * denoised_2
1231
+ # Noise addition
1232
+ if sigmas[i + 1] > 0:
1233
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
1234
+ return x
1235
+
1236
+ @torch.no_grad()
1237
+ def sample_dpmpp_2m_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
1238
+ """DPM-Solver++(2M)."""
1239
+ extra_args = {} if extra_args is None else extra_args
1240
+ s_in = x.new_ones([x.shape[0]])
1241
+ t_fn = lambda sigma: sigma.log().neg()
1242
+
1243
+ old_uncond_denoised = None
1244
+ uncond_denoised = None
1245
+ def post_cfg_function(args):
1246
+ nonlocal uncond_denoised
1247
+ uncond_denoised = args["uncond_denoised"]
1248
+ return args["denoised"]
1249
+
1250
+ model_options = extra_args.get("model_options", {}).copy()
1251
+ extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
1252
+
1253
+ for i in trange(len(sigmas) - 1, disable=disable):
1254
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1255
+ if callback is not None:
1256
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1257
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
1258
+ h = t_next - t
1259
+ if old_uncond_denoised is None or sigmas[i + 1] == 0:
1260
+ denoised_mix = -torch.exp(-h) * uncond_denoised
1261
+ else:
1262
+ h_last = t - t_fn(sigmas[i - 1])
1263
+ r = h_last / h
1264
+ denoised_mix = -torch.exp(-h) * uncond_denoised - torch.expm1(-h) * (1 / (2 * r)) * (denoised - old_uncond_denoised)
1265
+ x = denoised + denoised_mix + torch.exp(-h) * x
1266
+ old_uncond_denoised = uncond_denoised
1267
+ return x
1268
+
1269
+ @torch.no_grad()
1270
+ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None, cfg_pp=False):
1271
+ extra_args = {} if extra_args is None else extra_args
1272
+ seed = extra_args.get("seed", None)
1273
+ noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
1274
+ s_in = x.new_ones([x.shape[0]])
1275
+ sigma_fn = lambda t: t.neg().exp()
1276
+ t_fn = lambda sigma: sigma.log().neg()
1277
+ phi1_fn = lambda t: torch.expm1(t) / t
1278
+ phi2_fn = lambda t: (phi1_fn(t) - 1.0) / t
1279
+
1280
+ old_denoised = None
1281
+ uncond_denoised = None
1282
+ def post_cfg_function(args):
1283
+ nonlocal uncond_denoised
1284
+ uncond_denoised = args["uncond_denoised"]
1285
+ return args["denoised"]
1286
+
1287
+ if cfg_pp:
1288
+ model_options = extra_args.get("model_options", {}).copy()
1289
+ extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
1290
+
1291
+ for i in trange(len(sigmas) - 1, disable=disable):
1292
+ if s_churn > 0:
1293
+ gamma = min(s_churn / (len(sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.0
1294
+ sigma_hat = sigmas[i] * (gamma + 1)
1295
+ else:
1296
+ gamma = 0
1297
+ sigma_hat = sigmas[i]
1298
+
1299
+ if gamma > 0:
1300
+ eps = torch.randn_like(x) * s_noise
1301
+ x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
1302
+ denoised = model(x, sigma_hat * s_in, **extra_args)
1303
+ if callback is not None:
1304
+ callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigma_hat, "denoised": denoised})
1305
+ if sigmas[i + 1] == 0 or old_denoised is None:
1306
+ # Euler method
1307
+ if cfg_pp:
1308
+ d = to_d(x, sigma_hat, uncond_denoised)
1309
+ x = denoised + d * sigmas[i + 1]
1310
+ else:
1311
+ d = to_d(x, sigma_hat, denoised)
1312
+ dt = sigmas[i + 1] - sigma_hat
1313
+ x = x + d * dt
1314
+ else:
1315
+ # Second order multistep method in https://arxiv.org/pdf/2308.02157
1316
+ t, t_next, t_prev = t_fn(sigmas[i]), t_fn(sigmas[i + 1]), t_fn(sigmas[i - 1])
1317
+ h = t_next - t
1318
+ c2 = (t_prev - t) / h
1319
+
1320
+ phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h)
1321
+ b1 = torch.nan_to_num(phi1_val - 1.0 / c2 * phi2_val, nan=0.0)
1322
+ b2 = torch.nan_to_num(1.0 / c2 * phi2_val, nan=0.0)
1323
+
1324
+ if cfg_pp:
1325
+ x = x + (denoised - uncond_denoised)
1326
+
1327
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x + h * (b1 * denoised + b2 * old_denoised)
1328
+
1329
+ old_denoised = denoised
1330
+ return x
1331
+
1332
+ @torch.no_grad()
1333
+ def sample_res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
1334
+ return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfg_pp=False)
1335
+
1336
+ @torch.no_grad()
1337
+ def sample_res_multistep_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
1338
+ return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfg_pp=True)
comfy/k_diffusion/utils.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from contextlib import contextmanager
2
+ import hashlib
3
+ import math
4
+ from pathlib import Path
5
+ import shutil
6
+ import urllib
7
+ import warnings
8
+
9
+ from PIL import Image
10
+ import torch
11
+ from torch import nn, optim
12
+ from torch.utils import data
13
+
14
+
15
+ def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'):
16
+ """Apply passed in transforms for HuggingFace Datasets."""
17
+ images = [transform(image.convert(mode)) for image in examples[image_key]]
18
+ return {image_key: images}
19
+
20
+
21
+ def append_dims(x, target_dims):
22
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
23
+ dims_to_append = target_dims - x.ndim
24
+ if dims_to_append < 0:
25
+ raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
26
+ expanded = x[(...,) + (None,) * dims_to_append]
27
+ # MPS will get inf values if it tries to index into the new axes, but detaching fixes this.
28
+ # https://github.com/pytorch/pytorch/issues/84364
29
+ return expanded.detach().clone() if expanded.device.type == 'mps' else expanded
30
+
31
+
32
+ def n_params(module):
33
+ """Returns the number of trainable parameters in a module."""
34
+ return sum(p.numel() for p in module.parameters())
35
+
36
+
37
+ def download_file(path, url, digest=None):
38
+ """Downloads a file if it does not exist, optionally checking its SHA-256 hash."""
39
+ path = Path(path)
40
+ path.parent.mkdir(parents=True, exist_ok=True)
41
+ if not path.exists():
42
+ with urllib.request.urlopen(url) as response, open(path, 'wb') as f:
43
+ shutil.copyfileobj(response, f)
44
+ if digest is not None:
45
+ file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest()
46
+ if digest != file_digest:
47
+ raise OSError(f'hash of {path} (url: {url}) failed to validate')
48
+ return path
49
+
50
+
51
+ @contextmanager
52
+ def train_mode(model, mode=True):
53
+ """A context manager that places a model into training mode and restores
54
+ the previous mode on exit."""
55
+ modes = [module.training for module in model.modules()]
56
+ try:
57
+ yield model.train(mode)
58
+ finally:
59
+ for i, module in enumerate(model.modules()):
60
+ module.training = modes[i]
61
+
62
+
63
+ def eval_mode(model):
64
+ """A context manager that places a model into evaluation mode and restores
65
+ the previous mode on exit."""
66
+ return train_mode(model, False)
67
+
68
+
69
+ @torch.no_grad()
70
+ def ema_update(model, averaged_model, decay):
71
+ """Incorporates updated model parameters into an exponential moving averaged
72
+ version of a model. It should be called after each optimizer step."""
73
+ model_params = dict(model.named_parameters())
74
+ averaged_params = dict(averaged_model.named_parameters())
75
+ assert model_params.keys() == averaged_params.keys()
76
+
77
+ for name, param in model_params.items():
78
+ averaged_params[name].mul_(decay).add_(param, alpha=1 - decay)
79
+
80
+ model_buffers = dict(model.named_buffers())
81
+ averaged_buffers = dict(averaged_model.named_buffers())
82
+ assert model_buffers.keys() == averaged_buffers.keys()
83
+
84
+ for name, buf in model_buffers.items():
85
+ averaged_buffers[name].copy_(buf)
86
+
87
+
88
+ class EMAWarmup:
89
+ """Implements an EMA warmup using an inverse decay schedule.
90
+ If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are
91
+ good values for models you plan to train for a million or more steps (reaches decay
92
+ factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models
93
+ you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
94
+ 215.4k steps).
95
+ Args:
96
+ inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
97
+ power (float): Exponential factor of EMA warmup. Default: 1.
98
+ min_value (float): The minimum EMA decay rate. Default: 0.
99
+ max_value (float): The maximum EMA decay rate. Default: 1.
100
+ start_at (int): The epoch to start averaging at. Default: 0.
101
+ last_epoch (int): The index of last epoch. Default: 0.
102
+ """
103
+
104
+ def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0,
105
+ last_epoch=0):
106
+ self.inv_gamma = inv_gamma
107
+ self.power = power
108
+ self.min_value = min_value
109
+ self.max_value = max_value
110
+ self.start_at = start_at
111
+ self.last_epoch = last_epoch
112
+
113
+ def state_dict(self):
114
+ """Returns the state of the class as a :class:`dict`."""
115
+ return dict(self.__dict__.items())
116
+
117
+ def load_state_dict(self, state_dict):
118
+ """Loads the class's state.
119
+ Args:
120
+ state_dict (dict): scaler state. Should be an object returned
121
+ from a call to :meth:`state_dict`.
122
+ """
123
+ self.__dict__.update(state_dict)
124
+
125
+ def get_value(self):
126
+ """Gets the current EMA decay rate."""
127
+ epoch = max(0, self.last_epoch - self.start_at)
128
+ value = 1 - (1 + epoch / self.inv_gamma) ** -self.power
129
+ return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value))
130
+
131
+ def step(self):
132
+ """Updates the step count."""
133
+ self.last_epoch += 1
134
+
135
+
136
+ class InverseLR(optim.lr_scheduler._LRScheduler):
137
+ """Implements an inverse decay learning rate schedule with an optional exponential
138
+ warmup. When last_epoch=-1, sets initial lr as lr.
139
+ inv_gamma is the number of steps/epochs required for the learning rate to decay to
140
+ (1 / 2)**power of its original value.
141
+ Args:
142
+ optimizer (Optimizer): Wrapped optimizer.
143
+ inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
144
+ power (float): Exponential factor of learning rate decay. Default: 1.
145
+ warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
146
+ Default: 0.
147
+ min_lr (float): The minimum learning rate. Default: 0.
148
+ last_epoch (int): The index of last epoch. Default: -1.
149
+ verbose (bool): If ``True``, prints a message to stdout for
150
+ each update. Default: ``False``.
151
+ """
152
+
153
+ def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0.,
154
+ last_epoch=-1, verbose=False):
155
+ self.inv_gamma = inv_gamma
156
+ self.power = power
157
+ if not 0. <= warmup < 1:
158
+ raise ValueError('Invalid value for warmup')
159
+ self.warmup = warmup
160
+ self.min_lr = min_lr
161
+ super().__init__(optimizer, last_epoch, verbose)
162
+
163
+ def get_lr(self):
164
+ if not self._get_lr_called_within_step:
165
+ warnings.warn("To get the last learning rate computed by the scheduler, "
166
+ "please use `get_last_lr()`.")
167
+
168
+ return self._get_closed_form_lr()
169
+
170
+ def _get_closed_form_lr(self):
171
+ warmup = 1 - self.warmup ** (self.last_epoch + 1)
172
+ lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
173
+ return [warmup * max(self.min_lr, base_lr * lr_mult)
174
+ for base_lr in self.base_lrs]
175
+
176
+
177
+ class ExponentialLR(optim.lr_scheduler._LRScheduler):
178
+ """Implements an exponential learning rate schedule with an optional exponential
179
+ warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate
180
+ continuously by decay (default 0.5) every num_steps steps.
181
+ Args:
182
+ optimizer (Optimizer): Wrapped optimizer.
183
+ num_steps (float): The number of steps to decay the learning rate by decay in.
184
+ decay (float): The factor by which to decay the learning rate every num_steps
185
+ steps. Default: 0.5.
186
+ warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
187
+ Default: 0.
188
+ min_lr (float): The minimum learning rate. Default: 0.
189
+ last_epoch (int): The index of last epoch. Default: -1.
190
+ verbose (bool): If ``True``, prints a message to stdout for
191
+ each update. Default: ``False``.
192
+ """
193
+
194
+ def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0.,
195
+ last_epoch=-1, verbose=False):
196
+ self.num_steps = num_steps
197
+ self.decay = decay
198
+ if not 0. <= warmup < 1:
199
+ raise ValueError('Invalid value for warmup')
200
+ self.warmup = warmup
201
+ self.min_lr = min_lr
202
+ super().__init__(optimizer, last_epoch, verbose)
203
+
204
+ def get_lr(self):
205
+ if not self._get_lr_called_within_step:
206
+ warnings.warn("To get the last learning rate computed by the scheduler, "
207
+ "please use `get_last_lr()`.")
208
+
209
+ return self._get_closed_form_lr()
210
+
211
+ def _get_closed_form_lr(self):
212
+ warmup = 1 - self.warmup ** (self.last_epoch + 1)
213
+ lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch
214
+ return [warmup * max(self.min_lr, base_lr * lr_mult)
215
+ for base_lr in self.base_lrs]
216
+
217
+
218
+ def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
219
+ """Draws samples from an lognormal distribution."""
220
+ return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp()
221
+
222
+
223
+ def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
224
+ """Draws samples from an optionally truncated log-logistic distribution."""
225
+ min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64)
226
+ max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64)
227
+ min_cdf = min_value.log().sub(loc).div(scale).sigmoid()
228
+ max_cdf = max_value.log().sub(loc).div(scale).sigmoid()
229
+ u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf
230
+ return u.logit().mul(scale).add(loc).exp().to(dtype)
231
+
232
+
233
+ def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32):
234
+ """Draws samples from an log-uniform distribution."""
235
+ min_value = math.log(min_value)
236
+ max_value = math.log(max_value)
237
+ return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp()
238
+
239
+
240
+ def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
241
+ """Draws samples from a truncated v-diffusion training timestep distribution."""
242
+ min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi
243
+ max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi
244
+ u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf
245
+ return torch.tan(u * math.pi / 2) * sigma_data
246
+
247
+
248
+ def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32):
249
+ """Draws samples from a split lognormal distribution."""
250
+ n = torch.randn(shape, device=device, dtype=dtype).abs()
251
+ u = torch.rand(shape, device=device, dtype=dtype)
252
+ n_left = n * -scale_1 + loc
253
+ n_right = n * scale_2 + loc
254
+ ratio = scale_1 / (scale_1 + scale_2)
255
+ return torch.where(u < ratio, n_left, n_right).exp()
256
+
257
+
258
+ class FolderOfImages(data.Dataset):
259
+ """Recursively finds all images in a directory. It does not support
260
+ classes/targets."""
261
+
262
+ IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'}
263
+
264
+ def __init__(self, root, transform=None):
265
+ super().__init__()
266
+ self.root = Path(root)
267
+ self.transform = nn.Identity() if transform is None else transform
268
+ self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS)
269
+
270
+ def __repr__(self):
271
+ return f'FolderOfImages(root="{self.root}", len: {len(self)})'
272
+
273
+ def __len__(self):
274
+ return len(self.paths)
275
+
276
+ def __getitem__(self, key):
277
+ path = self.paths[key]
278
+ with open(path, 'rb') as f:
279
+ image = Image.open(f).convert('RGB')
280
+ image = self.transform(image)
281
+ return image,
282
+
283
+
284
+ class CSVLogger:
285
+ def __init__(self, filename, columns):
286
+ self.filename = Path(filename)
287
+ self.columns = columns
288
+ if self.filename.exists():
289
+ self.file = open(self.filename, 'a')
290
+ else:
291
+ self.file = open(self.filename, 'w')
292
+ self.write(*self.columns)
293
+
294
+ def write(self, *args):
295
+ print(*args, sep=',', file=self.file, flush=True)
296
+
297
+
298
+ @contextmanager
299
+ def tf32_mode(cudnn=None, matmul=None):
300
+ """A context manager that sets whether TF32 is allowed on cuDNN or matmul."""
301
+ cudnn_old = torch.backends.cudnn.allow_tf32
302
+ matmul_old = torch.backends.cuda.matmul.allow_tf32
303
+ try:
304
+ if cudnn is not None:
305
+ torch.backends.cudnn.allow_tf32 = cudnn
306
+ if matmul is not None:
307
+ torch.backends.cuda.matmul.allow_tf32 = matmul
308
+ yield
309
+ finally:
310
+ if cudnn is not None:
311
+ torch.backends.cudnn.allow_tf32 = cudnn_old
312
+ if matmul is not None:
313
+ torch.backends.cuda.matmul.allow_tf32 = matmul_old
comfy/latent_formats.py ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ class LatentFormat:
4
+ scale_factor = 1.0
5
+ latent_channels = 4
6
+ latent_dimensions = 2
7
+ latent_rgb_factors = None
8
+ latent_rgb_factors_bias = None
9
+ taesd_decoder_name = None
10
+
11
+ def process_in(self, latent):
12
+ return latent * self.scale_factor
13
+
14
+ def process_out(self, latent):
15
+ return latent / self.scale_factor
16
+
17
+ class SD15(LatentFormat):
18
+ def __init__(self, scale_factor=0.18215):
19
+ self.scale_factor = scale_factor
20
+ self.latent_rgb_factors = [
21
+ # R G B
22
+ [ 0.3512, 0.2297, 0.3227],
23
+ [ 0.3250, 0.4974, 0.2350],
24
+ [-0.2829, 0.1762, 0.2721],
25
+ [-0.2120, -0.2616, -0.7177]
26
+ ]
27
+ self.taesd_decoder_name = "taesd_decoder"
28
+
29
+ class SDXL(LatentFormat):
30
+ scale_factor = 0.13025
31
+
32
+ def __init__(self):
33
+ self.latent_rgb_factors = [
34
+ # R G B
35
+ [ 0.3651, 0.4232, 0.4341],
36
+ [-0.2533, -0.0042, 0.1068],
37
+ [ 0.1076, 0.1111, -0.0362],
38
+ [-0.3165, -0.2492, -0.2188]
39
+ ]
40
+ self.latent_rgb_factors_bias = [ 0.1084, -0.0175, -0.0011]
41
+
42
+ self.taesd_decoder_name = "taesdxl_decoder"
43
+
44
+ class SDXL_Playground_2_5(LatentFormat):
45
+ def __init__(self):
46
+ self.scale_factor = 0.5
47
+ self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
48
+ self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)
49
+
50
+ self.latent_rgb_factors = [
51
+ # R G B
52
+ [ 0.3920, 0.4054, 0.4549],
53
+ [-0.2634, -0.0196, 0.0653],
54
+ [ 0.0568, 0.1687, -0.0755],
55
+ [-0.3112, -0.2359, -0.2076]
56
+ ]
57
+ self.taesd_decoder_name = "taesdxl_decoder"
58
+
59
+ def process_in(self, latent):
60
+ latents_mean = self.latents_mean.to(latent.device, latent.dtype)
61
+ latents_std = self.latents_std.to(latent.device, latent.dtype)
62
+ return (latent - latents_mean) * self.scale_factor / latents_std
63
+
64
+ def process_out(self, latent):
65
+ latents_mean = self.latents_mean.to(latent.device, latent.dtype)
66
+ latents_std = self.latents_std.to(latent.device, latent.dtype)
67
+ return latent * latents_std / self.scale_factor + latents_mean
68
+
69
+
70
+ class SD_X4(LatentFormat):
71
+ def __init__(self):
72
+ self.scale_factor = 0.08333
73
+ self.latent_rgb_factors = [
74
+ [-0.2340, -0.3863, -0.3257],
75
+ [ 0.0994, 0.0885, -0.0908],
76
+ [-0.2833, -0.2349, -0.3741],
77
+ [ 0.2523, -0.0055, -0.1651]
78
+ ]
79
+
80
+ class SC_Prior(LatentFormat):
81
+ latent_channels = 16
82
+ def __init__(self):
83
+ self.scale_factor = 1.0
84
+ self.latent_rgb_factors = [
85
+ [-0.0326, -0.0204, -0.0127],
86
+ [-0.1592, -0.0427, 0.0216],
87
+ [ 0.0873, 0.0638, -0.0020],
88
+ [-0.0602, 0.0442, 0.1304],
89
+ [ 0.0800, -0.0313, -0.1796],
90
+ [-0.0810, -0.0638, -0.1581],
91
+ [ 0.1791, 0.1180, 0.0967],
92
+ [ 0.0740, 0.1416, 0.0432],
93
+ [-0.1745, -0.1888, -0.1373],
94
+ [ 0.2412, 0.1577, 0.0928],
95
+ [ 0.1908, 0.0998, 0.0682],
96
+ [ 0.0209, 0.0365, -0.0092],
97
+ [ 0.0448, -0.0650, -0.1728],
98
+ [-0.1658, -0.1045, -0.1308],
99
+ [ 0.0542, 0.1545, 0.1325],
100
+ [-0.0352, -0.1672, -0.2541]
101
+ ]
102
+
103
+ class SC_B(LatentFormat):
104
+ def __init__(self):
105
+ self.scale_factor = 1.0 / 0.43
106
+ self.latent_rgb_factors = [
107
+ [ 0.1121, 0.2006, 0.1023],
108
+ [-0.2093, -0.0222, -0.0195],
109
+ [-0.3087, -0.1535, 0.0366],
110
+ [ 0.0290, -0.1574, -0.4078]
111
+ ]
112
+
113
+ class SD3(LatentFormat):
114
+ latent_channels = 16
115
+ def __init__(self):
116
+ self.scale_factor = 1.5305
117
+ self.shift_factor = 0.0609
118
+ self.latent_rgb_factors = [
119
+ [-0.0922, -0.0175, 0.0749],
120
+ [ 0.0311, 0.0633, 0.0954],
121
+ [ 0.1994, 0.0927, 0.0458],
122
+ [ 0.0856, 0.0339, 0.0902],
123
+ [ 0.0587, 0.0272, -0.0496],
124
+ [-0.0006, 0.1104, 0.0309],
125
+ [ 0.0978, 0.0306, 0.0427],
126
+ [-0.0042, 0.1038, 0.1358],
127
+ [-0.0194, 0.0020, 0.0669],
128
+ [-0.0488, 0.0130, -0.0268],
129
+ [ 0.0922, 0.0988, 0.0951],
130
+ [-0.0278, 0.0524, -0.0542],
131
+ [ 0.0332, 0.0456, 0.0895],
132
+ [-0.0069, -0.0030, -0.0810],
133
+ [-0.0596, -0.0465, -0.0293],
134
+ [-0.1448, -0.1463, -0.1189]
135
+ ]
136
+ self.latent_rgb_factors_bias = [0.2394, 0.2135, 0.1925]
137
+ self.taesd_decoder_name = "taesd3_decoder"
138
+
139
+ def process_in(self, latent):
140
+ return (latent - self.shift_factor) * self.scale_factor
141
+
142
+ def process_out(self, latent):
143
+ return (latent / self.scale_factor) + self.shift_factor
144
+
145
+ class StableAudio1(LatentFormat):
146
+ latent_channels = 64
147
+ latent_dimensions = 1
148
+
149
+ class Flux(SD3):
150
+ latent_channels = 16
151
+ def __init__(self):
152
+ self.scale_factor = 0.3611
153
+ self.shift_factor = 0.1159
154
+ self.latent_rgb_factors =[
155
+ [-0.0346, 0.0244, 0.0681],
156
+ [ 0.0034, 0.0210, 0.0687],
157
+ [ 0.0275, -0.0668, -0.0433],
158
+ [-0.0174, 0.0160, 0.0617],
159
+ [ 0.0859, 0.0721, 0.0329],
160
+ [ 0.0004, 0.0383, 0.0115],
161
+ [ 0.0405, 0.0861, 0.0915],
162
+ [-0.0236, -0.0185, -0.0259],
163
+ [-0.0245, 0.0250, 0.1180],
164
+ [ 0.1008, 0.0755, -0.0421],
165
+ [-0.0515, 0.0201, 0.0011],
166
+ [ 0.0428, -0.0012, -0.0036],
167
+ [ 0.0817, 0.0765, 0.0749],
168
+ [-0.1264, -0.0522, -0.1103],
169
+ [-0.0280, -0.0881, -0.0499],
170
+ [-0.1262, -0.0982, -0.0778]
171
+ ]
172
+ self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
173
+ self.taesd_decoder_name = "taef1_decoder"
174
+
175
+ def process_in(self, latent):
176
+ return (latent - self.shift_factor) * self.scale_factor
177
+
178
+ def process_out(self, latent):
179
+ return (latent / self.scale_factor) + self.shift_factor
180
+
181
+ class Mochi(LatentFormat):
182
+ latent_channels = 12
183
+ latent_dimensions = 3
184
+
185
+ def __init__(self):
186
+ self.scale_factor = 1.0
187
+ self.latents_mean = torch.tensor([-0.06730895953510081, -0.038011381506090416, -0.07477820912866141,
188
+ -0.05565264470995561, 0.012767231469026969, -0.04703542746246419,
189
+ 0.043896967884726704, -0.09346305707025976, -0.09918314763016893,
190
+ -0.008729793427399178, -0.011931556316503654, -0.0321993391887285]).view(1, self.latent_channels, 1, 1, 1)
191
+ self.latents_std = torch.tensor([0.9263795028493863, 0.9248894543193766, 0.9393059390890617,
192
+ 0.959253732819592, 0.8244560132752793, 0.917259975397747,
193
+ 0.9294154431013696, 1.3720942357788521, 0.881393668867029,
194
+ 0.9168315692124348, 0.9185249279345552, 0.9274757570805041]).view(1, self.latent_channels, 1, 1, 1)
195
+
196
+ self.latent_rgb_factors =[
197
+ [-0.0069, -0.0045, 0.0018],
198
+ [ 0.0154, -0.0692, -0.0274],
199
+ [ 0.0333, 0.0019, 0.0206],
200
+ [-0.1390, 0.0628, 0.1678],
201
+ [-0.0725, 0.0134, -0.1898],
202
+ [ 0.0074, -0.0270, -0.0209],
203
+ [-0.0176, -0.0277, -0.0221],
204
+ [ 0.5294, 0.5204, 0.3852],
205
+ [-0.0326, -0.0446, -0.0143],
206
+ [-0.0659, 0.0153, -0.0153],
207
+ [ 0.0185, -0.0217, 0.0014],
208
+ [-0.0396, -0.0495, -0.0281]
209
+ ]
210
+ self.latent_rgb_factors_bias = [-0.0940, -0.1418, -0.1453]
211
+ self.taesd_decoder_name = None #TODO
212
+
213
+ def process_in(self, latent):
214
+ latents_mean = self.latents_mean.to(latent.device, latent.dtype)
215
+ latents_std = self.latents_std.to(latent.device, latent.dtype)
216
+ return (latent - latents_mean) * self.scale_factor / latents_std
217
+
218
+ def process_out(self, latent):
219
+ latents_mean = self.latents_mean.to(latent.device, latent.dtype)
220
+ latents_std = self.latents_std.to(latent.device, latent.dtype)
221
+ return latent * latents_std / self.scale_factor + latents_mean
222
+
223
+ class LTXV(LatentFormat):
224
+ latent_channels = 128
225
+ latent_dimensions = 3
226
+
227
+ def __init__(self):
228
+ self.latent_rgb_factors = [
229
+ [ 1.1202e-02, -6.3815e-04, -1.0021e-02],
230
+ [ 8.6031e-02, 6.5813e-02, 9.5409e-04],
231
+ [-1.2576e-02, -7.5734e-03, -4.0528e-03],
232
+ [ 9.4063e-03, -2.1688e-03, 2.6093e-03],
233
+ [ 3.7636e-03, 1.2765e-02, 9.1548e-03],
234
+ [ 2.1024e-02, -5.2973e-03, 3.4373e-03],
235
+ [-8.8896e-03, -1.9703e-02, -1.8761e-02],
236
+ [-1.3160e-02, -1.0523e-02, 1.9709e-03],
237
+ [-1.5152e-03, -6.9891e-03, -7.5810e-03],
238
+ [-1.7247e-03, 4.6560e-04, -3.3839e-03],
239
+ [ 1.3617e-02, 4.7077e-03, -2.0045e-03],
240
+ [ 1.0256e-02, 7.7318e-03, 1.3948e-02],
241
+ [-1.6108e-02, -6.2151e-03, 1.1561e-03],
242
+ [ 7.3407e-03, 1.5628e-02, 4.4865e-04],
243
+ [ 9.5357e-04, -2.9518e-03, -1.4760e-02],
244
+ [ 1.9143e-02, 1.0868e-02, 1.2264e-02],
245
+ [ 4.4575e-03, 3.6682e-05, -6.8508e-03],
246
+ [-4.5681e-04, 3.2570e-03, 7.7929e-03],
247
+ [ 3.3902e-02, 3.3405e-02, 3.7454e-02],
248
+ [-2.3001e-02, -2.4877e-03, -3.1033e-03],
249
+ [ 5.0265e-02, 3.8841e-02, 3.3539e-02],
250
+ [-4.1018e-03, -1.1095e-03, 1.5859e-03],
251
+ [-1.2689e-01, -1.3107e-01, -2.1005e-01],
252
+ [ 2.6276e-02, 1.4189e-02, -3.5963e-03],
253
+ [-4.8679e-03, 8.8486e-03, 7.8029e-03],
254
+ [-1.6610e-03, -4.8597e-03, -5.2060e-03],
255
+ [-2.1010e-03, 2.3610e-03, 9.3796e-03],
256
+ [-2.2482e-02, -2.1305e-02, -1.5087e-02],
257
+ [-1.5753e-02, -1.0646e-02, -6.5083e-03],
258
+ [-4.6975e-03, 5.0288e-03, -6.7390e-03],
259
+ [ 1.1951e-02, 2.0712e-02, 1.6191e-02],
260
+ [-6.3704e-03, -8.4827e-03, -9.5483e-03],
261
+ [ 7.2610e-03, -9.9326e-03, -2.2978e-02],
262
+ [-9.1904e-04, 6.2882e-03, 9.5720e-03],
263
+ [-3.7178e-02, -3.7123e-02, -5.6713e-02],
264
+ [-1.3373e-01, -1.0720e-01, -5.3801e-02],
265
+ [-5.3702e-03, 8.1256e-03, 8.8397e-03],
266
+ [-1.5247e-01, -2.1437e-01, -2.1843e-01],
267
+ [ 3.1441e-02, 7.0335e-03, -9.7541e-03],
268
+ [ 2.1528e-03, -8.9817e-03, -2.1023e-02],
269
+ [ 3.8461e-03, -5.8957e-03, -1.5014e-02],
270
+ [-4.3470e-03, -1.2940e-02, -1.5972e-02],
271
+ [-5.4781e-03, -1.0842e-02, -3.0204e-03],
272
+ [-6.5347e-03, 3.0806e-03, -1.0163e-02],
273
+ [-5.0414e-03, -7.1503e-03, -8.9686e-04],
274
+ [-8.5851e-03, -2.4351e-03, 1.0674e-03],
275
+ [-9.0016e-03, -9.6493e-03, 1.5692e-03],
276
+ [ 5.0914e-03, 1.2099e-02, 1.9968e-02],
277
+ [ 1.3758e-02, 1.1669e-02, 8.1958e-03],
278
+ [-1.0518e-02, -1.1575e-02, -4.1307e-03],
279
+ [-2.8410e-02, -3.1266e-02, -2.2149e-02],
280
+ [ 2.9336e-03, 3.6511e-02, 1.8717e-02],
281
+ [-1.6703e-02, -1.6696e-02, -4.4529e-03],
282
+ [ 4.8818e-02, 4.0063e-02, 8.7410e-03],
283
+ [-1.5066e-02, -5.7328e-04, 2.9785e-03],
284
+ [-1.7613e-02, -8.1034e-03, 1.3086e-02],
285
+ [-9.2633e-03, 1.0803e-02, -6.3489e-03],
286
+ [ 3.0851e-03, 4.7750e-04, 1.2347e-02],
287
+ [-2.2785e-02, -2.3043e-02, -2.6005e-02],
288
+ [-2.4787e-02, -1.5389e-02, -2.2104e-02],
289
+ [-2.3572e-02, 1.0544e-03, 1.2361e-02],
290
+ [-7.8915e-03, -1.2271e-03, -6.0968e-03],
291
+ [-1.1478e-02, -1.2543e-03, 6.2679e-03],
292
+ [-5.4229e-02, 2.6644e-02, 6.3394e-03],
293
+ [ 4.4216e-03, -7.3338e-03, -1.0464e-02],
294
+ [-4.5013e-03, 1.6082e-03, 1.4420e-02],
295
+ [ 1.3673e-02, 8.8877e-03, 4.1253e-03],
296
+ [-1.0145e-02, 9.0072e-03, 1.5695e-02],
297
+ [-5.6234e-03, 1.1847e-03, 8.1261e-03],
298
+ [-3.7171e-03, -5.3538e-03, 1.2590e-03],
299
+ [ 2.9476e-02, 2.1424e-02, 3.0424e-02],
300
+ [-3.4925e-02, -2.4340e-02, -2.5316e-02],
301
+ [-3.4127e-02, -2.2406e-02, -1.0589e-02],
302
+ [-1.7342e-02, -1.3249e-02, -1.0719e-02],
303
+ [-2.1478e-03, -8.6051e-03, -2.9878e-03],
304
+ [ 1.2089e-03, -4.2391e-03, -6.8569e-03],
305
+ [ 9.0411e-04, -6.6886e-03, -6.7547e-05],
306
+ [ 1.6048e-02, -1.0057e-02, -2.8929e-02],
307
+ [ 1.2290e-03, 1.0163e-02, 1.8861e-02],
308
+ [ 1.7264e-02, 2.7257e-04, 1.3785e-02],
309
+ [-1.3482e-02, -3.6427e-03, 6.7481e-04],
310
+ [ 4.6782e-03, -5.2423e-03, 2.4467e-03],
311
+ [-5.9113e-03, -6.2244e-03, -1.8162e-03],
312
+ [ 1.5496e-02, 1.4582e-02, 1.9514e-03],
313
+ [ 7.4958e-03, 1.5886e-03, -8.2305e-03],
314
+ [ 1.9086e-02, 1.6360e-03, -3.9674e-03],
315
+ [-5.7021e-03, -2.7307e-03, -4.1066e-03],
316
+ [ 1.7450e-03, 1.4602e-02, 2.5794e-02],
317
+ [-8.2788e-04, 2.2902e-03, 4.5161e-03],
318
+ [ 1.1632e-02, 8.9193e-03, -7.2813e-03],
319
+ [ 7.5721e-03, 2.6784e-03, 1.1393e-02],
320
+ [ 5.1939e-03, 3.6903e-03, 1.4049e-02],
321
+ [-1.8383e-02, -2.2529e-02, -2.4477e-02],
322
+ [ 5.8842e-04, -5.7874e-03, -1.4770e-02],
323
+ [-1.6125e-02, -8.6101e-03, -1.4533e-02],
324
+ [ 2.0540e-02, 2.0729e-02, 6.4338e-03],
325
+ [ 3.3587e-03, -1.1226e-02, -1.6444e-02],
326
+ [-1.4742e-03, -1.0489e-02, 1.7097e-03],
327
+ [ 2.8130e-02, 2.3546e-02, 3.2791e-02],
328
+ [-1.8532e-02, -1.2842e-02, -8.7756e-03],
329
+ [-8.0533e-03, -1.0771e-02, -1.7536e-02],
330
+ [-3.9009e-03, 1.6150e-02, 3.3359e-02],
331
+ [-7.4554e-03, -1.4154e-02, -6.1910e-03],
332
+ [ 3.4734e-03, -1.1370e-02, -1.0581e-02],
333
+ [ 1.1476e-02, 3.9281e-03, 2.8231e-03],
334
+ [ 7.1639e-03, -1.4741e-03, -3.8066e-03],
335
+ [ 2.2250e-03, -8.7552e-03, -9.5719e-03],
336
+ [ 2.4146e-02, 2.1696e-02, 2.8056e-02],
337
+ [-5.4365e-03, -2.4291e-02, -1.7802e-02],
338
+ [ 7.4263e-03, 1.0510e-02, 1.2705e-02],
339
+ [ 6.2669e-03, 6.2658e-03, 1.9211e-02],
340
+ [ 1.6378e-02, 9.4933e-03, 6.6971e-03],
341
+ [ 1.7173e-02, 2.3601e-02, 2.3296e-02],
342
+ [-1.4568e-02, -9.8279e-03, -1.1556e-02],
343
+ [ 1.4431e-02, 1.4430e-02, 6.6362e-03],
344
+ [-6.8230e-03, 1.8863e-02, 1.4555e-02],
345
+ [ 6.1156e-03, 3.4700e-03, -2.6662e-03],
346
+ [-2.6983e-03, -5.9402e-03, -9.2276e-03],
347
+ [ 1.0235e-02, 7.4173e-03, -7.6243e-03],
348
+ [-1.3255e-02, 1.9322e-02, -9.2153e-04],
349
+ [ 2.4222e-03, -4.8039e-03, -1.5759e-02],
350
+ [ 2.6244e-02, 2.5951e-02, 2.0249e-02],
351
+ [ 1.5711e-02, 1.8498e-02, 2.7407e-03],
352
+ [-2.1714e-03, 4.7214e-03, -2.2443e-02],
353
+ [-7.4747e-03, 7.4166e-03, 1.4430e-02],
354
+ [-8.3906e-03, -7.9776e-03, 9.7927e-03],
355
+ [ 3.8321e-02, 9.6622e-03, -1.9268e-02],
356
+ [-1.4605e-02, -6.7032e-03, 3.9675e-03]
357
+ ]
358
+
359
+ self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]
360
+
361
+ class HunyuanVideo(LatentFormat):
362
+ latent_channels = 16
363
+ latent_dimensions = 3
364
+ scale_factor = 0.476986
365
+ latent_rgb_factors = [
366
+ [-0.0395, -0.0331, 0.0445],
367
+ [ 0.0696, 0.0795, 0.0518],
368
+ [ 0.0135, -0.0945, -0.0282],
369
+ [ 0.0108, -0.0250, -0.0765],
370
+ [-0.0209, 0.0032, 0.0224],
371
+ [-0.0804, -0.0254, -0.0639],
372
+ [-0.0991, 0.0271, -0.0669],
373
+ [-0.0646, -0.0422, -0.0400],
374
+ [-0.0696, -0.0595, -0.0894],
375
+ [-0.0799, -0.0208, -0.0375],
376
+ [ 0.1166, 0.1627, 0.0962],
377
+ [ 0.1165, 0.0432, 0.0407],
378
+ [-0.2315, -0.1920, -0.1355],
379
+ [-0.0270, 0.0401, -0.0821],
380
+ [-0.0616, -0.0997, -0.0727],
381
+ [ 0.0249, -0.0469, -0.1703]
382
+ ]
383
+
384
+ latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]
385
+
386
+ class Cosmos1CV8x8x8(LatentFormat):
387
+ latent_channels = 16
388
+ latent_dimensions = 3
389
+
390
+ latent_rgb_factors = [
391
+ [ 0.1817, 0.2284, 0.2423],
392
+ [-0.0586, -0.0862, -0.3108],
393
+ [-0.4703, -0.4255, -0.3995],
394
+ [ 0.0803, 0.1963, 0.1001],
395
+ [-0.0820, -0.1050, 0.0400],
396
+ [ 0.2511, 0.3098, 0.2787],
397
+ [-0.1830, -0.2117, -0.0040],
398
+ [-0.0621, -0.2187, -0.0939],
399
+ [ 0.3619, 0.1082, 0.1455],
400
+ [ 0.3164, 0.3922, 0.2575],
401
+ [ 0.1152, 0.0231, -0.0462],
402
+ [-0.1434, -0.3609, -0.3665],
403
+ [ 0.0635, 0.1471, 0.1680],
404
+ [-0.3635, -0.1963, -0.3248],
405
+ [-0.1865, 0.0365, 0.2346],
406
+ [ 0.0447, 0.0994, 0.0881]
407
+ ]
408
+
409
+ latent_rgb_factors_bias = [-0.1223, -0.1889, -0.1976]
comfy/ldm/audio/autoencoder.py ADDED
@@ -0,0 +1,282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # code adapted from: https://github.com/Stability-AI/stable-audio-tools
2
+
3
+ import torch
4
+ from torch import nn
5
+ from typing import Literal
6
+ import math
7
+ import comfy.ops
8
+ ops = comfy.ops.disable_weight_init
9
+
10
+ def vae_sample(mean, scale):
11
+ stdev = nn.functional.softplus(scale) + 1e-4
12
+ var = stdev * stdev
13
+ logvar = torch.log(var)
14
+ latents = torch.randn_like(mean) * stdev + mean
15
+
16
+ kl = (mean * mean + var - logvar - 1).sum(1).mean()
17
+
18
+ return latents, kl
19
+
20
+ class VAEBottleneck(nn.Module):
21
+ def __init__(self):
22
+ super().__init__()
23
+ self.is_discrete = False
24
+
25
+ def encode(self, x, return_info=False, **kwargs):
26
+ info = {}
27
+
28
+ mean, scale = x.chunk(2, dim=1)
29
+
30
+ x, kl = vae_sample(mean, scale)
31
+
32
+ info["kl"] = kl
33
+
34
+ if return_info:
35
+ return x, info
36
+ else:
37
+ return x
38
+
39
+ def decode(self, x):
40
+ return x
41
+
42
+
43
+ def snake_beta(x, alpha, beta):
44
+ return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2)
45
+
46
+ # Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license
47
+ class SnakeBeta(nn.Module):
48
+
49
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
50
+ super(SnakeBeta, self).__init__()
51
+ self.in_features = in_features
52
+
53
+ # initialize alpha
54
+ self.alpha_logscale = alpha_logscale
55
+ if self.alpha_logscale: # log scale alphas initialized to zeros
56
+ self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
57
+ self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
58
+ else: # linear scale alphas initialized to ones
59
+ self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
60
+ self.beta = nn.Parameter(torch.ones(in_features) * alpha)
61
+
62
+ # self.alpha.requires_grad = alpha_trainable
63
+ # self.beta.requires_grad = alpha_trainable
64
+
65
+ self.no_div_by_zero = 0.000000001
66
+
67
+ def forward(self, x):
68
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1).to(x.device) # line up with x to [B, C, T]
69
+ beta = self.beta.unsqueeze(0).unsqueeze(-1).to(x.device)
70
+ if self.alpha_logscale:
71
+ alpha = torch.exp(alpha)
72
+ beta = torch.exp(beta)
73
+ x = snake_beta(x, alpha, beta)
74
+
75
+ return x
76
+
77
+ def WNConv1d(*args, **kwargs):
78
+ try:
79
+ return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
80
+ except:
81
+ return torch.nn.utils.weight_norm(ops.Conv1d(*args, **kwargs)) #support pytorch 2.1 and older
82
+
83
+ def WNConvTranspose1d(*args, **kwargs):
84
+ try:
85
+ return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
86
+ except:
87
+ return torch.nn.utils.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) #support pytorch 2.1 and older
88
+
89
+ def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
90
+ if activation == "elu":
91
+ act = torch.nn.ELU()
92
+ elif activation == "snake":
93
+ act = SnakeBeta(channels)
94
+ elif activation == "none":
95
+ act = torch.nn.Identity()
96
+ else:
97
+ raise ValueError(f"Unknown activation {activation}")
98
+
99
+ if antialias:
100
+ act = Activation1d(act) # noqa: F821 Activation1d is not defined
101
+
102
+ return act
103
+
104
+
105
+ class ResidualUnit(nn.Module):
106
+ def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False):
107
+ super().__init__()
108
+
109
+ self.dilation = dilation
110
+
111
+ padding = (dilation * (7-1)) // 2
112
+
113
+ self.layers = nn.Sequential(
114
+ get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
115
+ WNConv1d(in_channels=in_channels, out_channels=out_channels,
116
+ kernel_size=7, dilation=dilation, padding=padding),
117
+ get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
118
+ WNConv1d(in_channels=out_channels, out_channels=out_channels,
119
+ kernel_size=1)
120
+ )
121
+
122
+ def forward(self, x):
123
+ res = x
124
+
125
+ #x = checkpoint(self.layers, x)
126
+ x = self.layers(x)
127
+
128
+ return x + res
129
+
130
+ class EncoderBlock(nn.Module):
131
+ def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False):
132
+ super().__init__()
133
+
134
+ self.layers = nn.Sequential(
135
+ ResidualUnit(in_channels=in_channels,
136
+ out_channels=in_channels, dilation=1, use_snake=use_snake),
137
+ ResidualUnit(in_channels=in_channels,
138
+ out_channels=in_channels, dilation=3, use_snake=use_snake),
139
+ ResidualUnit(in_channels=in_channels,
140
+ out_channels=in_channels, dilation=9, use_snake=use_snake),
141
+ get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
142
+ WNConv1d(in_channels=in_channels, out_channels=out_channels,
143
+ kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)),
144
+ )
145
+
146
+ def forward(self, x):
147
+ return self.layers(x)
148
+
149
+ class DecoderBlock(nn.Module):
150
+ def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False):
151
+ super().__init__()
152
+
153
+ if use_nearest_upsample:
154
+ upsample_layer = nn.Sequential(
155
+ nn.Upsample(scale_factor=stride, mode="nearest"),
156
+ WNConv1d(in_channels=in_channels,
157
+ out_channels=out_channels,
158
+ kernel_size=2*stride,
159
+ stride=1,
160
+ bias=False,
161
+ padding='same')
162
+ )
163
+ else:
164
+ upsample_layer = WNConvTranspose1d(in_channels=in_channels,
165
+ out_channels=out_channels,
166
+ kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2))
167
+
168
+ self.layers = nn.Sequential(
169
+ get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
170
+ upsample_layer,
171
+ ResidualUnit(in_channels=out_channels, out_channels=out_channels,
172
+ dilation=1, use_snake=use_snake),
173
+ ResidualUnit(in_channels=out_channels, out_channels=out_channels,
174
+ dilation=3, use_snake=use_snake),
175
+ ResidualUnit(in_channels=out_channels, out_channels=out_channels,
176
+ dilation=9, use_snake=use_snake),
177
+ )
178
+
179
+ def forward(self, x):
180
+ return self.layers(x)
181
+
182
+ class OobleckEncoder(nn.Module):
183
+ def __init__(self,
184
+ in_channels=2,
185
+ channels=128,
186
+ latent_dim=32,
187
+ c_mults = [1, 2, 4, 8],
188
+ strides = [2, 4, 8, 8],
189
+ use_snake=False,
190
+ antialias_activation=False
191
+ ):
192
+ super().__init__()
193
+
194
+ c_mults = [1] + c_mults
195
+
196
+ self.depth = len(c_mults)
197
+
198
+ layers = [
199
+ WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3)
200
+ ]
201
+
202
+ for i in range(self.depth-1):
203
+ layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)]
204
+
205
+ layers += [
206
+ get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels),
207
+ WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1)
208
+ ]
209
+
210
+ self.layers = nn.Sequential(*layers)
211
+
212
+ def forward(self, x):
213
+ return self.layers(x)
214
+
215
+
216
+ class OobleckDecoder(nn.Module):
217
+ def __init__(self,
218
+ out_channels=2,
219
+ channels=128,
220
+ latent_dim=32,
221
+ c_mults = [1, 2, 4, 8],
222
+ strides = [2, 4, 8, 8],
223
+ use_snake=False,
224
+ antialias_activation=False,
225
+ use_nearest_upsample=False,
226
+ final_tanh=True):
227
+ super().__init__()
228
+
229
+ c_mults = [1] + c_mults
230
+
231
+ self.depth = len(c_mults)
232
+
233
+ layers = [
234
+ WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3),
235
+ ]
236
+
237
+ for i in range(self.depth-1, 0, -1):
238
+ layers += [DecoderBlock(
239
+ in_channels=c_mults[i]*channels,
240
+ out_channels=c_mults[i-1]*channels,
241
+ stride=strides[i-1],
242
+ use_snake=use_snake,
243
+ antialias_activation=antialias_activation,
244
+ use_nearest_upsample=use_nearest_upsample
245
+ )
246
+ ]
247
+
248
+ layers += [
249
+ get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels),
250
+ WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False),
251
+ nn.Tanh() if final_tanh else nn.Identity()
252
+ ]
253
+
254
+ self.layers = nn.Sequential(*layers)
255
+
256
+ def forward(self, x):
257
+ return self.layers(x)
258
+
259
+
260
+ class AudioOobleckVAE(nn.Module):
261
+ def __init__(self,
262
+ in_channels=2,
263
+ channels=128,
264
+ latent_dim=64,
265
+ c_mults = [1, 2, 4, 8, 16],
266
+ strides = [2, 4, 4, 8, 8],
267
+ use_snake=True,
268
+ antialias_activation=False,
269
+ use_nearest_upsample=False,
270
+ final_tanh=False):
271
+ super().__init__()
272
+ self.encoder = OobleckEncoder(in_channels, channels, latent_dim * 2, c_mults, strides, use_snake, antialias_activation)
273
+ self.decoder = OobleckDecoder(in_channels, channels, latent_dim, c_mults, strides, use_snake, antialias_activation,
274
+ use_nearest_upsample=use_nearest_upsample, final_tanh=final_tanh)
275
+ self.bottleneck = VAEBottleneck()
276
+
277
+ def encode(self, x):
278
+ return self.bottleneck.encode(self.encoder(x))
279
+
280
+ def decode(self, x):
281
+ return self.decoder(self.bottleneck.decode(x))
282
+
comfy/ldm/audio/dit.py ADDED
@@ -0,0 +1,896 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # code adapted from: https://github.com/Stability-AI/stable-audio-tools
2
+
3
+ from comfy.ldm.modules.attention import optimized_attention
4
+ import typing as tp
5
+
6
+ import torch
7
+
8
+ from einops import rearrange
9
+ from torch import nn
10
+ from torch.nn import functional as F
11
+ import math
12
+ import comfy.ops
13
+
14
+ class FourierFeatures(nn.Module):
15
+ def __init__(self, in_features, out_features, std=1., dtype=None, device=None):
16
+ super().__init__()
17
+ assert out_features % 2 == 0
18
+ self.weight = nn.Parameter(torch.empty(
19
+ [out_features // 2, in_features], dtype=dtype, device=device))
20
+
21
+ def forward(self, input):
22
+ f = 2 * math.pi * input @ comfy.ops.cast_to_input(self.weight.T, input)
23
+ return torch.cat([f.cos(), f.sin()], dim=-1)
24
+
25
+ # norms
26
+ class LayerNorm(nn.Module):
27
+ def __init__(self, dim, bias=False, fix_scale=False, dtype=None, device=None):
28
+ """
29
+ bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
30
+ """
31
+ super().__init__()
32
+
33
+ self.gamma = nn.Parameter(torch.empty(dim, dtype=dtype, device=device))
34
+
35
+ if bias:
36
+ self.beta = nn.Parameter(torch.empty(dim, dtype=dtype, device=device))
37
+ else:
38
+ self.beta = None
39
+
40
+ def forward(self, x):
41
+ beta = self.beta
42
+ if beta is not None:
43
+ beta = comfy.ops.cast_to_input(beta, x)
44
+ return F.layer_norm(x, x.shape[-1:], weight=comfy.ops.cast_to_input(self.gamma, x), bias=beta)
45
+
46
+ class GLU(nn.Module):
47
+ def __init__(
48
+ self,
49
+ dim_in,
50
+ dim_out,
51
+ activation,
52
+ use_conv = False,
53
+ conv_kernel_size = 3,
54
+ dtype=None,
55
+ device=None,
56
+ operations=None,
57
+ ):
58
+ super().__init__()
59
+ self.act = activation
60
+ self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2), dtype=dtype, device=device)
61
+ self.use_conv = use_conv
62
+
63
+ def forward(self, x):
64
+ if self.use_conv:
65
+ x = rearrange(x, 'b n d -> b d n')
66
+ x = self.proj(x)
67
+ x = rearrange(x, 'b d n -> b n d')
68
+ else:
69
+ x = self.proj(x)
70
+
71
+ x, gate = x.chunk(2, dim = -1)
72
+ return x * self.act(gate)
73
+
74
+ class AbsolutePositionalEmbedding(nn.Module):
75
+ def __init__(self, dim, max_seq_len):
76
+ super().__init__()
77
+ self.scale = dim ** -0.5
78
+ self.max_seq_len = max_seq_len
79
+ self.emb = nn.Embedding(max_seq_len, dim)
80
+
81
+ def forward(self, x, pos = None, seq_start_pos = None):
82
+ seq_len, device = x.shape[1], x.device
83
+ assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
84
+
85
+ if pos is None:
86
+ pos = torch.arange(seq_len, device = device)
87
+
88
+ if seq_start_pos is not None:
89
+ pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
90
+
91
+ pos_emb = self.emb(pos)
92
+ pos_emb = pos_emb * self.scale
93
+ return pos_emb
94
+
95
+ class ScaledSinusoidalEmbedding(nn.Module):
96
+ def __init__(self, dim, theta = 10000):
97
+ super().__init__()
98
+ assert (dim % 2) == 0, 'dimension must be divisible by 2'
99
+ self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
100
+
101
+ half_dim = dim // 2
102
+ freq_seq = torch.arange(half_dim).float() / half_dim
103
+ inv_freq = theta ** -freq_seq
104
+ self.register_buffer('inv_freq', inv_freq, persistent = False)
105
+
106
+ def forward(self, x, pos = None, seq_start_pos = None):
107
+ seq_len, device = x.shape[1], x.device
108
+
109
+ if pos is None:
110
+ pos = torch.arange(seq_len, device = device)
111
+
112
+ if seq_start_pos is not None:
113
+ pos = pos - seq_start_pos[..., None]
114
+
115
+ emb = torch.einsum('i, j -> i j', pos, self.inv_freq)
116
+ emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
117
+ return emb * self.scale
118
+
119
+ class RotaryEmbedding(nn.Module):
120
+ def __init__(
121
+ self,
122
+ dim,
123
+ use_xpos = False,
124
+ scale_base = 512,
125
+ interpolation_factor = 1.,
126
+ base = 10000,
127
+ base_rescale_factor = 1.,
128
+ dtype=None,
129
+ device=None,
130
+ ):
131
+ super().__init__()
132
+ # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
133
+ # has some connection to NTK literature
134
+ # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
135
+ base *= base_rescale_factor ** (dim / (dim - 2))
136
+
137
+ # inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
138
+ self.register_buffer('inv_freq', torch.empty((dim // 2,), device=device, dtype=dtype))
139
+
140
+ assert interpolation_factor >= 1.
141
+ self.interpolation_factor = interpolation_factor
142
+
143
+ if not use_xpos:
144
+ self.register_buffer('scale', None)
145
+ return
146
+
147
+ scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
148
+
149
+ self.scale_base = scale_base
150
+ self.register_buffer('scale', scale)
151
+
152
+ def forward_from_seq_len(self, seq_len, device, dtype):
153
+ # device = self.inv_freq.device
154
+
155
+ t = torch.arange(seq_len, device=device, dtype=dtype)
156
+ return self.forward(t)
157
+
158
+ def forward(self, t):
159
+ # device = self.inv_freq.device
160
+ device = t.device
161
+
162
+ # t = t.to(torch.float32)
163
+
164
+ t = t / self.interpolation_factor
165
+
166
+ freqs = torch.einsum('i , j -> i j', t, comfy.ops.cast_to_input(self.inv_freq, t))
167
+ freqs = torch.cat((freqs, freqs), dim = -1)
168
+
169
+ if self.scale is None:
170
+ return freqs, 1.
171
+
172
+ power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base # noqa: F821 seq_len is not defined
173
+ scale = comfy.ops.cast_to_input(self.scale, t) ** rearrange(power, 'n -> n 1')
174
+ scale = torch.cat((scale, scale), dim = -1)
175
+
176
+ return freqs, scale
177
+
178
+ def rotate_half(x):
179
+ x = rearrange(x, '... (j d) -> ... j d', j = 2)
180
+ x1, x2 = x.unbind(dim = -2)
181
+ return torch.cat((-x2, x1), dim = -1)
182
+
183
+ def apply_rotary_pos_emb(t, freqs, scale = 1):
184
+ out_dtype = t.dtype
185
+
186
+ # cast to float32 if necessary for numerical stability
187
+ dtype = t.dtype #reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
188
+ rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
189
+ freqs, t = freqs.to(dtype), t.to(dtype)
190
+ freqs = freqs[-seq_len:, :]
191
+
192
+ if t.ndim == 4 and freqs.ndim == 3:
193
+ freqs = rearrange(freqs, 'b n d -> b 1 n d')
194
+
195
+ # partial rotary embeddings, Wang et al. GPT-J
196
+ t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
197
+ t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
198
+
199
+ t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)
200
+
201
+ return torch.cat((t, t_unrotated), dim = -1)
202
+
203
+ class FeedForward(nn.Module):
204
+ def __init__(
205
+ self,
206
+ dim,
207
+ dim_out = None,
208
+ mult = 4,
209
+ no_bias = False,
210
+ glu = True,
211
+ use_conv = False,
212
+ conv_kernel_size = 3,
213
+ zero_init_output = True,
214
+ dtype=None,
215
+ device=None,
216
+ operations=None,
217
+ ):
218
+ super().__init__()
219
+ inner_dim = int(dim * mult)
220
+
221
+ # Default to SwiGLU
222
+
223
+ activation = nn.SiLU()
224
+
225
+ dim_out = dim if dim_out is None else dim_out
226
+
227
+ if glu:
228
+ linear_in = GLU(dim, inner_dim, activation, dtype=dtype, device=device, operations=operations)
229
+ else:
230
+ linear_in = nn.Sequential(
231
+ rearrange('b n d -> b d n') if use_conv else nn.Identity(),
232
+ operations.Linear(dim, inner_dim, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device),
233
+ rearrange('b n d -> b d n') if use_conv else nn.Identity(),
234
+ activation
235
+ )
236
+
237
+ linear_out = operations.Linear(inner_dim, dim_out, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device)
238
+
239
+ # # init last linear layer to 0
240
+ # if zero_init_output:
241
+ # nn.init.zeros_(linear_out.weight)
242
+ # if not no_bias:
243
+ # nn.init.zeros_(linear_out.bias)
244
+
245
+
246
+ self.ff = nn.Sequential(
247
+ linear_in,
248
+ rearrange('b d n -> b n d') if use_conv else nn.Identity(),
249
+ linear_out,
250
+ rearrange('b n d -> b d n') if use_conv else nn.Identity(),
251
+ )
252
+
253
+ def forward(self, x):
254
+ return self.ff(x)
255
+
256
+ class Attention(nn.Module):
257
+ def __init__(
258
+ self,
259
+ dim,
260
+ dim_heads = 64,
261
+ dim_context = None,
262
+ causal = False,
263
+ zero_init_output=True,
264
+ qk_norm = False,
265
+ natten_kernel_size = None,
266
+ dtype=None,
267
+ device=None,
268
+ operations=None,
269
+ ):
270
+ super().__init__()
271
+ self.dim = dim
272
+ self.dim_heads = dim_heads
273
+ self.causal = causal
274
+
275
+ dim_kv = dim_context if dim_context is not None else dim
276
+
277
+ self.num_heads = dim // dim_heads
278
+ self.kv_heads = dim_kv // dim_heads
279
+
280
+ if dim_context is not None:
281
+ self.to_q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
282
+ self.to_kv = operations.Linear(dim_kv, dim_kv * 2, bias=False, dtype=dtype, device=device)
283
+ else:
284
+ self.to_qkv = operations.Linear(dim, dim * 3, bias=False, dtype=dtype, device=device)
285
+
286
+ self.to_out = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
287
+
288
+ # if zero_init_output:
289
+ # nn.init.zeros_(self.to_out.weight)
290
+
291
+ self.qk_norm = qk_norm
292
+
293
+
294
+ def forward(
295
+ self,
296
+ x,
297
+ context = None,
298
+ mask = None,
299
+ context_mask = None,
300
+ rotary_pos_emb = None,
301
+ causal = None
302
+ ):
303
+ h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
304
+
305
+ kv_input = context if has_context else x
306
+
307
+ if hasattr(self, 'to_q'):
308
+ # Use separate linear projections for q and k/v
309
+ q = self.to_q(x)
310
+ q = rearrange(q, 'b n (h d) -> b h n d', h = h)
311
+
312
+ k, v = self.to_kv(kv_input).chunk(2, dim=-1)
313
+
314
+ k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v))
315
+ else:
316
+ # Use fused linear projection
317
+ q, k, v = self.to_qkv(x).chunk(3, dim=-1)
318
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
319
+
320
+ # Normalize q and k for cosine sim attention
321
+ if self.qk_norm:
322
+ q = F.normalize(q, dim=-1)
323
+ k = F.normalize(k, dim=-1)
324
+
325
+ if rotary_pos_emb is not None and not has_context:
326
+ freqs, _ = rotary_pos_emb
327
+
328
+ q_dtype = q.dtype
329
+ k_dtype = k.dtype
330
+
331
+ q = q.to(torch.float32)
332
+ k = k.to(torch.float32)
333
+ freqs = freqs.to(torch.float32)
334
+
335
+ q = apply_rotary_pos_emb(q, freqs)
336
+ k = apply_rotary_pos_emb(k, freqs)
337
+
338
+ q = q.to(q_dtype)
339
+ k = k.to(k_dtype)
340
+
341
+ input_mask = context_mask
342
+
343
+ if input_mask is None and not has_context:
344
+ input_mask = mask
345
+
346
+ # determine masking
347
+ masks = []
348
+
349
+ if input_mask is not None:
350
+ input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
351
+ masks.append(~input_mask)
352
+
353
+ # Other masks will be added here later
354
+ n = q.shape[-2]
355
+
356
+ causal = self.causal if causal is None else causal
357
+
358
+ if n == 1 and causal:
359
+ causal = False
360
+
361
+ if h != kv_h:
362
+ # Repeat interleave kv_heads to match q_heads
363
+ heads_per_kv_head = h // kv_h
364
+ k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
365
+
366
+ out = optimized_attention(q, k, v, h, skip_reshape=True)
367
+ out = self.to_out(out)
368
+
369
+ if mask is not None:
370
+ mask = rearrange(mask, 'b n -> b n 1')
371
+ out = out.masked_fill(~mask, 0.)
372
+
373
+ return out
374
+
375
+ class ConformerModule(nn.Module):
376
+ def __init__(
377
+ self,
378
+ dim,
379
+ norm_kwargs = {},
380
+ ):
381
+
382
+ super().__init__()
383
+
384
+ self.dim = dim
385
+
386
+ self.in_norm = LayerNorm(dim, **norm_kwargs)
387
+ self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
388
+ self.glu = GLU(dim, dim, nn.SiLU())
389
+ self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
390
+ self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm
391
+ self.swish = nn.SiLU()
392
+ self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
393
+
394
+ def forward(self, x):
395
+ x = self.in_norm(x)
396
+ x = rearrange(x, 'b n d -> b d n')
397
+ x = self.pointwise_conv(x)
398
+ x = rearrange(x, 'b d n -> b n d')
399
+ x = self.glu(x)
400
+ x = rearrange(x, 'b n d -> b d n')
401
+ x = self.depthwise_conv(x)
402
+ x = rearrange(x, 'b d n -> b n d')
403
+ x = self.mid_norm(x)
404
+ x = self.swish(x)
405
+ x = rearrange(x, 'b n d -> b d n')
406
+ x = self.pointwise_conv_2(x)
407
+ x = rearrange(x, 'b d n -> b n d')
408
+
409
+ return x
410
+
411
+ class TransformerBlock(nn.Module):
412
+ def __init__(
413
+ self,
414
+ dim,
415
+ dim_heads = 64,
416
+ cross_attend = False,
417
+ dim_context = None,
418
+ global_cond_dim = None,
419
+ causal = False,
420
+ zero_init_branch_outputs = True,
421
+ conformer = False,
422
+ layer_ix = -1,
423
+ remove_norms = False,
424
+ attn_kwargs = {},
425
+ ff_kwargs = {},
426
+ norm_kwargs = {},
427
+ dtype=None,
428
+ device=None,
429
+ operations=None,
430
+ ):
431
+
432
+ super().__init__()
433
+ self.dim = dim
434
+ self.dim_heads = dim_heads
435
+ self.cross_attend = cross_attend
436
+ self.dim_context = dim_context
437
+ self.causal = causal
438
+
439
+ self.pre_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
440
+
441
+ self.self_attn = Attention(
442
+ dim,
443
+ dim_heads = dim_heads,
444
+ causal = causal,
445
+ zero_init_output=zero_init_branch_outputs,
446
+ dtype=dtype,
447
+ device=device,
448
+ operations=operations,
449
+ **attn_kwargs
450
+ )
451
+
452
+ if cross_attend:
453
+ self.cross_attend_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
454
+ self.cross_attn = Attention(
455
+ dim,
456
+ dim_heads = dim_heads,
457
+ dim_context=dim_context,
458
+ causal = causal,
459
+ zero_init_output=zero_init_branch_outputs,
460
+ dtype=dtype,
461
+ device=device,
462
+ operations=operations,
463
+ **attn_kwargs
464
+ )
465
+
466
+ self.ff_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
467
+ self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, dtype=dtype, device=device, operations=operations,**ff_kwargs)
468
+
469
+ self.layer_ix = layer_ix
470
+
471
+ self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None
472
+
473
+ self.global_cond_dim = global_cond_dim
474
+
475
+ if global_cond_dim is not None:
476
+ self.to_scale_shift_gate = nn.Sequential(
477
+ nn.SiLU(),
478
+ nn.Linear(global_cond_dim, dim * 6, bias=False)
479
+ )
480
+
481
+ nn.init.zeros_(self.to_scale_shift_gate[1].weight)
482
+ #nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
483
+
484
+ def forward(
485
+ self,
486
+ x,
487
+ context = None,
488
+ global_cond=None,
489
+ mask = None,
490
+ context_mask = None,
491
+ rotary_pos_emb = None
492
+ ):
493
+ if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
494
+
495
+ scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1)
496
+
497
+ # self-attention with adaLN
498
+ residual = x
499
+ x = self.pre_norm(x)
500
+ x = x * (1 + scale_self) + shift_self
501
+ x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
502
+ x = x * torch.sigmoid(1 - gate_self)
503
+ x = x + residual
504
+
505
+ if context is not None:
506
+ x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
507
+
508
+ if self.conformer is not None:
509
+ x = x + self.conformer(x)
510
+
511
+ # feedforward with adaLN
512
+ residual = x
513
+ x = self.ff_norm(x)
514
+ x = x * (1 + scale_ff) + shift_ff
515
+ x = self.ff(x)
516
+ x = x * torch.sigmoid(1 - gate_ff)
517
+ x = x + residual
518
+
519
+ else:
520
+ x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
521
+
522
+ if context is not None:
523
+ x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
524
+
525
+ if self.conformer is not None:
526
+ x = x + self.conformer(x)
527
+
528
+ x = x + self.ff(self.ff_norm(x))
529
+
530
+ return x
531
+
532
+ class ContinuousTransformer(nn.Module):
533
+ def __init__(
534
+ self,
535
+ dim,
536
+ depth,
537
+ *,
538
+ dim_in = None,
539
+ dim_out = None,
540
+ dim_heads = 64,
541
+ cross_attend=False,
542
+ cond_token_dim=None,
543
+ global_cond_dim=None,
544
+ causal=False,
545
+ rotary_pos_emb=True,
546
+ zero_init_branch_outputs=True,
547
+ conformer=False,
548
+ use_sinusoidal_emb=False,
549
+ use_abs_pos_emb=False,
550
+ abs_pos_emb_max_length=10000,
551
+ dtype=None,
552
+ device=None,
553
+ operations=None,
554
+ **kwargs
555
+ ):
556
+
557
+ super().__init__()
558
+
559
+ self.dim = dim
560
+ self.depth = depth
561
+ self.causal = causal
562
+ self.layers = nn.ModuleList([])
563
+
564
+ self.project_in = operations.Linear(dim_in, dim, bias=False, dtype=dtype, device=device) if dim_in is not None else nn.Identity()
565
+ self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity()
566
+
567
+ if rotary_pos_emb:
568
+ self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32), device=device, dtype=dtype)
569
+ else:
570
+ self.rotary_pos_emb = None
571
+
572
+ self.use_sinusoidal_emb = use_sinusoidal_emb
573
+ if use_sinusoidal_emb:
574
+ self.pos_emb = ScaledSinusoidalEmbedding(dim)
575
+
576
+ self.use_abs_pos_emb = use_abs_pos_emb
577
+ if use_abs_pos_emb:
578
+ self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)
579
+
580
+ for i in range(depth):
581
+ self.layers.append(
582
+ TransformerBlock(
583
+ dim,
584
+ dim_heads = dim_heads,
585
+ cross_attend = cross_attend,
586
+ dim_context = cond_token_dim,
587
+ global_cond_dim = global_cond_dim,
588
+ causal = causal,
589
+ zero_init_branch_outputs = zero_init_branch_outputs,
590
+ conformer=conformer,
591
+ layer_ix=i,
592
+ dtype=dtype,
593
+ device=device,
594
+ operations=operations,
595
+ **kwargs
596
+ )
597
+ )
598
+
599
+ def forward(
600
+ self,
601
+ x,
602
+ mask = None,
603
+ prepend_embeds = None,
604
+ prepend_mask = None,
605
+ global_cond = None,
606
+ return_info = False,
607
+ **kwargs
608
+ ):
609
+ patches_replace = kwargs.get("transformer_options", {}).get("patches_replace", {})
610
+ batch, seq, device = *x.shape[:2], x.device
611
+ context = kwargs["context"]
612
+
613
+ info = {
614
+ "hidden_states": [],
615
+ }
616
+
617
+ x = self.project_in(x)
618
+
619
+ if prepend_embeds is not None:
620
+ prepend_length, prepend_dim = prepend_embeds.shape[1:]
621
+
622
+ assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'
623
+
624
+ x = torch.cat((prepend_embeds, x), dim = -2)
625
+
626
+ if prepend_mask is not None or mask is not None:
627
+ mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool)
628
+ prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool)
629
+
630
+ mask = torch.cat((prepend_mask, mask), dim = -1)
631
+
632
+ # Attention layers
633
+
634
+ if self.rotary_pos_emb is not None:
635
+ rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device)
636
+ else:
637
+ rotary_pos_emb = None
638
+
639
+ if self.use_sinusoidal_emb or self.use_abs_pos_emb:
640
+ x = x + self.pos_emb(x)
641
+
642
+ blocks_replace = patches_replace.get("dit", {})
643
+ # Iterate over the transformer layers
644
+ for i, layer in enumerate(self.layers):
645
+ if ("double_block", i) in blocks_replace:
646
+ def block_wrap(args):
647
+ out = {}
648
+ out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"])
649
+ return out
650
+
651
+ out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb}, {"original_block": block_wrap})
652
+ x = out["img"]
653
+ else:
654
+ x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context)
655
+ # x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
656
+
657
+ if return_info:
658
+ info["hidden_states"].append(x)
659
+
660
+ x = self.project_out(x)
661
+
662
+ if return_info:
663
+ return x, info
664
+
665
+ return x
666
+
667
+ class AudioDiffusionTransformer(nn.Module):
668
+ def __init__(self,
669
+ io_channels=64,
670
+ patch_size=1,
671
+ embed_dim=1536,
672
+ cond_token_dim=768,
673
+ project_cond_tokens=False,
674
+ global_cond_dim=1536,
675
+ project_global_cond=True,
676
+ input_concat_dim=0,
677
+ prepend_cond_dim=0,
678
+ depth=24,
679
+ num_heads=24,
680
+ transformer_type: tp.Literal["continuous_transformer"] = "continuous_transformer",
681
+ global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend",
682
+ audio_model="",
683
+ dtype=None,
684
+ device=None,
685
+ operations=None,
686
+ **kwargs):
687
+
688
+ super().__init__()
689
+
690
+ self.dtype = dtype
691
+ self.cond_token_dim = cond_token_dim
692
+
693
+ # Timestep embeddings
694
+ timestep_features_dim = 256
695
+
696
+ self.timestep_features = FourierFeatures(1, timestep_features_dim, dtype=dtype, device=device)
697
+
698
+ self.to_timestep_embed = nn.Sequential(
699
+ operations.Linear(timestep_features_dim, embed_dim, bias=True, dtype=dtype, device=device),
700
+ nn.SiLU(),
701
+ operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device),
702
+ )
703
+
704
+ if cond_token_dim > 0:
705
+ # Conditioning tokens
706
+
707
+ cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim
708
+ self.to_cond_embed = nn.Sequential(
709
+ operations.Linear(cond_token_dim, cond_embed_dim, bias=False, dtype=dtype, device=device),
710
+ nn.SiLU(),
711
+ operations.Linear(cond_embed_dim, cond_embed_dim, bias=False, dtype=dtype, device=device)
712
+ )
713
+ else:
714
+ cond_embed_dim = 0
715
+
716
+ if global_cond_dim > 0:
717
+ # Global conditioning
718
+ global_embed_dim = global_cond_dim if not project_global_cond else embed_dim
719
+ self.to_global_embed = nn.Sequential(
720
+ operations.Linear(global_cond_dim, global_embed_dim, bias=False, dtype=dtype, device=device),
721
+ nn.SiLU(),
722
+ operations.Linear(global_embed_dim, global_embed_dim, bias=False, dtype=dtype, device=device)
723
+ )
724
+
725
+ if prepend_cond_dim > 0:
726
+ # Prepend conditioning
727
+ self.to_prepend_embed = nn.Sequential(
728
+ operations.Linear(prepend_cond_dim, embed_dim, bias=False, dtype=dtype, device=device),
729
+ nn.SiLU(),
730
+ operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
731
+ )
732
+
733
+ self.input_concat_dim = input_concat_dim
734
+
735
+ dim_in = io_channels + self.input_concat_dim
736
+
737
+ self.patch_size = patch_size
738
+
739
+ # Transformer
740
+
741
+ self.transformer_type = transformer_type
742
+
743
+ self.global_cond_type = global_cond_type
744
+
745
+ if self.transformer_type == "continuous_transformer":
746
+
747
+ global_dim = None
748
+
749
+ if self.global_cond_type == "adaLN":
750
+ # The global conditioning is projected to the embed_dim already at this point
751
+ global_dim = embed_dim
752
+
753
+ self.transformer = ContinuousTransformer(
754
+ dim=embed_dim,
755
+ depth=depth,
756
+ dim_heads=embed_dim // num_heads,
757
+ dim_in=dim_in * patch_size,
758
+ dim_out=io_channels * patch_size,
759
+ cross_attend = cond_token_dim > 0,
760
+ cond_token_dim = cond_embed_dim,
761
+ global_cond_dim=global_dim,
762
+ dtype=dtype,
763
+ device=device,
764
+ operations=operations,
765
+ **kwargs
766
+ )
767
+ else:
768
+ raise ValueError(f"Unknown transformer type: {self.transformer_type}")
769
+
770
+ self.preprocess_conv = operations.Conv1d(dim_in, dim_in, 1, bias=False, dtype=dtype, device=device)
771
+ self.postprocess_conv = operations.Conv1d(io_channels, io_channels, 1, bias=False, dtype=dtype, device=device)
772
+
773
+ def _forward(
774
+ self,
775
+ x,
776
+ t,
777
+ mask=None,
778
+ cross_attn_cond=None,
779
+ cross_attn_cond_mask=None,
780
+ input_concat_cond=None,
781
+ global_embed=None,
782
+ prepend_cond=None,
783
+ prepend_cond_mask=None,
784
+ return_info=False,
785
+ **kwargs):
786
+
787
+ if cross_attn_cond is not None:
788
+ cross_attn_cond = self.to_cond_embed(cross_attn_cond)
789
+
790
+ if global_embed is not None:
791
+ # Project the global conditioning to the embedding dimension
792
+ global_embed = self.to_global_embed(global_embed)
793
+
794
+ prepend_inputs = None
795
+ prepend_mask = None
796
+ prepend_length = 0
797
+ if prepend_cond is not None:
798
+ # Project the prepend conditioning to the embedding dimension
799
+ prepend_cond = self.to_prepend_embed(prepend_cond)
800
+
801
+ prepend_inputs = prepend_cond
802
+ if prepend_cond_mask is not None:
803
+ prepend_mask = prepend_cond_mask
804
+
805
+ if input_concat_cond is not None:
806
+
807
+ # Interpolate input_concat_cond to the same length as x
808
+ if input_concat_cond.shape[2] != x.shape[2]:
809
+ input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest')
810
+
811
+ x = torch.cat([x, input_concat_cond], dim=1)
812
+
813
+ # Get the batch of timestep embeddings
814
+ timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None]).to(x.dtype)) # (b, embed_dim)
815
+
816
+ # Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
817
+ if global_embed is not None:
818
+ global_embed = global_embed + timestep_embed
819
+ else:
820
+ global_embed = timestep_embed
821
+
822
+ # Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
823
+ if self.global_cond_type == "prepend":
824
+ if prepend_inputs is None:
825
+ # Prepend inputs are just the global embed, and the mask is all ones
826
+ prepend_inputs = global_embed.unsqueeze(1)
827
+ prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
828
+ else:
829
+ # Prepend inputs are the prepend conditioning + the global embed
830
+ prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1)
831
+ prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], dim=1)
832
+
833
+ prepend_length = prepend_inputs.shape[1]
834
+
835
+ x = self.preprocess_conv(x) + x
836
+
837
+ x = rearrange(x, "b c t -> b t c")
838
+
839
+ extra_args = {}
840
+
841
+ if self.global_cond_type == "adaLN":
842
+ extra_args["global_cond"] = global_embed
843
+
844
+ if self.patch_size > 1:
845
+ x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size)
846
+
847
+ if self.transformer_type == "x-transformers":
848
+ output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, **extra_args, **kwargs)
849
+ elif self.transformer_type == "continuous_transformer":
850
+ output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, return_info=return_info, **extra_args, **kwargs)
851
+
852
+ if return_info:
853
+ output, info = output
854
+ elif self.transformer_type == "mm_transformer":
855
+ output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask, **extra_args, **kwargs)
856
+
857
+ output = rearrange(output, "b t c -> b c t")[:,:,prepend_length:]
858
+
859
+ if self.patch_size > 1:
860
+ output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size)
861
+
862
+ output = self.postprocess_conv(output) + output
863
+
864
+ if return_info:
865
+ return output, info
866
+
867
+ return output
868
+
869
+ def forward(
870
+ self,
871
+ x,
872
+ timestep,
873
+ context=None,
874
+ context_mask=None,
875
+ input_concat_cond=None,
876
+ global_embed=None,
877
+ negative_global_embed=None,
878
+ prepend_cond=None,
879
+ prepend_cond_mask=None,
880
+ mask=None,
881
+ return_info=False,
882
+ control=None,
883
+ **kwargs):
884
+ return self._forward(
885
+ x,
886
+ timestep,
887
+ cross_attn_cond=context,
888
+ cross_attn_cond_mask=context_mask,
889
+ input_concat_cond=input_concat_cond,
890
+ global_embed=global_embed,
891
+ prepend_cond=prepend_cond,
892
+ prepend_cond_mask=prepend_cond_mask,
893
+ mask=mask,
894
+ return_info=return_info,
895
+ **kwargs
896
+ )
comfy/ldm/audio/embedders.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # code adapted from: https://github.com/Stability-AI/stable-audio-tools
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ from torch import Tensor
6
+ from typing import List, Union
7
+ from einops import rearrange
8
+ import math
9
+ import comfy.ops
10
+
11
+ class LearnedPositionalEmbedding(nn.Module):
12
+ """Used for continuous time"""
13
+
14
+ def __init__(self, dim: int):
15
+ super().__init__()
16
+ assert (dim % 2) == 0
17
+ half_dim = dim // 2
18
+ self.weights = nn.Parameter(torch.empty(half_dim))
19
+
20
+ def forward(self, x: Tensor) -> Tensor:
21
+ x = rearrange(x, "b -> b 1")
22
+ freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * math.pi
23
+ fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
24
+ fouriered = torch.cat((x, fouriered), dim=-1)
25
+ return fouriered
26
+
27
+ def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
28
+ return nn.Sequential(
29
+ LearnedPositionalEmbedding(dim),
30
+ comfy.ops.manual_cast.Linear(in_features=dim + 1, out_features=out_features),
31
+ )
32
+
33
+
34
+ class NumberEmbedder(nn.Module):
35
+ def __init__(
36
+ self,
37
+ features: int,
38
+ dim: int = 256,
39
+ ):
40
+ super().__init__()
41
+ self.features = features
42
+ self.embedding = TimePositionalEmbedding(dim=dim, out_features=features)
43
+
44
+ def forward(self, x: Union[List[float], Tensor]) -> Tensor:
45
+ if not torch.is_tensor(x):
46
+ device = next(self.embedding.parameters()).device
47
+ x = torch.tensor(x, device=device)
48
+ assert isinstance(x, Tensor)
49
+ shape = x.shape
50
+ x = rearrange(x, "... -> (...)")
51
+ embedding = self.embedding(x)
52
+ x = embedding.view(*shape, self.features)
53
+ return x # type: ignore
54
+
55
+
56
+ class Conditioner(nn.Module):
57
+ def __init__(
58
+ self,
59
+ dim: int,
60
+ output_dim: int,
61
+ project_out: bool = False
62
+ ):
63
+
64
+ super().__init__()
65
+
66
+ self.dim = dim
67
+ self.output_dim = output_dim
68
+ self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity()
69
+
70
+ def forward(self, x):
71
+ raise NotImplementedError()
72
+
73
+ class NumberConditioner(Conditioner):
74
+ '''
75
+ Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings
76
+ '''
77
+ def __init__(self,
78
+ output_dim: int,
79
+ min_val: float=0,
80
+ max_val: float=1
81
+ ):
82
+ super().__init__(output_dim, output_dim)
83
+
84
+ self.min_val = min_val
85
+ self.max_val = max_val
86
+
87
+ self.embedder = NumberEmbedder(features=output_dim)
88
+
89
+ def forward(self, floats, device=None):
90
+ # Cast the inputs to floats
91
+ floats = [float(x) for x in floats]
92
+
93
+ if device is None:
94
+ device = next(self.embedder.parameters()).device
95
+
96
+ floats = torch.tensor(floats).to(device)
97
+
98
+ floats = floats.clamp(self.min_val, self.max_val)
99
+
100
+ normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val)
101
+
102
+ # Cast floats to same type as embedder
103
+ embedder_dtype = next(self.embedder.parameters()).dtype
104
+ normalized_floats = normalized_floats.to(embedder_dtype)
105
+
106
+ float_embeds = self.embedder(normalized_floats).unsqueeze(1)
107
+
108
+ return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)]
comfy/ldm/aura/mmdit.py ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #AuraFlow MMDiT
2
+ #Originally written by the AuraFlow Authors
3
+
4
+ import math
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+
10
+ from comfy.ldm.modules.attention import optimized_attention
11
+ import comfy.ops
12
+ import comfy.ldm.common_dit
13
+
14
+ def modulate(x, shift, scale):
15
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
16
+
17
+
18
+ def find_multiple(n: int, k: int) -> int:
19
+ if n % k == 0:
20
+ return n
21
+ return n + k - (n % k)
22
+
23
+
24
+ class MLP(nn.Module):
25
+ def __init__(self, dim, hidden_dim=None, dtype=None, device=None, operations=None) -> None:
26
+ super().__init__()
27
+ if hidden_dim is None:
28
+ hidden_dim = 4 * dim
29
+
30
+ n_hidden = int(2 * hidden_dim / 3)
31
+ n_hidden = find_multiple(n_hidden, 256)
32
+
33
+ self.c_fc1 = operations.Linear(dim, n_hidden, bias=False, dtype=dtype, device=device)
34
+ self.c_fc2 = operations.Linear(dim, n_hidden, bias=False, dtype=dtype, device=device)
35
+ self.c_proj = operations.Linear(n_hidden, dim, bias=False, dtype=dtype, device=device)
36
+
37
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
38
+ x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
39
+ x = self.c_proj(x)
40
+ return x
41
+
42
+
43
+ class MultiHeadLayerNorm(nn.Module):
44
+ def __init__(self, hidden_size=None, eps=1e-5, dtype=None, device=None):
45
+ # Copy pasta from https://github.com/huggingface/transformers/blob/e5f71ecaae50ea476d1e12351003790273c4b2ed/src/transformers/models/cohere/modeling_cohere.py#L78
46
+
47
+ super().__init__()
48
+ self.weight = nn.Parameter(torch.empty(hidden_size, dtype=dtype, device=device))
49
+ self.variance_epsilon = eps
50
+
51
+ def forward(self, hidden_states):
52
+ input_dtype = hidden_states.dtype
53
+ hidden_states = hidden_states.to(torch.float32)
54
+ mean = hidden_states.mean(-1, keepdim=True)
55
+ variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
56
+ hidden_states = (hidden_states - mean) * torch.rsqrt(
57
+ variance + self.variance_epsilon
58
+ )
59
+ hidden_states = self.weight.to(torch.float32) * hidden_states
60
+ return hidden_states.to(input_dtype)
61
+
62
+ class SingleAttention(nn.Module):
63
+ def __init__(self, dim, n_heads, mh_qknorm=False, dtype=None, device=None, operations=None):
64
+ super().__init__()
65
+
66
+ self.n_heads = n_heads
67
+ self.head_dim = dim // n_heads
68
+
69
+ # this is for cond
70
+ self.w1q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
71
+ self.w1k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
72
+ self.w1v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
73
+ self.w1o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
74
+
75
+ self.q_norm1 = (
76
+ MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
77
+ if mh_qknorm
78
+ else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
79
+ )
80
+ self.k_norm1 = (
81
+ MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
82
+ if mh_qknorm
83
+ else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
84
+ )
85
+
86
+ #@torch.compile()
87
+ def forward(self, c):
88
+
89
+ bsz, seqlen1, _ = c.shape
90
+
91
+ q, k, v = self.w1q(c), self.w1k(c), self.w1v(c)
92
+ q = q.view(bsz, seqlen1, self.n_heads, self.head_dim)
93
+ k = k.view(bsz, seqlen1, self.n_heads, self.head_dim)
94
+ v = v.view(bsz, seqlen1, self.n_heads, self.head_dim)
95
+ q, k = self.q_norm1(q), self.k_norm1(k)
96
+
97
+ output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
98
+ c = self.w1o(output)
99
+ return c
100
+
101
+
102
+
103
+ class DoubleAttention(nn.Module):
104
+ def __init__(self, dim, n_heads, mh_qknorm=False, dtype=None, device=None, operations=None):
105
+ super().__init__()
106
+
107
+ self.n_heads = n_heads
108
+ self.head_dim = dim // n_heads
109
+
110
+ # this is for cond
111
+ self.w1q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
112
+ self.w1k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
113
+ self.w1v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
114
+ self.w1o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
115
+
116
+ # this is for x
117
+ self.w2q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
118
+ self.w2k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
119
+ self.w2v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
120
+ self.w2o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
121
+
122
+ self.q_norm1 = (
123
+ MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
124
+ if mh_qknorm
125
+ else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
126
+ )
127
+ self.k_norm1 = (
128
+ MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
129
+ if mh_qknorm
130
+ else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
131
+ )
132
+
133
+ self.q_norm2 = (
134
+ MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
135
+ if mh_qknorm
136
+ else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
137
+ )
138
+ self.k_norm2 = (
139
+ MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
140
+ if mh_qknorm
141
+ else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
142
+ )
143
+
144
+
145
+ #@torch.compile()
146
+ def forward(self, c, x):
147
+
148
+ bsz, seqlen1, _ = c.shape
149
+ bsz, seqlen2, _ = x.shape
150
+
151
+ cq, ck, cv = self.w1q(c), self.w1k(c), self.w1v(c)
152
+ cq = cq.view(bsz, seqlen1, self.n_heads, self.head_dim)
153
+ ck = ck.view(bsz, seqlen1, self.n_heads, self.head_dim)
154
+ cv = cv.view(bsz, seqlen1, self.n_heads, self.head_dim)
155
+ cq, ck = self.q_norm1(cq), self.k_norm1(ck)
156
+
157
+ xq, xk, xv = self.w2q(x), self.w2k(x), self.w2v(x)
158
+ xq = xq.view(bsz, seqlen2, self.n_heads, self.head_dim)
159
+ xk = xk.view(bsz, seqlen2, self.n_heads, self.head_dim)
160
+ xv = xv.view(bsz, seqlen2, self.n_heads, self.head_dim)
161
+ xq, xk = self.q_norm2(xq), self.k_norm2(xk)
162
+
163
+ # concat all
164
+ q, k, v = (
165
+ torch.cat([cq, xq], dim=1),
166
+ torch.cat([ck, xk], dim=1),
167
+ torch.cat([cv, xv], dim=1),
168
+ )
169
+
170
+ output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
171
+
172
+ c, x = output.split([seqlen1, seqlen2], dim=1)
173
+ c = self.w1o(c)
174
+ x = self.w2o(x)
175
+
176
+ return c, x
177
+
178
+
179
+ class MMDiTBlock(nn.Module):
180
+ def __init__(self, dim, heads=8, global_conddim=1024, is_last=False, dtype=None, device=None, operations=None):
181
+ super().__init__()
182
+
183
+ self.normC1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
184
+ self.normC2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
185
+ if not is_last:
186
+ self.mlpC = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
187
+ self.modC = nn.Sequential(
188
+ nn.SiLU(),
189
+ operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device),
190
+ )
191
+ else:
192
+ self.modC = nn.Sequential(
193
+ nn.SiLU(),
194
+ operations.Linear(global_conddim, 2 * dim, bias=False, dtype=dtype, device=device),
195
+ )
196
+
197
+ self.normX1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
198
+ self.normX2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
199
+ self.mlpX = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
200
+ self.modX = nn.Sequential(
201
+ nn.SiLU(),
202
+ operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device),
203
+ )
204
+
205
+ self.attn = DoubleAttention(dim, heads, dtype=dtype, device=device, operations=operations)
206
+ self.is_last = is_last
207
+
208
+ #@torch.compile()
209
+ def forward(self, c, x, global_cond, **kwargs):
210
+
211
+ cres, xres = c, x
212
+
213
+ cshift_msa, cscale_msa, cgate_msa, cshift_mlp, cscale_mlp, cgate_mlp = (
214
+ self.modC(global_cond).chunk(6, dim=1)
215
+ )
216
+
217
+ c = modulate(self.normC1(c), cshift_msa, cscale_msa)
218
+
219
+ # xpath
220
+ xshift_msa, xscale_msa, xgate_msa, xshift_mlp, xscale_mlp, xgate_mlp = (
221
+ self.modX(global_cond).chunk(6, dim=1)
222
+ )
223
+
224
+ x = modulate(self.normX1(x), xshift_msa, xscale_msa)
225
+
226
+ # attention
227
+ c, x = self.attn(c, x)
228
+
229
+
230
+ c = self.normC2(cres + cgate_msa.unsqueeze(1) * c)
231
+ c = cgate_mlp.unsqueeze(1) * self.mlpC(modulate(c, cshift_mlp, cscale_mlp))
232
+ c = cres + c
233
+
234
+ x = self.normX2(xres + xgate_msa.unsqueeze(1) * x)
235
+ x = xgate_mlp.unsqueeze(1) * self.mlpX(modulate(x, xshift_mlp, xscale_mlp))
236
+ x = xres + x
237
+
238
+ return c, x
239
+
240
+ class DiTBlock(nn.Module):
241
+ # like MMDiTBlock, but it only has X
242
+ def __init__(self, dim, heads=8, global_conddim=1024, dtype=None, device=None, operations=None):
243
+ super().__init__()
244
+
245
+ self.norm1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
246
+ self.norm2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
247
+
248
+ self.modCX = nn.Sequential(
249
+ nn.SiLU(),
250
+ operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device),
251
+ )
252
+
253
+ self.attn = SingleAttention(dim, heads, dtype=dtype, device=device, operations=operations)
254
+ self.mlp = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
255
+
256
+ #@torch.compile()
257
+ def forward(self, cx, global_cond, **kwargs):
258
+ cxres = cx
259
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.modCX(
260
+ global_cond
261
+ ).chunk(6, dim=1)
262
+ cx = modulate(self.norm1(cx), shift_msa, scale_msa)
263
+ cx = self.attn(cx)
264
+ cx = self.norm2(cxres + gate_msa.unsqueeze(1) * cx)
265
+ mlpout = self.mlp(modulate(cx, shift_mlp, scale_mlp))
266
+ cx = gate_mlp.unsqueeze(1) * mlpout
267
+
268
+ cx = cxres + cx
269
+
270
+ return cx
271
+
272
+
273
+
274
+ class TimestepEmbedder(nn.Module):
275
+ def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
276
+ super().__init__()
277
+ self.mlp = nn.Sequential(
278
+ operations.Linear(frequency_embedding_size, hidden_size, dtype=dtype, device=device),
279
+ nn.SiLU(),
280
+ operations.Linear(hidden_size, hidden_size, dtype=dtype, device=device),
281
+ )
282
+ self.frequency_embedding_size = frequency_embedding_size
283
+
284
+ @staticmethod
285
+ def timestep_embedding(t, dim, max_period=10000):
286
+ half = dim // 2
287
+ freqs = 1000 * torch.exp(
288
+ -math.log(max_period) * torch.arange(start=0, end=half) / half
289
+ ).to(t.device)
290
+ args = t[:, None] * freqs[None]
291
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
292
+ if dim % 2:
293
+ embedding = torch.cat(
294
+ [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
295
+ )
296
+ return embedding
297
+
298
+ #@torch.compile()
299
+ def forward(self, t, dtype):
300
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
301
+ t_emb = self.mlp(t_freq)
302
+ return t_emb
303
+
304
+
305
+ class MMDiT(nn.Module):
306
+ def __init__(
307
+ self,
308
+ in_channels=4,
309
+ out_channels=4,
310
+ patch_size=2,
311
+ dim=3072,
312
+ n_layers=36,
313
+ n_double_layers=4,
314
+ n_heads=12,
315
+ global_conddim=3072,
316
+ cond_seq_dim=2048,
317
+ max_seq=32 * 32,
318
+ device=None,
319
+ dtype=None,
320
+ operations=None,
321
+ ):
322
+ super().__init__()
323
+ self.dtype = dtype
324
+
325
+ self.t_embedder = TimestepEmbedder(global_conddim, dtype=dtype, device=device, operations=operations)
326
+
327
+ self.cond_seq_linear = operations.Linear(
328
+ cond_seq_dim, dim, bias=False, dtype=dtype, device=device
329
+ ) # linear for something like text sequence.
330
+ self.init_x_linear = operations.Linear(
331
+ patch_size * patch_size * in_channels, dim, dtype=dtype, device=device
332
+ ) # init linear for patchified image.
333
+
334
+ self.positional_encoding = nn.Parameter(torch.empty(1, max_seq, dim, dtype=dtype, device=device))
335
+ self.register_tokens = nn.Parameter(torch.empty(1, 8, dim, dtype=dtype, device=device))
336
+
337
+ self.double_layers = nn.ModuleList([])
338
+ self.single_layers = nn.ModuleList([])
339
+
340
+
341
+ for idx in range(n_double_layers):
342
+ self.double_layers.append(
343
+ MMDiTBlock(dim, n_heads, global_conddim, is_last=(idx == n_layers - 1), dtype=dtype, device=device, operations=operations)
344
+ )
345
+
346
+ for idx in range(n_double_layers, n_layers):
347
+ self.single_layers.append(
348
+ DiTBlock(dim, n_heads, global_conddim, dtype=dtype, device=device, operations=operations)
349
+ )
350
+
351
+
352
+ self.final_linear = operations.Linear(
353
+ dim, patch_size * patch_size * out_channels, bias=False, dtype=dtype, device=device
354
+ )
355
+
356
+ self.modF = nn.Sequential(
357
+ nn.SiLU(),
358
+ operations.Linear(global_conddim, 2 * dim, bias=False, dtype=dtype, device=device),
359
+ )
360
+
361
+ self.out_channels = out_channels
362
+ self.patch_size = patch_size
363
+ self.n_double_layers = n_double_layers
364
+ self.n_layers = n_layers
365
+
366
+ self.h_max = round(max_seq**0.5)
367
+ self.w_max = round(max_seq**0.5)
368
+
369
+ @torch.no_grad()
370
+ def extend_pe(self, init_dim=(16, 16), target_dim=(64, 64)):
371
+ # extend pe
372
+ pe_data = self.positional_encoding.data.squeeze(0)[: init_dim[0] * init_dim[1]]
373
+
374
+ pe_as_2d = pe_data.view(init_dim[0], init_dim[1], -1).permute(2, 0, 1)
375
+
376
+ # now we need to extend this to target_dim. for this we will use interpolation.
377
+ # we will use torch.nn.functional.interpolate
378
+ pe_as_2d = F.interpolate(
379
+ pe_as_2d.unsqueeze(0), size=target_dim, mode="bilinear"
380
+ )
381
+ pe_new = pe_as_2d.squeeze(0).permute(1, 2, 0).flatten(0, 1)
382
+ self.positional_encoding.data = pe_new.unsqueeze(0).contiguous()
383
+ self.h_max, self.w_max = target_dim
384
+
385
+ def pe_selection_index_based_on_dim(self, h, w):
386
+ h_p, w_p = h // self.patch_size, w // self.patch_size
387
+ original_pe_indexes = torch.arange(self.positional_encoding.shape[1])
388
+ original_pe_indexes = original_pe_indexes.view(self.h_max, self.w_max)
389
+ starth = self.h_max // 2 - h_p // 2
390
+ endh =starth + h_p
391
+ startw = self.w_max // 2 - w_p // 2
392
+ endw = startw + w_p
393
+ original_pe_indexes = original_pe_indexes[
394
+ starth:endh, startw:endw
395
+ ]
396
+ return original_pe_indexes.flatten()
397
+
398
+ def unpatchify(self, x, h, w):
399
+ c = self.out_channels
400
+ p = self.patch_size
401
+
402
+ x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
403
+ x = torch.einsum("nhwpqc->nchpwq", x)
404
+ imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
405
+ return imgs
406
+
407
+ def patchify(self, x):
408
+ B, C, H, W = x.size()
409
+ x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
410
+ x = x.view(
411
+ B,
412
+ C,
413
+ (H + 1) // self.patch_size,
414
+ self.patch_size,
415
+ (W + 1) // self.patch_size,
416
+ self.patch_size,
417
+ )
418
+ x = x.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2)
419
+ return x
420
+
421
+ def apply_pos_embeds(self, x, h, w):
422
+ h = (h + 1) // self.patch_size
423
+ w = (w + 1) // self.patch_size
424
+ max_dim = max(h, w)
425
+
426
+ cur_dim = self.h_max
427
+ pos_encoding = comfy.ops.cast_to_input(self.positional_encoding.reshape(1, cur_dim, cur_dim, -1), x)
428
+
429
+ if max_dim > cur_dim:
430
+ pos_encoding = F.interpolate(pos_encoding.movedim(-1, 1), (max_dim, max_dim), mode="bilinear").movedim(1, -1)
431
+ cur_dim = max_dim
432
+
433
+ from_h = (cur_dim - h) // 2
434
+ from_w = (cur_dim - w) // 2
435
+ pos_encoding = pos_encoding[:,from_h:from_h+h,from_w:from_w+w]
436
+ return x + pos_encoding.reshape(1, -1, self.positional_encoding.shape[-1])
437
+
438
+ def forward(self, x, timestep, context, transformer_options={}, **kwargs):
439
+ patches_replace = transformer_options.get("patches_replace", {})
440
+ # patchify x, add PE
441
+ b, c, h, w = x.shape
442
+
443
+ # pe_indexes = self.pe_selection_index_based_on_dim(h, w)
444
+ # print(pe_indexes, pe_indexes.shape)
445
+
446
+ x = self.init_x_linear(self.patchify(x)) # B, T_x, D
447
+ x = self.apply_pos_embeds(x, h, w)
448
+ # x = x + self.positional_encoding[:, : x.size(1)].to(device=x.device, dtype=x.dtype)
449
+ # x = x + self.positional_encoding[:, pe_indexes].to(device=x.device, dtype=x.dtype)
450
+
451
+ # process conditions for MMDiT Blocks
452
+ c_seq = context # B, T_c, D_c
453
+ t = timestep
454
+
455
+ c = self.cond_seq_linear(c_seq) # B, T_c, D
456
+ c = torch.cat([comfy.ops.cast_to_input(self.register_tokens, c).repeat(c.size(0), 1, 1), c], dim=1)
457
+
458
+ global_cond = self.t_embedder(t, x.dtype) # B, D
459
+
460
+ blocks_replace = patches_replace.get("dit", {})
461
+ if len(self.double_layers) > 0:
462
+ for i, layer in enumerate(self.double_layers):
463
+ if ("double_block", i) in blocks_replace:
464
+ def block_wrap(args):
465
+ out = {}
466
+ out["txt"], out["img"] = layer(args["txt"],
467
+ args["img"],
468
+ args["vec"])
469
+ return out
470
+ out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond}, {"original_block": block_wrap})
471
+ c = out["txt"]
472
+ x = out["img"]
473
+ else:
474
+ c, x = layer(c, x, global_cond, **kwargs)
475
+
476
+ if len(self.single_layers) > 0:
477
+ c_len = c.size(1)
478
+ cx = torch.cat([c, x], dim=1)
479
+ for i, layer in enumerate(self.single_layers):
480
+ if ("single_block", i) in blocks_replace:
481
+ def block_wrap(args):
482
+ out = {}
483
+ out["img"] = layer(args["img"], args["vec"])
484
+ return out
485
+
486
+ out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond}, {"original_block": block_wrap})
487
+ cx = out["img"]
488
+ else:
489
+ cx = layer(cx, global_cond, **kwargs)
490
+
491
+ x = cx[:, c_len:]
492
+
493
+ fshift, fscale = self.modF(global_cond).chunk(2, dim=1)
494
+
495
+ x = modulate(x, fshift, fscale)
496
+ x = self.final_linear(x)
497
+ x = self.unpatchify(x, (h + 1) // self.patch_size, (w + 1) // self.patch_size)[:,:,:h,:w]
498
+ return x
comfy/ldm/cascade/common.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file is part of ComfyUI.
3
+ Copyright (C) 2024 Stability AI
4
+
5
+ This program is free software: you can redistribute it and/or modify
6
+ it under the terms of the GNU General Public License as published by
7
+ the Free Software Foundation, either version 3 of the License, or
8
+ (at your option) any later version.
9
+
10
+ This program is distributed in the hope that it will be useful,
11
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
+ GNU General Public License for more details.
14
+
15
+ You should have received a copy of the GNU General Public License
16
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
17
+ """
18
+
19
+ import torch
20
+ import torch.nn as nn
21
+ from comfy.ldm.modules.attention import optimized_attention
22
+ import comfy.ops
23
+
24
+ class OptimizedAttention(nn.Module):
25
+ def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
26
+ super().__init__()
27
+ self.heads = nhead
28
+
29
+ self.to_q = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
30
+ self.to_k = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
31
+ self.to_v = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
32
+
33
+ self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
34
+
35
+ def forward(self, q, k, v):
36
+ q = self.to_q(q)
37
+ k = self.to_k(k)
38
+ v = self.to_v(v)
39
+
40
+ out = optimized_attention(q, k, v, self.heads)
41
+
42
+ return self.out_proj(out)
43
+
44
+ class Attention2D(nn.Module):
45
+ def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
46
+ super().__init__()
47
+ self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations)
48
+ # self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device)
49
+
50
+ def forward(self, x, kv, self_attn=False):
51
+ orig_shape = x.shape
52
+ x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
53
+ if self_attn:
54
+ kv = torch.cat([x, kv], dim=1)
55
+ # x = self.attn(x, kv, kv, need_weights=False)[0]
56
+ x = self.attn(x, kv, kv)
57
+ x = x.permute(0, 2, 1).view(*orig_shape)
58
+ return x
59
+
60
+
61
+ def LayerNorm2d_op(operations):
62
+ class LayerNorm2d(operations.LayerNorm):
63
+ def __init__(self, *args, **kwargs):
64
+ super().__init__(*args, **kwargs)
65
+
66
+ def forward(self, x):
67
+ return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
68
+ return LayerNorm2d
69
+
70
+ class GlobalResponseNorm(nn.Module):
71
+ "from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
72
+ def __init__(self, dim, dtype=None, device=None):
73
+ super().__init__()
74
+ self.gamma = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
75
+ self.beta = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
76
+
77
+ def forward(self, x):
78
+ Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
79
+ Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
80
+ return comfy.ops.cast_to_input(self.gamma, x) * (x * Nx) + comfy.ops.cast_to_input(self.beta, x) + x
81
+
82
+
83
+ class ResBlock(nn.Module):
84
+ def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, dtype=None, device=None, operations=None): # , num_heads=4, expansion=2):
85
+ super().__init__()
86
+ self.depthwise = operations.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c, dtype=dtype, device=device)
87
+ # self.depthwise = SAMBlock(c, num_heads, expansion)
88
+ self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
89
+ self.channelwise = nn.Sequential(
90
+ operations.Linear(c + c_skip, c * 4, dtype=dtype, device=device),
91
+ nn.GELU(),
92
+ GlobalResponseNorm(c * 4, dtype=dtype, device=device),
93
+ nn.Dropout(dropout),
94
+ operations.Linear(c * 4, c, dtype=dtype, device=device)
95
+ )
96
+
97
+ def forward(self, x, x_skip=None):
98
+ x_res = x
99
+ x = self.norm(self.depthwise(x))
100
+ if x_skip is not None:
101
+ x = torch.cat([x, x_skip], dim=1)
102
+ x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
103
+ return x + x_res
104
+
105
+
106
+ class AttnBlock(nn.Module):
107
+ def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, dtype=None, device=None, operations=None):
108
+ super().__init__()
109
+ self.self_attn = self_attn
110
+ self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
111
+ self.attention = Attention2D(c, nhead, dropout, dtype=dtype, device=device, operations=operations)
112
+ self.kv_mapper = nn.Sequential(
113
+ nn.SiLU(),
114
+ operations.Linear(c_cond, c, dtype=dtype, device=device)
115
+ )
116
+
117
+ def forward(self, x, kv):
118
+ kv = self.kv_mapper(kv)
119
+ x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
120
+ return x
121
+
122
+
123
+ class FeedForwardBlock(nn.Module):
124
+ def __init__(self, c, dropout=0.0, dtype=None, device=None, operations=None):
125
+ super().__init__()
126
+ self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
127
+ self.channelwise = nn.Sequential(
128
+ operations.Linear(c, c * 4, dtype=dtype, device=device),
129
+ nn.GELU(),
130
+ GlobalResponseNorm(c * 4, dtype=dtype, device=device),
131
+ nn.Dropout(dropout),
132
+ operations.Linear(c * 4, c, dtype=dtype, device=device)
133
+ )
134
+
135
+ def forward(self, x):
136
+ x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
137
+ return x
138
+
139
+
140
+ class TimestepBlock(nn.Module):
141
+ def __init__(self, c, c_timestep, conds=['sca'], dtype=None, device=None, operations=None):
142
+ super().__init__()
143
+ self.mapper = operations.Linear(c_timestep, c * 2, dtype=dtype, device=device)
144
+ self.conds = conds
145
+ for cname in conds:
146
+ setattr(self, f"mapper_{cname}", operations.Linear(c_timestep, c * 2, dtype=dtype, device=device))
147
+
148
+ def forward(self, x, t):
149
+ t = t.chunk(len(self.conds) + 1, dim=1)
150
+ a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
151
+ for i, c in enumerate(self.conds):
152
+ ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
153
+ a, b = a + ac, b + bc
154
+ return x * (1 + a) + b
comfy/ldm/cascade/controlnet.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file is part of ComfyUI.
3
+ Copyright (C) 2024 Stability AI
4
+
5
+ This program is free software: you can redistribute it and/or modify
6
+ it under the terms of the GNU General Public License as published by
7
+ the Free Software Foundation, either version 3 of the License, or
8
+ (at your option) any later version.
9
+
10
+ This program is distributed in the hope that it will be useful,
11
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
+ GNU General Public License for more details.
14
+
15
+ You should have received a copy of the GNU General Public License
16
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
17
+ """
18
+
19
+ import torchvision
20
+ from torch import nn
21
+ from .common import LayerNorm2d_op
22
+
23
+
24
+ class CNetResBlock(nn.Module):
25
+ def __init__(self, c, dtype=None, device=None, operations=None):
26
+ super().__init__()
27
+ self.blocks = nn.Sequential(
28
+ LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
29
+ nn.GELU(),
30
+ operations.Conv2d(c, c, kernel_size=3, padding=1),
31
+ LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
32
+ nn.GELU(),
33
+ operations.Conv2d(c, c, kernel_size=3, padding=1),
34
+ )
35
+
36
+ def forward(self, x):
37
+ return x + self.blocks(x)
38
+
39
+
40
+ class ControlNet(nn.Module):
41
+ def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None, dtype=None, device=None, operations=nn):
42
+ super().__init__()
43
+ if bottleneck_mode is None:
44
+ bottleneck_mode = 'effnet'
45
+ self.proj_blocks = proj_blocks
46
+ if bottleneck_mode == 'effnet':
47
+ embd_channels = 1280
48
+ self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
49
+ if c_in != 3:
50
+ in_weights = self.backbone[0][0].weight.data
51
+ self.backbone[0][0] = operations.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False, dtype=dtype, device=device)
52
+ if c_in > 3:
53
+ # nn.init.constant_(self.backbone[0][0].weight, 0)
54
+ self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone()
55
+ else:
56
+ self.backbone[0][0].weight.data = in_weights[:, :c_in].clone()
57
+ elif bottleneck_mode == 'simple':
58
+ embd_channels = c_in
59
+ self.backbone = nn.Sequential(
60
+ operations.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1, dtype=dtype, device=device),
61
+ nn.LeakyReLU(0.2, inplace=True),
62
+ operations.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1, dtype=dtype, device=device),
63
+ )
64
+ elif bottleneck_mode == 'large':
65
+ self.backbone = nn.Sequential(
66
+ operations.Conv2d(c_in, 4096 * 4, kernel_size=1, dtype=dtype, device=device),
67
+ nn.LeakyReLU(0.2, inplace=True),
68
+ operations.Conv2d(4096 * 4, 1024, kernel_size=1, dtype=dtype, device=device),
69
+ *[CNetResBlock(1024, dtype=dtype, device=device, operations=operations) for _ in range(8)],
70
+ operations.Conv2d(1024, 1280, kernel_size=1, dtype=dtype, device=device),
71
+ )
72
+ embd_channels = 1280
73
+ else:
74
+ raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}')
75
+ self.projections = nn.ModuleList()
76
+ for _ in range(len(proj_blocks)):
77
+ self.projections.append(nn.Sequential(
78
+ operations.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False, dtype=dtype, device=device),
79
+ nn.LeakyReLU(0.2, inplace=True),
80
+ operations.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False, dtype=dtype, device=device),
81
+ ))
82
+ # nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection
83
+ self.xl = False
84
+ self.input_channels = c_in
85
+ self.unshuffle_amount = 8
86
+
87
+ def forward(self, x):
88
+ x = self.backbone(x)
89
+ proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)]
90
+ for i, idx in enumerate(self.proj_blocks):
91
+ proj_outputs[idx] = self.projections[i](x)
92
+ return {"input": proj_outputs[::-1]}
comfy/ldm/cascade/stage_a.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file is part of ComfyUI.
3
+ Copyright (C) 2024 Stability AI
4
+
5
+ This program is free software: you can redistribute it and/or modify
6
+ it under the terms of the GNU General Public License as published by
7
+ the Free Software Foundation, either version 3 of the License, or
8
+ (at your option) any later version.
9
+
10
+ This program is distributed in the hope that it will be useful,
11
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
+ GNU General Public License for more details.
14
+
15
+ You should have received a copy of the GNU General Public License
16
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
17
+ """
18
+
19
+ import torch
20
+ from torch import nn
21
+ from torch.autograd import Function
22
+
23
+ class vector_quantize(Function):
24
+ @staticmethod
25
+ def forward(ctx, x, codebook):
26
+ with torch.no_grad():
27
+ codebook_sqr = torch.sum(codebook ** 2, dim=1)
28
+ x_sqr = torch.sum(x ** 2, dim=1, keepdim=True)
29
+
30
+ dist = torch.addmm(codebook_sqr + x_sqr, x, codebook.t(), alpha=-2.0, beta=1.0)
31
+ _, indices = dist.min(dim=1)
32
+
33
+ ctx.save_for_backward(indices, codebook)
34
+ ctx.mark_non_differentiable(indices)
35
+
36
+ nn = torch.index_select(codebook, 0, indices)
37
+ return nn, indices
38
+
39
+ @staticmethod
40
+ def backward(ctx, grad_output, grad_indices):
41
+ grad_inputs, grad_codebook = None, None
42
+
43
+ if ctx.needs_input_grad[0]:
44
+ grad_inputs = grad_output.clone()
45
+ if ctx.needs_input_grad[1]:
46
+ # Gradient wrt. the codebook
47
+ indices, codebook = ctx.saved_tensors
48
+
49
+ grad_codebook = torch.zeros_like(codebook)
50
+ grad_codebook.index_add_(0, indices, grad_output)
51
+
52
+ return (grad_inputs, grad_codebook)
53
+
54
+
55
+ class VectorQuantize(nn.Module):
56
+ def __init__(self, embedding_size, k, ema_decay=0.99, ema_loss=False):
57
+ """
58
+ Takes an input of variable size (as long as the last dimension matches the embedding size).
59
+ Returns one tensor containing the nearest neigbour embeddings to each of the inputs,
60
+ with the same size as the input, vq and commitment components for the loss as a touple
61
+ in the second output and the indices of the quantized vectors in the third:
62
+ quantized, (vq_loss, commit_loss), indices
63
+ """
64
+ super(VectorQuantize, self).__init__()
65
+
66
+ self.codebook = nn.Embedding(k, embedding_size)
67
+ self.codebook.weight.data.uniform_(-1./k, 1./k)
68
+ self.vq = vector_quantize.apply
69
+
70
+ self.ema_decay = ema_decay
71
+ self.ema_loss = ema_loss
72
+ if ema_loss:
73
+ self.register_buffer('ema_element_count', torch.ones(k))
74
+ self.register_buffer('ema_weight_sum', torch.zeros_like(self.codebook.weight))
75
+
76
+ def _laplace_smoothing(self, x, epsilon):
77
+ n = torch.sum(x)
78
+ return ((x + epsilon) / (n + x.size(0) * epsilon) * n)
79
+
80
+ def _updateEMA(self, z_e_x, indices):
81
+ mask = nn.functional.one_hot(indices, self.ema_element_count.size(0)).float()
82
+ elem_count = mask.sum(dim=0)
83
+ weight_sum = torch.mm(mask.t(), z_e_x)
84
+
85
+ self.ema_element_count = (self.ema_decay * self.ema_element_count) + ((1-self.ema_decay) * elem_count)
86
+ self.ema_element_count = self._laplace_smoothing(self.ema_element_count, 1e-5)
87
+ self.ema_weight_sum = (self.ema_decay * self.ema_weight_sum) + ((1-self.ema_decay) * weight_sum)
88
+
89
+ self.codebook.weight.data = self.ema_weight_sum / self.ema_element_count.unsqueeze(-1)
90
+
91
+ def idx2vq(self, idx, dim=-1):
92
+ q_idx = self.codebook(idx)
93
+ if dim != -1:
94
+ q_idx = q_idx.movedim(-1, dim)
95
+ return q_idx
96
+
97
+ def forward(self, x, get_losses=True, dim=-1):
98
+ if dim != -1:
99
+ x = x.movedim(dim, -1)
100
+ z_e_x = x.contiguous().view(-1, x.size(-1)) if len(x.shape) > 2 else x
101
+ z_q_x, indices = self.vq(z_e_x, self.codebook.weight.detach())
102
+ vq_loss, commit_loss = None, None
103
+ if self.ema_loss and self.training:
104
+ self._updateEMA(z_e_x.detach(), indices.detach())
105
+ # pick the graded embeddings after updating the codebook in order to have a more accurate commitment loss
106
+ z_q_x_grd = torch.index_select(self.codebook.weight, dim=0, index=indices)
107
+ if get_losses:
108
+ vq_loss = (z_q_x_grd - z_e_x.detach()).pow(2).mean()
109
+ commit_loss = (z_e_x - z_q_x_grd.detach()).pow(2).mean()
110
+
111
+ z_q_x = z_q_x.view(x.shape)
112
+ if dim != -1:
113
+ z_q_x = z_q_x.movedim(-1, dim)
114
+ return z_q_x, (vq_loss, commit_loss), indices.view(x.shape[:-1])
115
+
116
+
117
+ class ResBlock(nn.Module):
118
+ def __init__(self, c, c_hidden):
119
+ super().__init__()
120
+ # depthwise/attention
121
+ self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
122
+ self.depthwise = nn.Sequential(
123
+ nn.ReplicationPad2d(1),
124
+ nn.Conv2d(c, c, kernel_size=3, groups=c)
125
+ )
126
+
127
+ # channelwise
128
+ self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
129
+ self.channelwise = nn.Sequential(
130
+ nn.Linear(c, c_hidden),
131
+ nn.GELU(),
132
+ nn.Linear(c_hidden, c),
133
+ )
134
+
135
+ self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
136
+
137
+ # Init weights
138
+ def _basic_init(module):
139
+ if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
140
+ torch.nn.init.xavier_uniform_(module.weight)
141
+ if module.bias is not None:
142
+ nn.init.constant_(module.bias, 0)
143
+
144
+ self.apply(_basic_init)
145
+
146
+ def _norm(self, x, norm):
147
+ return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
148
+
149
+ def forward(self, x):
150
+ mods = self.gammas
151
+
152
+ x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1]
153
+ try:
154
+ x = x + self.depthwise(x_temp) * mods[2]
155
+ except: #operation not implemented for bf16
156
+ x_temp = self.depthwise[0](x_temp.float()).to(x.dtype)
157
+ x = x + self.depthwise[1](x_temp) * mods[2]
158
+
159
+ x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4]
160
+ x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5]
161
+
162
+ return x
163
+
164
+
165
+ class StageA(nn.Module):
166
+ def __init__(self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192):
167
+ super().__init__()
168
+ self.c_latent = c_latent
169
+ c_levels = [c_hidden // (2 ** i) for i in reversed(range(levels))]
170
+
171
+ # Encoder blocks
172
+ self.in_block = nn.Sequential(
173
+ nn.PixelUnshuffle(2),
174
+ nn.Conv2d(3 * 4, c_levels[0], kernel_size=1)
175
+ )
176
+ down_blocks = []
177
+ for i in range(levels):
178
+ if i > 0:
179
+ down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
180
+ block = ResBlock(c_levels[i], c_levels[i] * 4)
181
+ down_blocks.append(block)
182
+ down_blocks.append(nn.Sequential(
183
+ nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
184
+ nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
185
+ ))
186
+ self.down_blocks = nn.Sequential(*down_blocks)
187
+ self.down_blocks[0]
188
+
189
+ self.codebook_size = codebook_size
190
+ self.vquantizer = VectorQuantize(c_latent, k=codebook_size)
191
+
192
+ # Decoder blocks
193
+ up_blocks = [nn.Sequential(
194
+ nn.Conv2d(c_latent, c_levels[-1], kernel_size=1)
195
+ )]
196
+ for i in range(levels):
197
+ for j in range(bottleneck_blocks if i == 0 else 1):
198
+ block = ResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4)
199
+ up_blocks.append(block)
200
+ if i < levels - 1:
201
+ up_blocks.append(
202
+ nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
203
+ padding=1))
204
+ self.up_blocks = nn.Sequential(*up_blocks)
205
+ self.out_block = nn.Sequential(
206
+ nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
207
+ nn.PixelShuffle(2),
208
+ )
209
+
210
+ def encode(self, x, quantize=False):
211
+ x = self.in_block(x)
212
+ x = self.down_blocks(x)
213
+ if quantize:
214
+ qe, (vq_loss, commit_loss), indices = self.vquantizer.forward(x, dim=1)
215
+ return qe, x, indices, vq_loss + commit_loss * 0.25
216
+ else:
217
+ return x
218
+
219
+ def decode(self, x):
220
+ x = self.up_blocks(x)
221
+ x = self.out_block(x)
222
+ return x
223
+
224
+ def forward(self, x, quantize=False):
225
+ qe, x, _, vq_loss = self.encode(x, quantize)
226
+ x = self.decode(qe)
227
+ return x, vq_loss
228
+
229
+
230
+ class Discriminator(nn.Module):
231
+ def __init__(self, c_in=3, c_cond=0, c_hidden=512, depth=6):
232
+ super().__init__()
233
+ d = max(depth - 3, 3)
234
+ layers = [
235
+ nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
236
+ nn.LeakyReLU(0.2),
237
+ ]
238
+ for i in range(depth - 1):
239
+ c_in = c_hidden // (2 ** max((d - i), 0))
240
+ c_out = c_hidden // (2 ** max((d - 1 - i), 0))
241
+ layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
242
+ layers.append(nn.InstanceNorm2d(c_out))
243
+ layers.append(nn.LeakyReLU(0.2))
244
+ self.encoder = nn.Sequential(*layers)
245
+ self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
246
+ self.logits = nn.Sigmoid()
247
+
248
+ def forward(self, x, cond=None):
249
+ x = self.encoder(x)
250
+ if cond is not None:
251
+ cond = cond.view(cond.size(0), cond.size(1), 1, 1, ).expand(-1, -1, x.size(-2), x.size(-1))
252
+ x = torch.cat([x, cond], dim=1)
253
+ x = self.shuffle(x)
254
+ x = self.logits(x)
255
+ return x
comfy/ldm/cascade/stage_b.py ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file is part of ComfyUI.
3
+ Copyright (C) 2024 Stability AI
4
+
5
+ This program is free software: you can redistribute it and/or modify
6
+ it under the terms of the GNU General Public License as published by
7
+ the Free Software Foundation, either version 3 of the License, or
8
+ (at your option) any later version.
9
+
10
+ This program is distributed in the hope that it will be useful,
11
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
+ GNU General Public License for more details.
14
+
15
+ You should have received a copy of the GNU General Public License
16
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
17
+ """
18
+
19
+ import math
20
+ import torch
21
+ from torch import nn
22
+ from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock
23
+
24
+ class StageB(nn.Module):
25
+ def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1280, c_hidden=[320, 640, 1280, 1280],
26
+ nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]],
27
+ block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]], level_config=['CT', 'CT', 'CTA', 'CTA'], c_clip=1280,
28
+ c_clip_seq=4, c_effnet=16, c_pixels=3, kernel_size=3, dropout=[0, 0, 0.0, 0.0], self_attn=True,
29
+ t_conds=['sca'], stable_cascade_stage=None, dtype=None, device=None, operations=None):
30
+ super().__init__()
31
+ self.dtype = dtype
32
+ self.c_r = c_r
33
+ self.t_conds = t_conds
34
+ self.c_clip_seq = c_clip_seq
35
+ if not isinstance(dropout, list):
36
+ dropout = [dropout] * len(c_hidden)
37
+ if not isinstance(self_attn, list):
38
+ self_attn = [self_attn] * len(c_hidden)
39
+
40
+ # CONDITIONING
41
+ self.effnet_mapper = nn.Sequential(
42
+ operations.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device),
43
+ nn.GELU(),
44
+ operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device),
45
+ LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
46
+ )
47
+ self.pixels_mapper = nn.Sequential(
48
+ operations.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device),
49
+ nn.GELU(),
50
+ operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device),
51
+ LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
52
+ )
53
+ self.clip_mapper = operations.Linear(c_clip, c_cond * c_clip_seq, dtype=dtype, device=device)
54
+ self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
55
+
56
+ self.embedding = nn.Sequential(
57
+ nn.PixelUnshuffle(patch_size),
58
+ operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device),
59
+ LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
60
+ )
61
+
62
+ def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
63
+ if block_type == 'C':
64
+ return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations)
65
+ elif block_type == 'A':
66
+ return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations)
67
+ elif block_type == 'F':
68
+ return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations)
69
+ elif block_type == 'T':
70
+ return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations)
71
+ else:
72
+ raise Exception(f'Block type {block_type} not supported')
73
+
74
+ # BLOCKS
75
+ # -- down blocks
76
+ self.down_blocks = nn.ModuleList()
77
+ self.down_downscalers = nn.ModuleList()
78
+ self.down_repeat_mappers = nn.ModuleList()
79
+ for i in range(len(c_hidden)):
80
+ if i > 0:
81
+ self.down_downscalers.append(nn.Sequential(
82
+ LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
83
+ operations.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2, dtype=dtype, device=device),
84
+ ))
85
+ else:
86
+ self.down_downscalers.append(nn.Identity())
87
+ down_block = nn.ModuleList()
88
+ for _ in range(blocks[0][i]):
89
+ for block_type in level_config[i]:
90
+ block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
91
+ down_block.append(block)
92
+ self.down_blocks.append(down_block)
93
+ if block_repeat is not None:
94
+ block_repeat_mappers = nn.ModuleList()
95
+ for _ in range(block_repeat[0][i] - 1):
96
+ block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
97
+ self.down_repeat_mappers.append(block_repeat_mappers)
98
+
99
+ # -- up blocks
100
+ self.up_blocks = nn.ModuleList()
101
+ self.up_upscalers = nn.ModuleList()
102
+ self.up_repeat_mappers = nn.ModuleList()
103
+ for i in reversed(range(len(c_hidden))):
104
+ if i > 0:
105
+ self.up_upscalers.append(nn.Sequential(
106
+ LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
107
+ operations.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2, dtype=dtype, device=device),
108
+ ))
109
+ else:
110
+ self.up_upscalers.append(nn.Identity())
111
+ up_block = nn.ModuleList()
112
+ for j in range(blocks[1][::-1][i]):
113
+ for k, block_type in enumerate(level_config[i]):
114
+ c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
115
+ block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
116
+ self_attn=self_attn[i])
117
+ up_block.append(block)
118
+ self.up_blocks.append(up_block)
119
+ if block_repeat is not None:
120
+ block_repeat_mappers = nn.ModuleList()
121
+ for _ in range(block_repeat[1][::-1][i] - 1):
122
+ block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
123
+ self.up_repeat_mappers.append(block_repeat_mappers)
124
+
125
+ # OUTPUT
126
+ self.clf = nn.Sequential(
127
+ LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
128
+ operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device),
129
+ nn.PixelShuffle(patch_size),
130
+ )
131
+
132
+ # --- WEIGHT INIT ---
133
+ # self.apply(self._init_weights) # General init
134
+ # nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings
135
+ # nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings
136
+ # nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings
137
+ # nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings
138
+ # nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings
139
+ # torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
140
+ # nn.init.constant_(self.clf[1].weight, 0) # outputs
141
+ #
142
+ # # blocks
143
+ # for level_block in self.down_blocks + self.up_blocks:
144
+ # for block in level_block:
145
+ # if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
146
+ # block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
147
+ # elif isinstance(block, TimestepBlock):
148
+ # for layer in block.modules():
149
+ # if isinstance(layer, nn.Linear):
150
+ # nn.init.constant_(layer.weight, 0)
151
+ #
152
+ # def _init_weights(self, m):
153
+ # if isinstance(m, (nn.Conv2d, nn.Linear)):
154
+ # torch.nn.init.xavier_uniform_(m.weight)
155
+ # if m.bias is not None:
156
+ # nn.init.constant_(m.bias, 0)
157
+
158
+ def gen_r_embedding(self, r, max_positions=10000):
159
+ r = r * max_positions
160
+ half_dim = self.c_r // 2
161
+ emb = math.log(max_positions) / (half_dim - 1)
162
+ emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
163
+ emb = r[:, None] * emb[None, :]
164
+ emb = torch.cat([emb.sin(), emb.cos()], dim=1)
165
+ if self.c_r % 2 == 1: # zero pad
166
+ emb = nn.functional.pad(emb, (0, 1), mode='constant')
167
+ return emb
168
+
169
+ def gen_c_embeddings(self, clip):
170
+ if len(clip.shape) == 2:
171
+ clip = clip.unsqueeze(1)
172
+ clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1)
173
+ clip = self.clip_norm(clip)
174
+ return clip
175
+
176
+ def _down_encode(self, x, r_embed, clip):
177
+ level_outputs = []
178
+ block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
179
+ for down_block, downscaler, repmap in block_group:
180
+ x = downscaler(x)
181
+ for i in range(len(repmap) + 1):
182
+ for block in down_block:
183
+ if isinstance(block, ResBlock) or (
184
+ hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
185
+ ResBlock)):
186
+ x = block(x)
187
+ elif isinstance(block, AttnBlock) or (
188
+ hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
189
+ AttnBlock)):
190
+ x = block(x, clip)
191
+ elif isinstance(block, TimestepBlock) or (
192
+ hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
193
+ TimestepBlock)):
194
+ x = block(x, r_embed)
195
+ else:
196
+ x = block(x)
197
+ if i < len(repmap):
198
+ x = repmap[i](x)
199
+ level_outputs.insert(0, x)
200
+ return level_outputs
201
+
202
+ def _up_decode(self, level_outputs, r_embed, clip):
203
+ x = level_outputs[0]
204
+ block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
205
+ for i, (up_block, upscaler, repmap) in enumerate(block_group):
206
+ for j in range(len(repmap) + 1):
207
+ for k, block in enumerate(up_block):
208
+ if isinstance(block, ResBlock) or (
209
+ hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
210
+ ResBlock)):
211
+ skip = level_outputs[i] if k == 0 and i > 0 else None
212
+ if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
213
+ x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear',
214
+ align_corners=True)
215
+ x = block(x, skip)
216
+ elif isinstance(block, AttnBlock) or (
217
+ hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
218
+ AttnBlock)):
219
+ x = block(x, clip)
220
+ elif isinstance(block, TimestepBlock) or (
221
+ hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
222
+ TimestepBlock)):
223
+ x = block(x, r_embed)
224
+ else:
225
+ x = block(x)
226
+ if j < len(repmap):
227
+ x = repmap[j](x)
228
+ x = upscaler(x)
229
+ return x
230
+
231
+ def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
232
+ if pixels is None:
233
+ pixels = x.new_zeros(x.size(0), 3, 8, 8)
234
+
235
+ # Process the conditioning embeddings
236
+ r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
237
+ for c in self.t_conds:
238
+ t_cond = kwargs.get(c, torch.zeros_like(r))
239
+ r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1)
240
+ clip = self.gen_c_embeddings(clip)
241
+
242
+ # Model Blocks
243
+ x = self.embedding(x)
244
+ x = x + self.effnet_mapper(
245
+ nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True))
246
+ x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear',
247
+ align_corners=True)
248
+ level_outputs = self._down_encode(x, r_embed, clip)
249
+ x = self._up_decode(level_outputs, r_embed, clip)
250
+ return self.clf(x)
251
+
252
+ def update_weights_ema(self, src_model, beta=0.999):
253
+ for self_params, src_params in zip(self.parameters(), src_model.parameters()):
254
+ self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
255
+ for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
256
+ self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
comfy/ldm/cascade/stage_c.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file is part of ComfyUI.
3
+ Copyright (C) 2024 Stability AI
4
+
5
+ This program is free software: you can redistribute it and/or modify
6
+ it under the terms of the GNU General Public License as published by
7
+ the Free Software Foundation, either version 3 of the License, or
8
+ (at your option) any later version.
9
+
10
+ This program is distributed in the hope that it will be useful,
11
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
+ GNU General Public License for more details.
14
+
15
+ You should have received a copy of the GNU General Public License
16
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
17
+ """
18
+
19
+ import torch
20
+ from torch import nn
21
+ import math
22
+ from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock
23
+ # from .controlnet import ControlNetDeliverer
24
+
25
+ class UpDownBlock2d(nn.Module):
26
+ def __init__(self, c_in, c_out, mode, enabled=True, dtype=None, device=None, operations=None):
27
+ super().__init__()
28
+ assert mode in ['up', 'down']
29
+ interpolation = nn.Upsample(scale_factor=2 if mode == 'up' else 0.5, mode='bilinear',
30
+ align_corners=True) if enabled else nn.Identity()
31
+ mapping = operations.Conv2d(c_in, c_out, kernel_size=1, dtype=dtype, device=device)
32
+ self.blocks = nn.ModuleList([interpolation, mapping] if mode == 'up' else [mapping, interpolation])
33
+
34
+ def forward(self, x):
35
+ for block in self.blocks:
36
+ x = block(x)
37
+ return x
38
+
39
+
40
+ class StageC(nn.Module):
41
+ def __init__(self, c_in=16, c_out=16, c_r=64, patch_size=1, c_cond=2048, c_hidden=[2048, 2048], nhead=[32, 32],
42
+ blocks=[[8, 24], [24, 8]], block_repeat=[[1, 1], [1, 1]], level_config=['CTA', 'CTA'],
43
+ c_clip_text=1280, c_clip_text_pooled=1280, c_clip_img=768, c_clip_seq=4, kernel_size=3,
44
+ dropout=[0.0, 0.0], self_attn=True, t_conds=['sca', 'crp'], switch_level=[False], stable_cascade_stage=None,
45
+ dtype=None, device=None, operations=None):
46
+ super().__init__()
47
+ self.dtype = dtype
48
+ self.c_r = c_r
49
+ self.t_conds = t_conds
50
+ self.c_clip_seq = c_clip_seq
51
+ if not isinstance(dropout, list):
52
+ dropout = [dropout] * len(c_hidden)
53
+ if not isinstance(self_attn, list):
54
+ self_attn = [self_attn] * len(c_hidden)
55
+
56
+ # CONDITIONING
57
+ self.clip_txt_mapper = operations.Linear(c_clip_text, c_cond, dtype=dtype, device=device)
58
+ self.clip_txt_pooled_mapper = operations.Linear(c_clip_text_pooled, c_cond * c_clip_seq, dtype=dtype, device=device)
59
+ self.clip_img_mapper = operations.Linear(c_clip_img, c_cond * c_clip_seq, dtype=dtype, device=device)
60
+ self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
61
+
62
+ self.embedding = nn.Sequential(
63
+ nn.PixelUnshuffle(patch_size),
64
+ operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device),
65
+ LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6)
66
+ )
67
+
68
+ def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
69
+ if block_type == 'C':
70
+ return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations)
71
+ elif block_type == 'A':
72
+ return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations)
73
+ elif block_type == 'F':
74
+ return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations)
75
+ elif block_type == 'T':
76
+ return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations)
77
+ else:
78
+ raise Exception(f'Block type {block_type} not supported')
79
+
80
+ # BLOCKS
81
+ # -- down blocks
82
+ self.down_blocks = nn.ModuleList()
83
+ self.down_downscalers = nn.ModuleList()
84
+ self.down_repeat_mappers = nn.ModuleList()
85
+ for i in range(len(c_hidden)):
86
+ if i > 0:
87
+ self.down_downscalers.append(nn.Sequential(
88
+ LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
89
+ UpDownBlock2d(c_hidden[i - 1], c_hidden[i], mode='down', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations)
90
+ ))
91
+ else:
92
+ self.down_downscalers.append(nn.Identity())
93
+ down_block = nn.ModuleList()
94
+ for _ in range(blocks[0][i]):
95
+ for block_type in level_config[i]:
96
+ block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
97
+ down_block.append(block)
98
+ self.down_blocks.append(down_block)
99
+ if block_repeat is not None:
100
+ block_repeat_mappers = nn.ModuleList()
101
+ for _ in range(block_repeat[0][i] - 1):
102
+ block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
103
+ self.down_repeat_mappers.append(block_repeat_mappers)
104
+
105
+ # -- up blocks
106
+ self.up_blocks = nn.ModuleList()
107
+ self.up_upscalers = nn.ModuleList()
108
+ self.up_repeat_mappers = nn.ModuleList()
109
+ for i in reversed(range(len(c_hidden))):
110
+ if i > 0:
111
+ self.up_upscalers.append(nn.Sequential(
112
+ LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6),
113
+ UpDownBlock2d(c_hidden[i], c_hidden[i - 1], mode='up', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations)
114
+ ))
115
+ else:
116
+ self.up_upscalers.append(nn.Identity())
117
+ up_block = nn.ModuleList()
118
+ for j in range(blocks[1][::-1][i]):
119
+ for k, block_type in enumerate(level_config[i]):
120
+ c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
121
+ block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
122
+ self_attn=self_attn[i])
123
+ up_block.append(block)
124
+ self.up_blocks.append(up_block)
125
+ if block_repeat is not None:
126
+ block_repeat_mappers = nn.ModuleList()
127
+ for _ in range(block_repeat[1][::-1][i] - 1):
128
+ block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
129
+ self.up_repeat_mappers.append(block_repeat_mappers)
130
+
131
+ # OUTPUT
132
+ self.clf = nn.Sequential(
133
+ LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
134
+ operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device),
135
+ nn.PixelShuffle(patch_size),
136
+ )
137
+
138
+ # --- WEIGHT INIT ---
139
+ # self.apply(self._init_weights) # General init
140
+ # nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) # conditionings
141
+ # nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) # conditionings
142
+ # nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings
143
+ # torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
144
+ # nn.init.constant_(self.clf[1].weight, 0) # outputs
145
+ #
146
+ # # blocks
147
+ # for level_block in self.down_blocks + self.up_blocks:
148
+ # for block in level_block:
149
+ # if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
150
+ # block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
151
+ # elif isinstance(block, TimestepBlock):
152
+ # for layer in block.modules():
153
+ # if isinstance(layer, nn.Linear):
154
+ # nn.init.constant_(layer.weight, 0)
155
+ #
156
+ # def _init_weights(self, m):
157
+ # if isinstance(m, (nn.Conv2d, nn.Linear)):
158
+ # torch.nn.init.xavier_uniform_(m.weight)
159
+ # if m.bias is not None:
160
+ # nn.init.constant_(m.bias, 0)
161
+
162
+ def gen_r_embedding(self, r, max_positions=10000):
163
+ r = r * max_positions
164
+ half_dim = self.c_r // 2
165
+ emb = math.log(max_positions) / (half_dim - 1)
166
+ emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
167
+ emb = r[:, None] * emb[None, :]
168
+ emb = torch.cat([emb.sin(), emb.cos()], dim=1)
169
+ if self.c_r % 2 == 1: # zero pad
170
+ emb = nn.functional.pad(emb, (0, 1), mode='constant')
171
+ return emb
172
+
173
+ def gen_c_embeddings(self, clip_txt, clip_txt_pooled, clip_img):
174
+ clip_txt = self.clip_txt_mapper(clip_txt)
175
+ if len(clip_txt_pooled.shape) == 2:
176
+ clip_txt_pooled = clip_txt_pooled.unsqueeze(1)
177
+ if len(clip_img.shape) == 2:
178
+ clip_img = clip_img.unsqueeze(1)
179
+ clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.c_clip_seq, -1)
180
+ clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.c_clip_seq, -1)
181
+ clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1)
182
+ clip = self.clip_norm(clip)
183
+ return clip
184
+
185
+ def _down_encode(self, x, r_embed, clip, cnet=None):
186
+ level_outputs = []
187
+ block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
188
+ for down_block, downscaler, repmap in block_group:
189
+ x = downscaler(x)
190
+ for i in range(len(repmap) + 1):
191
+ for block in down_block:
192
+ if isinstance(block, ResBlock) or (
193
+ hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
194
+ ResBlock)):
195
+ if cnet is not None:
196
+ next_cnet = cnet.pop()
197
+ if next_cnet is not None:
198
+ x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
199
+ align_corners=True).to(x.dtype)
200
+ x = block(x)
201
+ elif isinstance(block, AttnBlock) or (
202
+ hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
203
+ AttnBlock)):
204
+ x = block(x, clip)
205
+ elif isinstance(block, TimestepBlock) or (
206
+ hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
207
+ TimestepBlock)):
208
+ x = block(x, r_embed)
209
+ else:
210
+ x = block(x)
211
+ if i < len(repmap):
212
+ x = repmap[i](x)
213
+ level_outputs.insert(0, x)
214
+ return level_outputs
215
+
216
+ def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
217
+ x = level_outputs[0]
218
+ block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
219
+ for i, (up_block, upscaler, repmap) in enumerate(block_group):
220
+ for j in range(len(repmap) + 1):
221
+ for k, block in enumerate(up_block):
222
+ if isinstance(block, ResBlock) or (
223
+ hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
224
+ ResBlock)):
225
+ skip = level_outputs[i] if k == 0 and i > 0 else None
226
+ if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
227
+ x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear',
228
+ align_corners=True)
229
+ if cnet is not None:
230
+ next_cnet = cnet.pop()
231
+ if next_cnet is not None:
232
+ x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
233
+ align_corners=True).to(x.dtype)
234
+ x = block(x, skip)
235
+ elif isinstance(block, AttnBlock) or (
236
+ hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
237
+ AttnBlock)):
238
+ x = block(x, clip)
239
+ elif isinstance(block, TimestepBlock) or (
240
+ hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
241
+ TimestepBlock)):
242
+ x = block(x, r_embed)
243
+ else:
244
+ x = block(x)
245
+ if j < len(repmap):
246
+ x = repmap[j](x)
247
+ x = upscaler(x)
248
+ return x
249
+
250
+ def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, **kwargs):
251
+ # Process the conditioning embeddings
252
+ r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
253
+ for c in self.t_conds:
254
+ t_cond = kwargs.get(c, torch.zeros_like(r))
255
+ r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1)
256
+ clip = self.gen_c_embeddings(clip_text, clip_text_pooled, clip_img)
257
+
258
+ if control is not None:
259
+ cnet = control.get("input")
260
+ else:
261
+ cnet = None
262
+
263
+ # Model Blocks
264
+ x = self.embedding(x)
265
+ level_outputs = self._down_encode(x, r_embed, clip, cnet)
266
+ x = self._up_decode(level_outputs, r_embed, clip, cnet)
267
+ return self.clf(x)
268
+
269
+ def update_weights_ema(self, src_model, beta=0.999):
270
+ for self_params, src_params in zip(self.parameters(), src_model.parameters()):
271
+ self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
272
+ for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
273
+ self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
comfy/ldm/cascade/stage_c_coder.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file is part of ComfyUI.
3
+ Copyright (C) 2024 Stability AI
4
+
5
+ This program is free software: you can redistribute it and/or modify
6
+ it under the terms of the GNU General Public License as published by
7
+ the Free Software Foundation, either version 3 of the License, or
8
+ (at your option) any later version.
9
+
10
+ This program is distributed in the hope that it will be useful,
11
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
+ GNU General Public License for more details.
14
+
15
+ You should have received a copy of the GNU General Public License
16
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
17
+ """
18
+ import torch
19
+ import torchvision
20
+ from torch import nn
21
+
22
+
23
+ # EfficientNet
24
+ class EfficientNetEncoder(nn.Module):
25
+ def __init__(self, c_latent=16):
26
+ super().__init__()
27
+ self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
28
+ self.mapper = nn.Sequential(
29
+ nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
30
+ nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
31
+ )
32
+ self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406]))
33
+ self.std = nn.Parameter(torch.tensor([0.229, 0.224, 0.225]))
34
+
35
+ def forward(self, x):
36
+ x = x * 0.5 + 0.5
37
+ x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1])
38
+ o = self.mapper(self.backbone(x))
39
+ return o
40
+
41
+
42
+ # Fast Decoder for Stage C latents. E.g. 16 x 24 x 24 -> 3 x 192 x 192
43
+ class Previewer(nn.Module):
44
+ def __init__(self, c_in=16, c_hidden=512, c_out=3):
45
+ super().__init__()
46
+ self.blocks = nn.Sequential(
47
+ nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
48
+ nn.GELU(),
49
+ nn.BatchNorm2d(c_hidden),
50
+
51
+ nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
52
+ nn.GELU(),
53
+ nn.BatchNorm2d(c_hidden),
54
+
55
+ nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
56
+ nn.GELU(),
57
+ nn.BatchNorm2d(c_hidden // 2),
58
+
59
+ nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
60
+ nn.GELU(),
61
+ nn.BatchNorm2d(c_hidden // 2),
62
+
63
+ nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
64
+ nn.GELU(),
65
+ nn.BatchNorm2d(c_hidden // 4),
66
+
67
+ nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
68
+ nn.GELU(),
69
+ nn.BatchNorm2d(c_hidden // 4),
70
+
71
+ nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
72
+ nn.GELU(),
73
+ nn.BatchNorm2d(c_hidden // 4),
74
+
75
+ nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
76
+ nn.GELU(),
77
+ nn.BatchNorm2d(c_hidden // 4),
78
+
79
+ nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
80
+ )
81
+
82
+ def forward(self, x):
83
+ return (self.blocks(x) - 0.5) * 2.0
84
+
85
+ class StageC_coder(nn.Module):
86
+ def __init__(self):
87
+ super().__init__()
88
+ self.previewer = Previewer()
89
+ self.encoder = EfficientNetEncoder()
90
+
91
+ def encode(self, x):
92
+ return self.encoder(x)
93
+
94
+ def decode(self, x):
95
+ return self.previewer(x)
comfy/ldm/common_dit.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import comfy.ops
3
+
4
+ def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
5
+ if padding_mode == "circular" and (torch.jit.is_tracing() or torch.jit.is_scripting()):
6
+ padding_mode = "reflect"
7
+
8
+ pad = ()
9
+ for i in range(img.ndim - 2):
10
+ pad = (0, (patch_size[i] - img.shape[i + 2] % patch_size[i]) % patch_size[i]) + pad
11
+
12
+ return torch.nn.functional.pad(img, pad, mode=padding_mode)
13
+
14
+ try:
15
+ rms_norm_torch = torch.nn.functional.rms_norm
16
+ except:
17
+ rms_norm_torch = None
18
+
19
+ def rms_norm(x, weight=None, eps=1e-6):
20
+ if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
21
+ if weight is None:
22
+ return rms_norm_torch(x, (x.shape[-1],), eps=eps)
23
+ else:
24
+ return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
25
+ else:
26
+ r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
27
+ if weight is None:
28
+ return r
29
+ else:
30
+ return r * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)
comfy/ldm/cosmos/blocks.py ADDED
@@ -0,0 +1,808 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import math
17
+ from typing import Optional
18
+ import logging
19
+
20
+ import numpy as np
21
+ import torch
22
+ from einops import rearrange, repeat
23
+ from einops.layers.torch import Rearrange
24
+ from torch import nn
25
+
26
+ from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
27
+ from comfy.ldm.modules.attention import optimized_attention
28
+
29
+
30
+ def apply_rotary_pos_emb(
31
+ t: torch.Tensor,
32
+ freqs: torch.Tensor,
33
+ ) -> torch.Tensor:
34
+ t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float()
35
+ t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1]
36
+ t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t)
37
+ return t_out
38
+
39
+
40
+ def get_normalization(name: str, channels: int, weight_args={}):
41
+ if name == "I":
42
+ return nn.Identity()
43
+ elif name == "R":
44
+ return RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
45
+ else:
46
+ raise ValueError(f"Normalization {name} not found")
47
+
48
+
49
+ class BaseAttentionOp(nn.Module):
50
+ def __init__(self):
51
+ super().__init__()
52
+
53
+
54
+ class Attention(nn.Module):
55
+ """
56
+ Generalized attention impl.
57
+
58
+ Allowing for both self-attention and cross-attention configurations depending on whether a `context_dim` is provided.
59
+ If `context_dim` is None, self-attention is assumed.
60
+
61
+ Parameters:
62
+ query_dim (int): Dimension of each query vector.
63
+ context_dim (int, optional): Dimension of each context vector. If None, self-attention is assumed.
64
+ heads (int, optional): Number of attention heads. Defaults to 8.
65
+ dim_head (int, optional): Dimension of each head. Defaults to 64.
66
+ dropout (float, optional): Dropout rate applied to the output of the attention block. Defaults to 0.0.
67
+ attn_op (BaseAttentionOp, optional): Custom attention operation to be used instead of the default.
68
+ qkv_bias (bool, optional): If True, adds a learnable bias to query, key, and value projections. Defaults to False.
69
+ out_bias (bool, optional): If True, adds a learnable bias to the output projection. Defaults to False.
70
+ qkv_norm (str, optional): A string representing normalization strategies for query, key, and value projections.
71
+ Defaults to "SSI".
72
+ qkv_norm_mode (str, optional): A string representing normalization mode for query, key, and value projections.
73
+ Defaults to 'per_head'. Only support 'per_head'.
74
+
75
+ Examples:
76
+ >>> attn = Attention(query_dim=128, context_dim=256, heads=4, dim_head=32, dropout=0.1)
77
+ >>> query = torch.randn(10, 128) # Batch size of 10
78
+ >>> context = torch.randn(10, 256) # Batch size of 10
79
+ >>> output = attn(query, context) # Perform the attention operation
80
+
81
+ Note:
82
+ https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
83
+ """
84
+
85
+ def __init__(
86
+ self,
87
+ query_dim: int,
88
+ context_dim=None,
89
+ heads=8,
90
+ dim_head=64,
91
+ dropout=0.0,
92
+ attn_op: Optional[BaseAttentionOp] = None,
93
+ qkv_bias: bool = False,
94
+ out_bias: bool = False,
95
+ qkv_norm: str = "SSI",
96
+ qkv_norm_mode: str = "per_head",
97
+ backend: str = "transformer_engine",
98
+ qkv_format: str = "bshd",
99
+ weight_args={},
100
+ operations=None,
101
+ ) -> None:
102
+ super().__init__()
103
+
104
+ self.is_selfattn = context_dim is None # self attention
105
+
106
+ inner_dim = dim_head * heads
107
+ context_dim = query_dim if context_dim is None else context_dim
108
+
109
+ self.heads = heads
110
+ self.dim_head = dim_head
111
+ self.qkv_norm_mode = qkv_norm_mode
112
+ self.qkv_format = qkv_format
113
+
114
+ if self.qkv_norm_mode == "per_head":
115
+ norm_dim = dim_head
116
+ else:
117
+ raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'")
118
+
119
+ self.backend = backend
120
+
121
+ self.to_q = nn.Sequential(
122
+ operations.Linear(query_dim, inner_dim, bias=qkv_bias, **weight_args),
123
+ get_normalization(qkv_norm[0], norm_dim),
124
+ )
125
+ self.to_k = nn.Sequential(
126
+ operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
127
+ get_normalization(qkv_norm[1], norm_dim),
128
+ )
129
+ self.to_v = nn.Sequential(
130
+ operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
131
+ get_normalization(qkv_norm[2], norm_dim),
132
+ )
133
+
134
+ self.to_out = nn.Sequential(
135
+ operations.Linear(inner_dim, query_dim, bias=out_bias, **weight_args),
136
+ nn.Dropout(dropout),
137
+ )
138
+
139
+ def cal_qkv(
140
+ self, x, context=None, mask=None, rope_emb=None, **kwargs
141
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
142
+ del kwargs
143
+
144
+
145
+ """
146
+ self.to_q, self.to_k, self.to_v are nn.Sequential with projection + normalization layers.
147
+ Before 07/24/2024, these modules normalize across all heads.
148
+ After 07/24/2024, to support tensor parallelism and follow the common practice in the community,
149
+ we support to normalize per head.
150
+ To keep the checkpoint copatibility with the previous code,
151
+ we keep the nn.Sequential but call the projection and the normalization layers separately.
152
+ We use a flag `self.qkv_norm_mode` to control the normalization behavior.
153
+ The default value of `self.qkv_norm_mode` is "per_head", which means we normalize per head.
154
+ """
155
+ if self.qkv_norm_mode == "per_head":
156
+ q = self.to_q[0](x)
157
+ context = x if context is None else context
158
+ k = self.to_k[0](context)
159
+ v = self.to_v[0](context)
160
+ q, k, v = map(
161
+ lambda t: rearrange(t, "s b (n c) -> b n s c", n=self.heads, c=self.dim_head),
162
+ (q, k, v),
163
+ )
164
+ else:
165
+ raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'")
166
+
167
+ q = self.to_q[1](q)
168
+ k = self.to_k[1](k)
169
+ v = self.to_v[1](v)
170
+ if self.is_selfattn and rope_emb is not None: # only apply to self-attention!
171
+ # apply_rotary_pos_emb inlined
172
+ q_shape = q.shape
173
+ q = q.reshape(*q.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2)
174
+ q = rope_emb[..., 0] * q[..., 0] + rope_emb[..., 1] * q[..., 1]
175
+ q = q.movedim(-1, -2).reshape(*q_shape).to(x.dtype)
176
+
177
+ # apply_rotary_pos_emb inlined
178
+ k_shape = k.shape
179
+ k = k.reshape(*k.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2)
180
+ k = rope_emb[..., 0] * k[..., 0] + rope_emb[..., 1] * k[..., 1]
181
+ k = k.movedim(-1, -2).reshape(*k_shape).to(x.dtype)
182
+ return q, k, v
183
+
184
+ def forward(
185
+ self,
186
+ x,
187
+ context=None,
188
+ mask=None,
189
+ rope_emb=None,
190
+ **kwargs,
191
+ ):
192
+ """
193
+ Args:
194
+ x (Tensor): The query tensor of shape [B, Mq, K]
195
+ context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
196
+ """
197
+ q, k, v = self.cal_qkv(x, context, mask, rope_emb=rope_emb, **kwargs)
198
+ out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True)
199
+ del q, k, v
200
+ out = rearrange(out, " b n s c -> s b (n c)")
201
+ return self.to_out(out)
202
+
203
+
204
+ class FeedForward(nn.Module):
205
+ """
206
+ Transformer FFN with optional gating
207
+
208
+ Parameters:
209
+ d_model (int): Dimensionality of input features.
210
+ d_ff (int): Dimensionality of the hidden layer.
211
+ dropout (float, optional): Dropout rate applied after the activation function. Defaults to 0.1.
212
+ activation (callable, optional): The activation function applied after the first linear layer.
213
+ Defaults to nn.ReLU().
214
+ is_gated (bool, optional): If set to True, incorporates gating mechanism to the feed-forward layer.
215
+ Defaults to False.
216
+ bias (bool, optional): If set to True, adds a bias to the linear layers. Defaults to True.
217
+
218
+ Example:
219
+ >>> ff = FeedForward(d_model=512, d_ff=2048)
220
+ >>> x = torch.randn(64, 10, 512) # Example input tensor
221
+ >>> output = ff(x)
222
+ >>> print(output.shape) # Expected shape: (64, 10, 512)
223
+ """
224
+
225
+ def __init__(
226
+ self,
227
+ d_model: int,
228
+ d_ff: int,
229
+ dropout: float = 0.1,
230
+ activation=nn.ReLU(),
231
+ is_gated: bool = False,
232
+ bias: bool = False,
233
+ weight_args={},
234
+ operations=None,
235
+ ) -> None:
236
+ super().__init__()
237
+
238
+ self.layer1 = operations.Linear(d_model, d_ff, bias=bias, **weight_args)
239
+ self.layer2 = operations.Linear(d_ff, d_model, bias=bias, **weight_args)
240
+
241
+ self.dropout = nn.Dropout(dropout)
242
+ self.activation = activation
243
+ self.is_gated = is_gated
244
+ if is_gated:
245
+ self.linear_gate = operations.Linear(d_model, d_ff, bias=False, **weight_args)
246
+
247
+ def forward(self, x: torch.Tensor):
248
+ g = self.activation(self.layer1(x))
249
+ if self.is_gated:
250
+ x = g * self.linear_gate(x)
251
+ else:
252
+ x = g
253
+ assert self.dropout.p == 0.0, "we skip dropout"
254
+ return self.layer2(x)
255
+
256
+
257
+ class GPT2FeedForward(FeedForward):
258
+ def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1, bias: bool = False, weight_args={}, operations=None):
259
+ super().__init__(
260
+ d_model=d_model,
261
+ d_ff=d_ff,
262
+ dropout=dropout,
263
+ activation=nn.GELU(),
264
+ is_gated=False,
265
+ bias=bias,
266
+ weight_args=weight_args,
267
+ operations=operations,
268
+ )
269
+
270
+ def forward(self, x: torch.Tensor):
271
+ assert self.dropout.p == 0.0, "we skip dropout"
272
+
273
+ x = self.layer1(x)
274
+ x = self.activation(x)
275
+ x = self.layer2(x)
276
+
277
+ return x
278
+
279
+
280
+ def modulate(x, shift, scale):
281
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
282
+
283
+
284
+ class Timesteps(nn.Module):
285
+ def __init__(self, num_channels):
286
+ super().__init__()
287
+ self.num_channels = num_channels
288
+
289
+ def forward(self, timesteps):
290
+ half_dim = self.num_channels // 2
291
+ exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device)
292
+ exponent = exponent / (half_dim - 0.0)
293
+
294
+ emb = torch.exp(exponent)
295
+ emb = timesteps[:, None].float() * emb[None, :]
296
+
297
+ sin_emb = torch.sin(emb)
298
+ cos_emb = torch.cos(emb)
299
+ emb = torch.cat([cos_emb, sin_emb], dim=-1)
300
+
301
+ return emb
302
+
303
+
304
+ class TimestepEmbedding(nn.Module):
305
+ def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False, weight_args={}, operations=None):
306
+ super().__init__()
307
+ logging.debug(
308
+ f"Using AdaLN LoRA Flag: {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility."
309
+ )
310
+ self.linear_1 = operations.Linear(in_features, out_features, bias=not use_adaln_lora, **weight_args)
311
+ self.activation = nn.SiLU()
312
+ self.use_adaln_lora = use_adaln_lora
313
+ if use_adaln_lora:
314
+ self.linear_2 = operations.Linear(out_features, 3 * out_features, bias=False, **weight_args)
315
+ else:
316
+ self.linear_2 = operations.Linear(out_features, out_features, bias=True, **weight_args)
317
+
318
+ def forward(self, sample: torch.Tensor) -> torch.Tensor:
319
+ emb = self.linear_1(sample)
320
+ emb = self.activation(emb)
321
+ emb = self.linear_2(emb)
322
+
323
+ if self.use_adaln_lora:
324
+ adaln_lora_B_3D = emb
325
+ emb_B_D = sample
326
+ else:
327
+ emb_B_D = emb
328
+ adaln_lora_B_3D = None
329
+
330
+ return emb_B_D, adaln_lora_B_3D
331
+
332
+
333
+ class FourierFeatures(nn.Module):
334
+ """
335
+ Implements a layer that generates Fourier features from input tensors, based on randomly sampled
336
+ frequencies and phases. This can help in learning high-frequency functions in low-dimensional problems.
337
+
338
+ [B] -> [B, D]
339
+
340
+ Parameters:
341
+ num_channels (int): The number of Fourier features to generate.
342
+ bandwidth (float, optional): The scaling factor for the frequency of the Fourier features. Defaults to 1.
343
+ normalize (bool, optional): If set to True, the outputs are scaled by sqrt(2), usually to normalize
344
+ the variance of the features. Defaults to False.
345
+
346
+ Example:
347
+ >>> layer = FourierFeatures(num_channels=256, bandwidth=0.5, normalize=True)
348
+ >>> x = torch.randn(10, 256) # Example input tensor
349
+ >>> output = layer(x)
350
+ >>> print(output.shape) # Expected shape: (10, 256)
351
+ """
352
+
353
+ def __init__(self, num_channels, bandwidth=1, normalize=False):
354
+ super().__init__()
355
+ self.register_buffer("freqs", 2 * np.pi * bandwidth * torch.randn(num_channels), persistent=True)
356
+ self.register_buffer("phases", 2 * np.pi * torch.rand(num_channels), persistent=True)
357
+ self.gain = np.sqrt(2) if normalize else 1
358
+
359
+ def forward(self, x, gain: float = 1.0):
360
+ """
361
+ Apply the Fourier feature transformation to the input tensor.
362
+
363
+ Args:
364
+ x (torch.Tensor): The input tensor.
365
+ gain (float, optional): An additional gain factor applied during the forward pass. Defaults to 1.
366
+
367
+ Returns:
368
+ torch.Tensor: The transformed tensor, with Fourier features applied.
369
+ """
370
+ in_dtype = x.dtype
371
+ x = x.to(torch.float32).ger(self.freqs.to(torch.float32)).add(self.phases.to(torch.float32))
372
+ x = x.cos().mul(self.gain * gain).to(in_dtype)
373
+ return x
374
+
375
+
376
+ class PatchEmbed(nn.Module):
377
+ """
378
+ PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers,
379
+ depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions,
380
+ making it suitable for video and image processing tasks. It supports dividing the input into patches
381
+ and embedding each patch into a vector of size `out_channels`.
382
+
383
+ Parameters:
384
+ - spatial_patch_size (int): The size of each spatial patch.
385
+ - temporal_patch_size (int): The size of each temporal patch.
386
+ - in_channels (int): Number of input channels. Default: 3.
387
+ - out_channels (int): The dimension of the embedding vector for each patch. Default: 768.
388
+ - bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True.
389
+ """
390
+
391
+ def __init__(
392
+ self,
393
+ spatial_patch_size,
394
+ temporal_patch_size,
395
+ in_channels=3,
396
+ out_channels=768,
397
+ bias=True,
398
+ weight_args={},
399
+ operations=None,
400
+ ):
401
+ super().__init__()
402
+ self.spatial_patch_size = spatial_patch_size
403
+ self.temporal_patch_size = temporal_patch_size
404
+
405
+ self.proj = nn.Sequential(
406
+ Rearrange(
407
+ "b c (t r) (h m) (w n) -> b t h w (c r m n)",
408
+ r=temporal_patch_size,
409
+ m=spatial_patch_size,
410
+ n=spatial_patch_size,
411
+ ),
412
+ operations.Linear(
413
+ in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=bias, **weight_args
414
+ ),
415
+ )
416
+ self.out = nn.Identity()
417
+
418
+ def forward(self, x):
419
+ """
420
+ Forward pass of the PatchEmbed module.
421
+
422
+ Parameters:
423
+ - x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where
424
+ B is the batch size,
425
+ C is the number of channels,
426
+ T is the temporal dimension,
427
+ H is the height, and
428
+ W is the width of the input.
429
+
430
+ Returns:
431
+ - torch.Tensor: The embedded patches as a tensor, with shape b t h w c.
432
+ """
433
+ assert x.dim() == 5
434
+ _, _, T, H, W = x.shape
435
+ assert H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0
436
+ assert T % self.temporal_patch_size == 0
437
+ x = self.proj(x)
438
+ return self.out(x)
439
+
440
+
441
+ class FinalLayer(nn.Module):
442
+ """
443
+ The final layer of video DiT.
444
+ """
445
+
446
+ def __init__(
447
+ self,
448
+ hidden_size,
449
+ spatial_patch_size,
450
+ temporal_patch_size,
451
+ out_channels,
452
+ use_adaln_lora: bool = False,
453
+ adaln_lora_dim: int = 256,
454
+ weight_args={},
455
+ operations=None,
456
+ ):
457
+ super().__init__()
458
+ self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **weight_args)
459
+ self.linear = operations.Linear(
460
+ hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, **weight_args
461
+ )
462
+ self.hidden_size = hidden_size
463
+ self.n_adaln_chunks = 2
464
+ self.use_adaln_lora = use_adaln_lora
465
+ if use_adaln_lora:
466
+ self.adaLN_modulation = nn.Sequential(
467
+ nn.SiLU(),
468
+ operations.Linear(hidden_size, adaln_lora_dim, bias=False, **weight_args),
469
+ operations.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False, **weight_args),
470
+ )
471
+ else:
472
+ self.adaLN_modulation = nn.Sequential(
473
+ nn.SiLU(), operations.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False, **weight_args)
474
+ )
475
+
476
+ def forward(
477
+ self,
478
+ x_BT_HW_D,
479
+ emb_B_D,
480
+ adaln_lora_B_3D: Optional[torch.Tensor] = None,
481
+ ):
482
+ if self.use_adaln_lora:
483
+ assert adaln_lora_B_3D is not None
484
+ shift_B_D, scale_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D[:, : 2 * self.hidden_size]).chunk(
485
+ 2, dim=1
486
+ )
487
+ else:
488
+ shift_B_D, scale_B_D = self.adaLN_modulation(emb_B_D).chunk(2, dim=1)
489
+
490
+ B = emb_B_D.shape[0]
491
+ T = x_BT_HW_D.shape[0] // B
492
+ shift_BT_D, scale_BT_D = repeat(shift_B_D, "b d -> (b t) d", t=T), repeat(scale_B_D, "b d -> (b t) d", t=T)
493
+ x_BT_HW_D = modulate(self.norm_final(x_BT_HW_D), shift_BT_D, scale_BT_D)
494
+
495
+ x_BT_HW_D = self.linear(x_BT_HW_D)
496
+ return x_BT_HW_D
497
+
498
+
499
+ class VideoAttn(nn.Module):
500
+ """
501
+ Implements video attention with optional cross-attention capabilities.
502
+
503
+ This module processes video features while maintaining their spatio-temporal structure. It can perform
504
+ self-attention within the video features or cross-attention with external context features.
505
+
506
+ Parameters:
507
+ x_dim (int): Dimension of input feature vectors
508
+ context_dim (Optional[int]): Dimension of context features for cross-attention. None for self-attention
509
+ num_heads (int): Number of attention heads
510
+ bias (bool): Whether to include bias in attention projections. Default: False
511
+ qkv_norm_mode (str): Normalization mode for query/key/value projections. Must be "per_head". Default: "per_head"
512
+ x_format (str): Format of input tensor. Must be "BTHWD". Default: "BTHWD"
513
+
514
+ Input shape:
515
+ - x: (T, H, W, B, D) video features
516
+ - context (optional): (M, B, D) context features for cross-attention
517
+ where:
518
+ T: temporal dimension
519
+ H: height
520
+ W: width
521
+ B: batch size
522
+ D: feature dimension
523
+ M: context sequence length
524
+ """
525
+
526
+ def __init__(
527
+ self,
528
+ x_dim: int,
529
+ context_dim: Optional[int],
530
+ num_heads: int,
531
+ bias: bool = False,
532
+ qkv_norm_mode: str = "per_head",
533
+ x_format: str = "BTHWD",
534
+ weight_args={},
535
+ operations=None,
536
+ ) -> None:
537
+ super().__init__()
538
+ self.x_format = x_format
539
+
540
+ self.attn = Attention(
541
+ x_dim,
542
+ context_dim,
543
+ num_heads,
544
+ x_dim // num_heads,
545
+ qkv_bias=bias,
546
+ qkv_norm="RRI",
547
+ out_bias=bias,
548
+ qkv_norm_mode=qkv_norm_mode,
549
+ qkv_format="sbhd",
550
+ weight_args=weight_args,
551
+ operations=operations,
552
+ )
553
+
554
+ def forward(
555
+ self,
556
+ x: torch.Tensor,
557
+ context: Optional[torch.Tensor] = None,
558
+ crossattn_mask: Optional[torch.Tensor] = None,
559
+ rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
560
+ ) -> torch.Tensor:
561
+ """
562
+ Forward pass for video attention.
563
+
564
+ Args:
565
+ x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D) representing batches of video data.
566
+ context (Tensor): Context tensor of shape (B, M, D) or (M, B, D),
567
+ where M is the sequence length of the context.
568
+ crossattn_mask (Optional[Tensor]): An optional mask for cross-attention mechanisms.
569
+ rope_emb_L_1_1_D (Optional[Tensor]):
570
+ Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training.
571
+
572
+ Returns:
573
+ Tensor: The output tensor with applied attention, maintaining the input shape.
574
+ """
575
+
576
+ x_T_H_W_B_D = x
577
+ context_M_B_D = context
578
+ T, H, W, B, D = x_T_H_W_B_D.shape
579
+ x_THW_B_D = rearrange(x_T_H_W_B_D, "t h w b d -> (t h w) b d")
580
+ x_THW_B_D = self.attn(
581
+ x_THW_B_D,
582
+ context_M_B_D,
583
+ crossattn_mask,
584
+ rope_emb=rope_emb_L_1_1_D,
585
+ )
586
+ x_T_H_W_B_D = rearrange(x_THW_B_D, "(t h w) b d -> t h w b d", h=H, w=W)
587
+ return x_T_H_W_B_D
588
+
589
+
590
+ def adaln_norm_state(norm_state, x, scale, shift):
591
+ normalized = norm_state(x)
592
+ return normalized * (1 + scale) + shift
593
+
594
+
595
+ class DITBuildingBlock(nn.Module):
596
+ """
597
+ A building block for the DiT (Diffusion Transformer) architecture that supports different types of
598
+ attention and MLP operations with adaptive layer normalization.
599
+
600
+ Parameters:
601
+ block_type (str): Type of block - one of:
602
+ - "cross_attn"/"ca": Cross-attention
603
+ - "full_attn"/"fa": Full self-attention
604
+ - "mlp"/"ff": MLP/feedforward block
605
+ x_dim (int): Dimension of input features
606
+ context_dim (Optional[int]): Dimension of context features for cross-attention
607
+ num_heads (int): Number of attention heads
608
+ mlp_ratio (float): MLP hidden dimension multiplier. Default: 4.0
609
+ bias (bool): Whether to use bias in layers. Default: False
610
+ mlp_dropout (float): Dropout rate for MLP. Default: 0.0
611
+ qkv_norm_mode (str): QKV normalization mode. Default: "per_head"
612
+ x_format (str): Input tensor format. Default: "BTHWD"
613
+ use_adaln_lora (bool): Whether to use AdaLN-LoRA. Default: False
614
+ adaln_lora_dim (int): Dimension for AdaLN-LoRA. Default: 256
615
+ """
616
+
617
+ def __init__(
618
+ self,
619
+ block_type: str,
620
+ x_dim: int,
621
+ context_dim: Optional[int],
622
+ num_heads: int,
623
+ mlp_ratio: float = 4.0,
624
+ bias: bool = False,
625
+ mlp_dropout: float = 0.0,
626
+ qkv_norm_mode: str = "per_head",
627
+ x_format: str = "BTHWD",
628
+ use_adaln_lora: bool = False,
629
+ adaln_lora_dim: int = 256,
630
+ weight_args={},
631
+ operations=None
632
+ ) -> None:
633
+ block_type = block_type.lower()
634
+
635
+ super().__init__()
636
+ self.x_format = x_format
637
+ if block_type in ["cross_attn", "ca"]:
638
+ self.block = VideoAttn(
639
+ x_dim,
640
+ context_dim,
641
+ num_heads,
642
+ bias=bias,
643
+ qkv_norm_mode=qkv_norm_mode,
644
+ x_format=self.x_format,
645
+ weight_args=weight_args,
646
+ operations=operations,
647
+ )
648
+ elif block_type in ["full_attn", "fa"]:
649
+ self.block = VideoAttn(
650
+ x_dim, None, num_heads, bias=bias, qkv_norm_mode=qkv_norm_mode, x_format=self.x_format, weight_args=weight_args, operations=operations
651
+ )
652
+ elif block_type in ["mlp", "ff"]:
653
+ self.block = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), dropout=mlp_dropout, bias=bias, weight_args=weight_args, operations=operations)
654
+ else:
655
+ raise ValueError(f"Unknown block type: {block_type}")
656
+
657
+ self.block_type = block_type
658
+ self.use_adaln_lora = use_adaln_lora
659
+
660
+ self.norm_state = nn.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6)
661
+ self.n_adaln_chunks = 3
662
+ if use_adaln_lora:
663
+ self.adaLN_modulation = nn.Sequential(
664
+ nn.SiLU(),
665
+ operations.Linear(x_dim, adaln_lora_dim, bias=False, **weight_args),
666
+ operations.Linear(adaln_lora_dim, self.n_adaln_chunks * x_dim, bias=False, **weight_args),
667
+ )
668
+ else:
669
+ self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, self.n_adaln_chunks * x_dim, bias=False, **weight_args))
670
+
671
+ def forward(
672
+ self,
673
+ x: torch.Tensor,
674
+ emb_B_D: torch.Tensor,
675
+ crossattn_emb: torch.Tensor,
676
+ crossattn_mask: Optional[torch.Tensor] = None,
677
+ rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
678
+ adaln_lora_B_3D: Optional[torch.Tensor] = None,
679
+ ) -> torch.Tensor:
680
+ """
681
+ Forward pass for dynamically configured blocks with adaptive normalization.
682
+
683
+ Args:
684
+ x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D).
685
+ emb_B_D (Tensor): Embedding tensor for adaptive layer normalization modulation.
686
+ crossattn_emb (Tensor): Tensor for cross-attention blocks.
687
+ crossattn_mask (Optional[Tensor]): Optional mask for cross-attention.
688
+ rope_emb_L_1_1_D (Optional[Tensor]):
689
+ Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training.
690
+
691
+ Returns:
692
+ Tensor: The output tensor after processing through the configured block and adaptive normalization.
693
+ """
694
+ if self.use_adaln_lora:
695
+ shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk(
696
+ self.n_adaln_chunks, dim=1
697
+ )
698
+ else:
699
+ shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1)
700
+
701
+ shift_1_1_1_B_D, scale_1_1_1_B_D, gate_1_1_1_B_D = (
702
+ shift_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
703
+ scale_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
704
+ gate_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
705
+ )
706
+
707
+ if self.block_type in ["mlp", "ff"]:
708
+ x = x + gate_1_1_1_B_D * self.block(
709
+ adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
710
+ )
711
+ elif self.block_type in ["full_attn", "fa"]:
712
+ x = x + gate_1_1_1_B_D * self.block(
713
+ adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
714
+ context=None,
715
+ rope_emb_L_1_1_D=rope_emb_L_1_1_D,
716
+ )
717
+ elif self.block_type in ["cross_attn", "ca"]:
718
+ x = x + gate_1_1_1_B_D * self.block(
719
+ adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
720
+ context=crossattn_emb,
721
+ crossattn_mask=crossattn_mask,
722
+ rope_emb_L_1_1_D=rope_emb_L_1_1_D,
723
+ )
724
+ else:
725
+ raise ValueError(f"Unknown block type: {self.block_type}")
726
+
727
+ return x
728
+
729
+
730
+ class GeneralDITTransformerBlock(nn.Module):
731
+ """
732
+ A wrapper module that manages a sequence of DITBuildingBlocks to form a complete transformer layer.
733
+ Each block in the sequence is specified by a block configuration string.
734
+
735
+ Parameters:
736
+ x_dim (int): Dimension of input features
737
+ context_dim (int): Dimension of context features for cross-attention blocks
738
+ num_heads (int): Number of attention heads
739
+ block_config (str): String specifying block sequence (e.g. "ca-fa-mlp" for cross-attention,
740
+ full-attention, then MLP)
741
+ mlp_ratio (float): MLP hidden dimension multiplier. Default: 4.0
742
+ x_format (str): Input tensor format. Default: "BTHWD"
743
+ use_adaln_lora (bool): Whether to use AdaLN-LoRA. Default: False
744
+ adaln_lora_dim (int): Dimension for AdaLN-LoRA. Default: 256
745
+
746
+ The block_config string uses "-" to separate block types:
747
+ - "ca"/"cross_attn": Cross-attention block
748
+ - "fa"/"full_attn": Full self-attention block
749
+ - "mlp"/"ff": MLP/feedforward block
750
+
751
+ Example:
752
+ block_config = "ca-fa-mlp" creates a sequence of:
753
+ 1. Cross-attention block
754
+ 2. Full self-attention block
755
+ 3. MLP block
756
+ """
757
+
758
+ def __init__(
759
+ self,
760
+ x_dim: int,
761
+ context_dim: int,
762
+ num_heads: int,
763
+ block_config: str,
764
+ mlp_ratio: float = 4.0,
765
+ x_format: str = "BTHWD",
766
+ use_adaln_lora: bool = False,
767
+ adaln_lora_dim: int = 256,
768
+ weight_args={},
769
+ operations=None
770
+ ):
771
+ super().__init__()
772
+ self.blocks = nn.ModuleList()
773
+ self.x_format = x_format
774
+ for block_type in block_config.split("-"):
775
+ self.blocks.append(
776
+ DITBuildingBlock(
777
+ block_type,
778
+ x_dim,
779
+ context_dim,
780
+ num_heads,
781
+ mlp_ratio,
782
+ x_format=self.x_format,
783
+ use_adaln_lora=use_adaln_lora,
784
+ adaln_lora_dim=adaln_lora_dim,
785
+ weight_args=weight_args,
786
+ operations=operations,
787
+ )
788
+ )
789
+
790
+ def forward(
791
+ self,
792
+ x: torch.Tensor,
793
+ emb_B_D: torch.Tensor,
794
+ crossattn_emb: torch.Tensor,
795
+ crossattn_mask: Optional[torch.Tensor] = None,
796
+ rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
797
+ adaln_lora_B_3D: Optional[torch.Tensor] = None,
798
+ ) -> torch.Tensor:
799
+ for block in self.blocks:
800
+ x = block(
801
+ x,
802
+ emb_B_D,
803
+ crossattn_emb,
804
+ crossattn_mask,
805
+ rope_emb_L_1_1_D=rope_emb_L_1_1_D,
806
+ adaln_lora_B_3D=adaln_lora_B_3D,
807
+ )
808
+ return x
comfy/ldm/cosmos/cosmos_tokenizer/layers3d.py ADDED
@@ -0,0 +1,1041 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """The model definition for 3D layers
16
+
17
+ Adapted from: https://github.com/lucidrains/magvit2-pytorch/blob/
18
+ 9f49074179c912736e617d61b32be367eb5f993a/magvit2_pytorch/magvit2_pytorch.py#L889
19
+
20
+ [MIT License Copyright (c) 2023 Phil Wang]
21
+ https://github.com/lucidrains/magvit2-pytorch/blob/
22
+ 9f49074179c912736e617d61b32be367eb5f993a/LICENSE
23
+ """
24
+ import math
25
+ from typing import Tuple, Union
26
+
27
+ import numpy as np
28
+ import torch
29
+ import torch.nn as nn
30
+ import torch.nn.functional as F
31
+ import logging
32
+
33
+ from comfy.ldm.modules.diffusionmodules.model import vae_attention
34
+
35
+ from .patching import (
36
+ Patcher,
37
+ Patcher3D,
38
+ UnPatcher,
39
+ UnPatcher3D,
40
+ )
41
+ from .utils import (
42
+ CausalNormalize,
43
+ batch2space,
44
+ batch2time,
45
+ cast_tuple,
46
+ is_odd,
47
+ nonlinearity,
48
+ replication_pad,
49
+ space2batch,
50
+ time2batch,
51
+ )
52
+
53
+ import comfy.ops
54
+ ops = comfy.ops.disable_weight_init
55
+
56
+ _LEGACY_NUM_GROUPS = 32
57
+
58
+
59
+ class CausalConv3d(nn.Module):
60
+ def __init__(
61
+ self,
62
+ chan_in: int = 1,
63
+ chan_out: int = 1,
64
+ kernel_size: Union[int, Tuple[int, int, int]] = 3,
65
+ pad_mode: str = "constant",
66
+ **kwargs,
67
+ ):
68
+ super().__init__()
69
+ kernel_size = cast_tuple(kernel_size, 3)
70
+
71
+ time_kernel_size, height_kernel_size, width_kernel_size = kernel_size
72
+
73
+ assert is_odd(height_kernel_size) and is_odd(width_kernel_size)
74
+
75
+ dilation = kwargs.pop("dilation", 1)
76
+ stride = kwargs.pop("stride", 1)
77
+ time_stride = kwargs.pop("time_stride", 1)
78
+ time_dilation = kwargs.pop("time_dilation", 1)
79
+ padding = kwargs.pop("padding", 1)
80
+
81
+ self.pad_mode = pad_mode
82
+ time_pad = time_dilation * (time_kernel_size - 1) + (1 - time_stride)
83
+ self.time_pad = time_pad
84
+
85
+ self.spatial_pad = (padding, padding, padding, padding)
86
+
87
+ stride = (time_stride, stride, stride)
88
+ dilation = (time_dilation, dilation, dilation)
89
+ self.conv3d = ops.Conv3d(
90
+ chan_in,
91
+ chan_out,
92
+ kernel_size,
93
+ stride=stride,
94
+ dilation=dilation,
95
+ **kwargs,
96
+ )
97
+
98
+ def _replication_pad(self, x: torch.Tensor) -> torch.Tensor:
99
+ x_prev = x[:, :, :1, ...].repeat(1, 1, self.time_pad, 1, 1)
100
+ x = torch.cat([x_prev, x], dim=2)
101
+ padding = self.spatial_pad + (0, 0)
102
+ return F.pad(x, padding, mode=self.pad_mode, value=0.0)
103
+
104
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
105
+ x = self._replication_pad(x)
106
+ return self.conv3d(x)
107
+
108
+
109
+ class CausalUpsample3d(nn.Module):
110
+ def __init__(self, in_channels: int) -> None:
111
+ super().__init__()
112
+ self.conv = CausalConv3d(
113
+ in_channels, in_channels, kernel_size=3, stride=1, padding=1
114
+ )
115
+
116
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
117
+ x = x.repeat_interleave(2, dim=3).repeat_interleave(2, dim=4)
118
+ time_factor = 1.0 + 1.0 * (x.shape[2] > 1)
119
+ if isinstance(time_factor, torch.Tensor):
120
+ time_factor = time_factor.item()
121
+ x = x.repeat_interleave(int(time_factor), dim=2)
122
+ # TODO(freda): Check if this causes temporal inconsistency.
123
+ # Shoule reverse the order of the following two ops,
124
+ # better perf and better temporal smoothness.
125
+ x = self.conv(x)
126
+ return x[..., int(time_factor - 1) :, :, :]
127
+
128
+
129
+ class CausalDownsample3d(nn.Module):
130
+ def __init__(self, in_channels: int) -> None:
131
+ super().__init__()
132
+ self.conv = CausalConv3d(
133
+ in_channels,
134
+ in_channels,
135
+ kernel_size=3,
136
+ stride=2,
137
+ time_stride=2,
138
+ padding=0,
139
+ )
140
+
141
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
142
+ pad = (0, 1, 0, 1, 0, 0)
143
+ x = F.pad(x, pad, mode="constant", value=0)
144
+ x = replication_pad(x)
145
+ x = self.conv(x)
146
+ return x
147
+
148
+
149
+ class CausalHybridUpsample3d(nn.Module):
150
+ def __init__(
151
+ self,
152
+ in_channels: int,
153
+ spatial_up: bool = True,
154
+ temporal_up: bool = True,
155
+ **kwargs,
156
+ ) -> None:
157
+ super().__init__()
158
+ self.spatial_up = spatial_up
159
+ self.temporal_up = temporal_up
160
+ if not self.spatial_up and not self.temporal_up:
161
+ return
162
+
163
+ self.conv1 = CausalConv3d(
164
+ in_channels,
165
+ in_channels,
166
+ kernel_size=(3, 1, 1),
167
+ stride=1,
168
+ time_stride=1,
169
+ padding=0,
170
+ )
171
+ self.conv2 = CausalConv3d(
172
+ in_channels,
173
+ in_channels,
174
+ kernel_size=(1, 3, 3),
175
+ stride=1,
176
+ time_stride=1,
177
+ padding=1,
178
+ )
179
+ self.conv3 = CausalConv3d(
180
+ in_channels,
181
+ in_channels,
182
+ kernel_size=1,
183
+ stride=1,
184
+ time_stride=1,
185
+ padding=0,
186
+ )
187
+
188
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
189
+ if not self.spatial_up and not self.temporal_up:
190
+ return x
191
+
192
+ # hybrid upsample temporally.
193
+ if self.temporal_up:
194
+ time_factor = 1.0 + 1.0 * (x.shape[2] > 1)
195
+ if isinstance(time_factor, torch.Tensor):
196
+ time_factor = time_factor.item()
197
+ x = x.repeat_interleave(int(time_factor), dim=2)
198
+ x = x[..., int(time_factor - 1) :, :, :]
199
+ x = self.conv1(x) + x
200
+
201
+ # hybrid upsample spatially.
202
+ if self.spatial_up:
203
+ x = x.repeat_interleave(2, dim=3).repeat_interleave(2, dim=4)
204
+ x = self.conv2(x) + x
205
+
206
+ # final 1x1x1 conv.
207
+ x = self.conv3(x)
208
+ return x
209
+
210
+
211
+ class CausalHybridDownsample3d(nn.Module):
212
+ def __init__(
213
+ self,
214
+ in_channels: int,
215
+ spatial_down: bool = True,
216
+ temporal_down: bool = True,
217
+ **kwargs,
218
+ ) -> None:
219
+ super().__init__()
220
+ self.spatial_down = spatial_down
221
+ self.temporal_down = temporal_down
222
+ if not self.spatial_down and not self.temporal_down:
223
+ return
224
+
225
+ self.conv1 = CausalConv3d(
226
+ in_channels,
227
+ in_channels,
228
+ kernel_size=(1, 3, 3),
229
+ stride=2,
230
+ time_stride=1,
231
+ padding=0,
232
+ )
233
+ self.conv2 = CausalConv3d(
234
+ in_channels,
235
+ in_channels,
236
+ kernel_size=(3, 1, 1),
237
+ stride=1,
238
+ time_stride=2,
239
+ padding=0,
240
+ )
241
+ self.conv3 = CausalConv3d(
242
+ in_channels,
243
+ in_channels,
244
+ kernel_size=1,
245
+ stride=1,
246
+ time_stride=1,
247
+ padding=0,
248
+ )
249
+
250
+
251
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
252
+ if not self.spatial_down and not self.temporal_down:
253
+ return x
254
+
255
+ # hybrid downsample spatially.
256
+ if self.spatial_down:
257
+ pad = (0, 1, 0, 1, 0, 0)
258
+ x = F.pad(x, pad, mode="constant", value=0)
259
+ x1 = self.conv1(x)
260
+ x2 = F.avg_pool3d(x, kernel_size=(1, 2, 2), stride=(1, 2, 2))
261
+ x = x1 + x2
262
+
263
+ # hybrid downsample temporally.
264
+ if self.temporal_down:
265
+ x = replication_pad(x)
266
+ x1 = self.conv2(x)
267
+ x2 = F.avg_pool3d(x, kernel_size=(2, 1, 1), stride=(2, 1, 1))
268
+ x = x1 + x2
269
+
270
+ # final 1x1x1 conv.
271
+ x = self.conv3(x)
272
+ return x
273
+
274
+
275
+ class CausalResnetBlock3d(nn.Module):
276
+ def __init__(
277
+ self,
278
+ *,
279
+ in_channels: int,
280
+ out_channels: int = None,
281
+ dropout: float,
282
+ num_groups: int,
283
+ ) -> None:
284
+ super().__init__()
285
+ self.in_channels = in_channels
286
+ out_channels = in_channels if out_channels is None else out_channels
287
+
288
+ self.norm1 = CausalNormalize(in_channels, num_groups=num_groups)
289
+ self.conv1 = CausalConv3d(
290
+ in_channels, out_channels, kernel_size=3, stride=1, padding=1
291
+ )
292
+ self.norm2 = CausalNormalize(out_channels, num_groups=num_groups)
293
+ self.dropout = torch.nn.Dropout(dropout)
294
+ self.conv2 = CausalConv3d(
295
+ out_channels, out_channels, kernel_size=3, stride=1, padding=1
296
+ )
297
+ self.nin_shortcut = (
298
+ CausalConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
299
+ if in_channels != out_channels
300
+ else nn.Identity()
301
+ )
302
+
303
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
304
+ h = x
305
+ h = self.norm1(h)
306
+ h = nonlinearity(h)
307
+ h = self.conv1(h)
308
+
309
+ h = self.norm2(h)
310
+ h = nonlinearity(h)
311
+ h = self.dropout(h)
312
+ h = self.conv2(h)
313
+ x = self.nin_shortcut(x)
314
+
315
+ return x + h
316
+
317
+
318
+ class CausalResnetBlockFactorized3d(nn.Module):
319
+ def __init__(
320
+ self,
321
+ *,
322
+ in_channels: int,
323
+ out_channels: int = None,
324
+ dropout: float,
325
+ num_groups: int,
326
+ ) -> None:
327
+ super().__init__()
328
+ self.in_channels = in_channels
329
+ out_channels = in_channels if out_channels is None else out_channels
330
+
331
+ self.norm1 = CausalNormalize(in_channels, num_groups=1)
332
+ self.conv1 = nn.Sequential(
333
+ CausalConv3d(
334
+ in_channels,
335
+ out_channels,
336
+ kernel_size=(1, 3, 3),
337
+ stride=1,
338
+ padding=1,
339
+ ),
340
+ CausalConv3d(
341
+ out_channels,
342
+ out_channels,
343
+ kernel_size=(3, 1, 1),
344
+ stride=1,
345
+ padding=0,
346
+ ),
347
+ )
348
+ self.norm2 = CausalNormalize(out_channels, num_groups=num_groups)
349
+ self.dropout = torch.nn.Dropout(dropout)
350
+ self.conv2 = nn.Sequential(
351
+ CausalConv3d(
352
+ out_channels,
353
+ out_channels,
354
+ kernel_size=(1, 3, 3),
355
+ stride=1,
356
+ padding=1,
357
+ ),
358
+ CausalConv3d(
359
+ out_channels,
360
+ out_channels,
361
+ kernel_size=(3, 1, 1),
362
+ stride=1,
363
+ padding=0,
364
+ ),
365
+ )
366
+ self.nin_shortcut = (
367
+ CausalConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
368
+ if in_channels != out_channels
369
+ else nn.Identity()
370
+ )
371
+
372
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
373
+ h = x
374
+ h = self.norm1(h)
375
+ h = nonlinearity(h)
376
+ h = self.conv1(h)
377
+
378
+ h = self.norm2(h)
379
+ h = nonlinearity(h)
380
+ h = self.dropout(h)
381
+ h = self.conv2(h)
382
+ x = self.nin_shortcut(x)
383
+
384
+ return x + h
385
+
386
+
387
+ class CausalAttnBlock(nn.Module):
388
+ def __init__(self, in_channels: int, num_groups: int) -> None:
389
+ super().__init__()
390
+
391
+ self.norm = CausalNormalize(in_channels, num_groups=num_groups)
392
+ self.q = CausalConv3d(
393
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
394
+ )
395
+ self.k = CausalConv3d(
396
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
397
+ )
398
+ self.v = CausalConv3d(
399
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
400
+ )
401
+ self.proj_out = CausalConv3d(
402
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
403
+ )
404
+
405
+ self.optimized_attention = vae_attention()
406
+
407
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
408
+ h_ = x
409
+ h_ = self.norm(h_)
410
+ q = self.q(h_)
411
+ k = self.k(h_)
412
+ v = self.v(h_)
413
+
414
+ # compute attention
415
+ q, batch_size = time2batch(q)
416
+ k, batch_size = time2batch(k)
417
+ v, batch_size = time2batch(v)
418
+
419
+ b, c, h, w = q.shape
420
+ h_ = self.optimized_attention(q, k, v)
421
+
422
+ h_ = batch2time(h_, batch_size)
423
+ h_ = self.proj_out(h_)
424
+ return x + h_
425
+
426
+
427
+ class CausalTemporalAttnBlock(nn.Module):
428
+ def __init__(self, in_channels: int, num_groups: int) -> None:
429
+ super().__init__()
430
+
431
+ self.norm = CausalNormalize(in_channels, num_groups=num_groups)
432
+ self.q = CausalConv3d(
433
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
434
+ )
435
+ self.k = CausalConv3d(
436
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
437
+ )
438
+ self.v = CausalConv3d(
439
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
440
+ )
441
+ self.proj_out = CausalConv3d(
442
+ in_channels, in_channels, kernel_size=1, stride=1, padding=0
443
+ )
444
+
445
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
446
+ h_ = x
447
+ h_ = self.norm(h_)
448
+ q = self.q(h_)
449
+ k = self.k(h_)
450
+ v = self.v(h_)
451
+
452
+ # compute attention
453
+ q, batch_size, height = space2batch(q)
454
+ k, _, _ = space2batch(k)
455
+ v, _, _ = space2batch(v)
456
+
457
+ bhw, c, t = q.shape
458
+ q = q.permute(0, 2, 1) # (bhw, t, c)
459
+ k = k.permute(0, 2, 1) # (bhw, t, c)
460
+ v = v.permute(0, 2, 1) # (bhw, t, c)
461
+
462
+ w_ = torch.bmm(q, k.permute(0, 2, 1)) # (bhw, t, t)
463
+ w_ = w_ * (int(c) ** (-0.5))
464
+
465
+ # Apply causal mask
466
+ mask = torch.tril(torch.ones_like(w_))
467
+ w_ = w_.masked_fill(mask == 0, float("-inf"))
468
+ w_ = F.softmax(w_, dim=2)
469
+
470
+ # attend to values
471
+ h_ = torch.bmm(w_, v) # (bhw, t, c)
472
+ h_ = h_.permute(0, 2, 1).reshape(bhw, c, t) # (bhw, c, t)
473
+
474
+ h_ = batch2space(h_, batch_size, height)
475
+ h_ = self.proj_out(h_)
476
+ return x + h_
477
+
478
+
479
+ class EncoderBase(nn.Module):
480
+ def __init__(
481
+ self,
482
+ in_channels: int,
483
+ channels: int,
484
+ channels_mult: list[int],
485
+ num_res_blocks: int,
486
+ attn_resolutions: list[int],
487
+ dropout: float,
488
+ resolution: int,
489
+ z_channels: int,
490
+ **ignore_kwargs,
491
+ ) -> None:
492
+ super().__init__()
493
+ self.num_resolutions = len(channels_mult)
494
+ self.num_res_blocks = num_res_blocks
495
+
496
+ # Patcher.
497
+ patch_size = ignore_kwargs.get("patch_size", 1)
498
+ self.patcher = Patcher(
499
+ patch_size, ignore_kwargs.get("patch_method", "rearrange")
500
+ )
501
+ in_channels = in_channels * patch_size * patch_size
502
+
503
+ # downsampling
504
+ self.conv_in = CausalConv3d(
505
+ in_channels, channels, kernel_size=3, stride=1, padding=1
506
+ )
507
+
508
+ # num of groups for GroupNorm, num_groups=1 for LayerNorm.
509
+ num_groups = ignore_kwargs.get("num_groups", _LEGACY_NUM_GROUPS)
510
+ curr_res = resolution // patch_size
511
+ in_ch_mult = (1,) + tuple(channels_mult)
512
+ self.in_ch_mult = in_ch_mult
513
+ self.down = nn.ModuleList()
514
+ for i_level in range(self.num_resolutions):
515
+ block = nn.ModuleList()
516
+ attn = nn.ModuleList()
517
+ block_in = channels * in_ch_mult[i_level]
518
+ block_out = channels * channels_mult[i_level]
519
+ for _ in range(self.num_res_blocks):
520
+ block.append(
521
+ CausalResnetBlock3d(
522
+ in_channels=block_in,
523
+ out_channels=block_out,
524
+ dropout=dropout,
525
+ num_groups=num_groups,
526
+ )
527
+ )
528
+ block_in = block_out
529
+ if curr_res in attn_resolutions:
530
+ attn.append(CausalAttnBlock(block_in, num_groups=num_groups))
531
+ down = nn.Module()
532
+ down.block = block
533
+ down.attn = attn
534
+ if i_level != self.num_resolutions - 1:
535
+ down.downsample = CausalDownsample3d(block_in)
536
+ curr_res = curr_res // 2
537
+ self.down.append(down)
538
+
539
+ # middle
540
+ self.mid = nn.Module()
541
+ self.mid.block_1 = CausalResnetBlock3d(
542
+ in_channels=block_in,
543
+ out_channels=block_in,
544
+ dropout=dropout,
545
+ num_groups=num_groups,
546
+ )
547
+ self.mid.attn_1 = CausalAttnBlock(block_in, num_groups=num_groups)
548
+ self.mid.block_2 = CausalResnetBlock3d(
549
+ in_channels=block_in,
550
+ out_channels=block_in,
551
+ dropout=dropout,
552
+ num_groups=num_groups,
553
+ )
554
+
555
+ # end
556
+ self.norm_out = CausalNormalize(block_in, num_groups=num_groups)
557
+ self.conv_out = CausalConv3d(
558
+ block_in, z_channels, kernel_size=3, stride=1, padding=1
559
+ )
560
+
561
+ def patcher3d(self, x: torch.Tensor) -> torch.Tensor:
562
+ x, batch_size = time2batch(x)
563
+ x = self.patcher(x)
564
+ x = batch2time(x, batch_size)
565
+ return x
566
+
567
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
568
+ x = self.patcher3d(x)
569
+
570
+ # downsampling
571
+ hs = [self.conv_in(x)]
572
+ for i_level in range(self.num_resolutions):
573
+ for i_block in range(self.num_res_blocks):
574
+ h = self.down[i_level].block[i_block](hs[-1])
575
+ if len(self.down[i_level].attn) > 0:
576
+ h = self.down[i_level].attn[i_block](h)
577
+ hs.append(h)
578
+ if i_level != self.num_resolutions - 1:
579
+ hs.append(self.down[i_level].downsample(hs[-1]))
580
+ else:
581
+ # temporal downsample (last level)
582
+ time_factor = 1 + 1 * (hs[-1].shape[2] > 1)
583
+ if isinstance(time_factor, torch.Tensor):
584
+ time_factor = time_factor.item()
585
+ hs[-1] = replication_pad(hs[-1])
586
+ hs.append(
587
+ F.avg_pool3d(
588
+ hs[-1],
589
+ kernel_size=[time_factor, 1, 1],
590
+ stride=[2, 1, 1],
591
+ )
592
+ )
593
+
594
+ # middle
595
+ h = hs[-1]
596
+ h = self.mid.block_1(h)
597
+ h = self.mid.attn_1(h)
598
+ h = self.mid.block_2(h)
599
+
600
+ # end
601
+ h = self.norm_out(h)
602
+ h = nonlinearity(h)
603
+ h = self.conv_out(h)
604
+ return h
605
+
606
+
607
+ class DecoderBase(nn.Module):
608
+ def __init__(
609
+ self,
610
+ out_channels: int,
611
+ channels: int,
612
+ channels_mult: list[int],
613
+ num_res_blocks: int,
614
+ attn_resolutions: list[int],
615
+ dropout: float,
616
+ resolution: int,
617
+ z_channels: int,
618
+ **ignore_kwargs,
619
+ ):
620
+ super().__init__()
621
+ self.num_resolutions = len(channels_mult)
622
+ self.num_res_blocks = num_res_blocks
623
+
624
+ # UnPatcher.
625
+ patch_size = ignore_kwargs.get("patch_size", 1)
626
+ self.unpatcher = UnPatcher(
627
+ patch_size, ignore_kwargs.get("patch_method", "rearrange")
628
+ )
629
+ out_ch = out_channels * patch_size * patch_size
630
+
631
+ block_in = channels * channels_mult[self.num_resolutions - 1]
632
+ curr_res = (resolution // patch_size) // 2 ** (self.num_resolutions - 1)
633
+ self.z_shape = (1, z_channels, curr_res, curr_res)
634
+ logging.debug(
635
+ "Working with z of shape {} = {} dimensions.".format(
636
+ self.z_shape, np.prod(self.z_shape)
637
+ )
638
+ )
639
+
640
+ # z to block_in
641
+ self.conv_in = CausalConv3d(
642
+ z_channels, block_in, kernel_size=3, stride=1, padding=1
643
+ )
644
+
645
+ # num of groups for GroupNorm, num_groups=1 for LayerNorm.
646
+ num_groups = ignore_kwargs.get("num_groups", _LEGACY_NUM_GROUPS)
647
+
648
+ # middle
649
+ self.mid = nn.Module()
650
+ self.mid.block_1 = CausalResnetBlock3d(
651
+ in_channels=block_in,
652
+ out_channels=block_in,
653
+ dropout=dropout,
654
+ num_groups=num_groups,
655
+ )
656
+ self.mid.attn_1 = CausalAttnBlock(block_in, num_groups=num_groups)
657
+ self.mid.block_2 = CausalResnetBlock3d(
658
+ in_channels=block_in,
659
+ out_channels=block_in,
660
+ dropout=dropout,
661
+ num_groups=num_groups,
662
+ )
663
+
664
+ # upsampling
665
+ self.up = nn.ModuleList()
666
+ for i_level in reversed(range(self.num_resolutions)):
667
+ block = nn.ModuleList()
668
+ attn = nn.ModuleList()
669
+ block_out = channels * channels_mult[i_level]
670
+ for _ in range(self.num_res_blocks + 1):
671
+ block.append(
672
+ CausalResnetBlock3d(
673
+ in_channels=block_in,
674
+ out_channels=block_out,
675
+ dropout=dropout,
676
+ num_groups=num_groups,
677
+ )
678
+ )
679
+ block_in = block_out
680
+ if curr_res in attn_resolutions:
681
+ attn.append(CausalAttnBlock(block_in, num_groups=num_groups))
682
+ up = nn.Module()
683
+ up.block = block
684
+ up.attn = attn
685
+ if i_level != 0:
686
+ up.upsample = CausalUpsample3d(block_in)
687
+ curr_res = curr_res * 2
688
+ self.up.insert(0, up) # prepend to get consistent order
689
+
690
+ # end
691
+ self.norm_out = CausalNormalize(block_in, num_groups=num_groups)
692
+ self.conv_out = CausalConv3d(
693
+ block_in, out_ch, kernel_size=3, stride=1, padding=1
694
+ )
695
+
696
+ def unpatcher3d(self, x: torch.Tensor) -> torch.Tensor:
697
+ x, batch_size = time2batch(x)
698
+ x = self.unpatcher(x)
699
+ x = batch2time(x, batch_size)
700
+
701
+ return x
702
+
703
+ def forward(self, z):
704
+ h = self.conv_in(z)
705
+
706
+ # middle block.
707
+ h = self.mid.block_1(h)
708
+ h = self.mid.attn_1(h)
709
+ h = self.mid.block_2(h)
710
+
711
+ # decoder blocks.
712
+ for i_level in reversed(range(self.num_resolutions)):
713
+ for i_block in range(self.num_res_blocks + 1):
714
+ h = self.up[i_level].block[i_block](h)
715
+ if len(self.up[i_level].attn) > 0:
716
+ h = self.up[i_level].attn[i_block](h)
717
+ if i_level != 0:
718
+ h = self.up[i_level].upsample(h)
719
+ else:
720
+ # temporal upsample (last level)
721
+ time_factor = 1.0 + 1.0 * (h.shape[2] > 1)
722
+ if isinstance(time_factor, torch.Tensor):
723
+ time_factor = time_factor.item()
724
+ h = h.repeat_interleave(int(time_factor), dim=2)
725
+ h = h[..., int(time_factor - 1) :, :, :]
726
+
727
+ h = self.norm_out(h)
728
+ h = nonlinearity(h)
729
+ h = self.conv_out(h)
730
+ h = self.unpatcher3d(h)
731
+ return h
732
+
733
+
734
+ class EncoderFactorized(nn.Module):
735
+ def __init__(
736
+ self,
737
+ in_channels: int,
738
+ channels: int,
739
+ channels_mult: list[int],
740
+ num_res_blocks: int,
741
+ attn_resolutions: list[int],
742
+ dropout: float,
743
+ resolution: int,
744
+ z_channels: int,
745
+ spatial_compression: int = 8,
746
+ temporal_compression: int = 8,
747
+ **ignore_kwargs,
748
+ ) -> None:
749
+ super().__init__()
750
+ self.num_resolutions = len(channels_mult)
751
+ self.num_res_blocks = num_res_blocks
752
+
753
+ # Patcher.
754
+ patch_size = ignore_kwargs.get("patch_size", 1)
755
+ self.patcher3d = Patcher3D(
756
+ patch_size, ignore_kwargs.get("patch_method", "haar")
757
+ )
758
+ in_channels = in_channels * patch_size * patch_size * patch_size
759
+
760
+ # calculate the number of downsample operations
761
+ self.num_spatial_downs = int(math.log2(spatial_compression)) - int(
762
+ math.log2(patch_size)
763
+ )
764
+ assert (
765
+ self.num_spatial_downs <= self.num_resolutions
766
+ ), f"Spatially downsample {self.num_resolutions} times at most"
767
+
768
+ self.num_temporal_downs = int(math.log2(temporal_compression)) - int(
769
+ math.log2(patch_size)
770
+ )
771
+ assert (
772
+ self.num_temporal_downs <= self.num_resolutions
773
+ ), f"Temporally downsample {self.num_resolutions} times at most"
774
+
775
+ # downsampling
776
+ self.conv_in = nn.Sequential(
777
+ CausalConv3d(
778
+ in_channels,
779
+ channels,
780
+ kernel_size=(1, 3, 3),
781
+ stride=1,
782
+ padding=1,
783
+ ),
784
+ CausalConv3d(
785
+ channels, channels, kernel_size=(3, 1, 1), stride=1, padding=0
786
+ ),
787
+ )
788
+
789
+ curr_res = resolution // patch_size
790
+ in_ch_mult = (1,) + tuple(channels_mult)
791
+ self.in_ch_mult = in_ch_mult
792
+ self.down = nn.ModuleList()
793
+ for i_level in range(self.num_resolutions):
794
+ block = nn.ModuleList()
795
+ attn = nn.ModuleList()
796
+ block_in = channels * in_ch_mult[i_level]
797
+ block_out = channels * channels_mult[i_level]
798
+ for _ in range(self.num_res_blocks):
799
+ block.append(
800
+ CausalResnetBlockFactorized3d(
801
+ in_channels=block_in,
802
+ out_channels=block_out,
803
+ dropout=dropout,
804
+ num_groups=1,
805
+ )
806
+ )
807
+ block_in = block_out
808
+ if curr_res in attn_resolutions:
809
+ attn.append(
810
+ nn.Sequential(
811
+ CausalAttnBlock(block_in, num_groups=1),
812
+ CausalTemporalAttnBlock(block_in, num_groups=1),
813
+ )
814
+ )
815
+ down = nn.Module()
816
+ down.block = block
817
+ down.attn = attn
818
+ if i_level != self.num_resolutions - 1:
819
+ spatial_down = i_level < self.num_spatial_downs
820
+ temporal_down = i_level < self.num_temporal_downs
821
+ down.downsample = CausalHybridDownsample3d(
822
+ block_in,
823
+ spatial_down=spatial_down,
824
+ temporal_down=temporal_down,
825
+ )
826
+ curr_res = curr_res // 2
827
+ self.down.append(down)
828
+
829
+ # middle
830
+ self.mid = nn.Module()
831
+ self.mid.block_1 = CausalResnetBlockFactorized3d(
832
+ in_channels=block_in,
833
+ out_channels=block_in,
834
+ dropout=dropout,
835
+ num_groups=1,
836
+ )
837
+ self.mid.attn_1 = nn.Sequential(
838
+ CausalAttnBlock(block_in, num_groups=1),
839
+ CausalTemporalAttnBlock(block_in, num_groups=1),
840
+ )
841
+ self.mid.block_2 = CausalResnetBlockFactorized3d(
842
+ in_channels=block_in,
843
+ out_channels=block_in,
844
+ dropout=dropout,
845
+ num_groups=1,
846
+ )
847
+
848
+ # end
849
+ self.norm_out = CausalNormalize(block_in, num_groups=1)
850
+ self.conv_out = nn.Sequential(
851
+ CausalConv3d(
852
+ block_in, z_channels, kernel_size=(1, 3, 3), stride=1, padding=1
853
+ ),
854
+ CausalConv3d(
855
+ z_channels,
856
+ z_channels,
857
+ kernel_size=(3, 1, 1),
858
+ stride=1,
859
+ padding=0,
860
+ ),
861
+ )
862
+
863
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
864
+ x = self.patcher3d(x)
865
+
866
+ # downsampling
867
+ h = self.conv_in(x)
868
+ for i_level in range(self.num_resolutions):
869
+ for i_block in range(self.num_res_blocks):
870
+ h = self.down[i_level].block[i_block](h)
871
+ if len(self.down[i_level].attn) > 0:
872
+ h = self.down[i_level].attn[i_block](h)
873
+ if i_level != self.num_resolutions - 1:
874
+ h = self.down[i_level].downsample(h)
875
+
876
+ # middle
877
+ h = self.mid.block_1(h)
878
+ h = self.mid.attn_1(h)
879
+ h = self.mid.block_2(h)
880
+
881
+ # end
882
+ h = self.norm_out(h)
883
+ h = nonlinearity(h)
884
+ h = self.conv_out(h)
885
+ return h
886
+
887
+
888
+ class DecoderFactorized(nn.Module):
889
+ def __init__(
890
+ self,
891
+ out_channels: int,
892
+ channels: int,
893
+ channels_mult: list[int],
894
+ num_res_blocks: int,
895
+ attn_resolutions: list[int],
896
+ dropout: float,
897
+ resolution: int,
898
+ z_channels: int,
899
+ spatial_compression: int = 8,
900
+ temporal_compression: int = 8,
901
+ **ignore_kwargs,
902
+ ):
903
+ super().__init__()
904
+ self.num_resolutions = len(channels_mult)
905
+ self.num_res_blocks = num_res_blocks
906
+
907
+ # UnPatcher.
908
+ patch_size = ignore_kwargs.get("patch_size", 1)
909
+ self.unpatcher3d = UnPatcher3D(
910
+ patch_size, ignore_kwargs.get("patch_method", "haar")
911
+ )
912
+ out_ch = out_channels * patch_size * patch_size * patch_size
913
+
914
+ # calculate the number of upsample operations
915
+ self.num_spatial_ups = int(math.log2(spatial_compression)) - int(
916
+ math.log2(patch_size)
917
+ )
918
+ assert (
919
+ self.num_spatial_ups <= self.num_resolutions
920
+ ), f"Spatially upsample {self.num_resolutions} times at most"
921
+ self.num_temporal_ups = int(math.log2(temporal_compression)) - int(
922
+ math.log2(patch_size)
923
+ )
924
+ assert (
925
+ self.num_temporal_ups <= self.num_resolutions
926
+ ), f"Temporally upsample {self.num_resolutions} times at most"
927
+
928
+ block_in = channels * channels_mult[self.num_resolutions - 1]
929
+ curr_res = (resolution // patch_size) // 2 ** (self.num_resolutions - 1)
930
+ self.z_shape = (1, z_channels, curr_res, curr_res)
931
+ logging.debug(
932
+ "Working with z of shape {} = {} dimensions.".format(
933
+ self.z_shape, np.prod(self.z_shape)
934
+ )
935
+ )
936
+
937
+ # z to block_in
938
+ self.conv_in = nn.Sequential(
939
+ CausalConv3d(
940
+ z_channels, block_in, kernel_size=(1, 3, 3), stride=1, padding=1
941
+ ),
942
+ CausalConv3d(
943
+ block_in, block_in, kernel_size=(3, 1, 1), stride=1, padding=0
944
+ ),
945
+ )
946
+
947
+ # middle
948
+ self.mid = nn.Module()
949
+ self.mid.block_1 = CausalResnetBlockFactorized3d(
950
+ in_channels=block_in,
951
+ out_channels=block_in,
952
+ dropout=dropout,
953
+ num_groups=1,
954
+ )
955
+ self.mid.attn_1 = nn.Sequential(
956
+ CausalAttnBlock(block_in, num_groups=1),
957
+ CausalTemporalAttnBlock(block_in, num_groups=1),
958
+ )
959
+ self.mid.block_2 = CausalResnetBlockFactorized3d(
960
+ in_channels=block_in,
961
+ out_channels=block_in,
962
+ dropout=dropout,
963
+ num_groups=1,
964
+ )
965
+
966
+ legacy_mode = ignore_kwargs.get("legacy_mode", False)
967
+ # upsampling
968
+ self.up = nn.ModuleList()
969
+ for i_level in reversed(range(self.num_resolutions)):
970
+ block = nn.ModuleList()
971
+ attn = nn.ModuleList()
972
+ block_out = channels * channels_mult[i_level]
973
+ for _ in range(self.num_res_blocks + 1):
974
+ block.append(
975
+ CausalResnetBlockFactorized3d(
976
+ in_channels=block_in,
977
+ out_channels=block_out,
978
+ dropout=dropout,
979
+ num_groups=1,
980
+ )
981
+ )
982
+ block_in = block_out
983
+ if curr_res in attn_resolutions:
984
+ attn.append(
985
+ nn.Sequential(
986
+ CausalAttnBlock(block_in, num_groups=1),
987
+ CausalTemporalAttnBlock(block_in, num_groups=1),
988
+ )
989
+ )
990
+ up = nn.Module()
991
+ up.block = block
992
+ up.attn = attn
993
+ if i_level != 0:
994
+ # The layer index for temporal/spatial downsampling performed
995
+ # in the encoder should correspond to the layer index in
996
+ # reverse order where upsampling is performed in the decoder.
997
+ # If you've a pre-trained model, you can simply finetune.
998
+ i_level_reverse = self.num_resolutions - i_level - 1
999
+ if legacy_mode:
1000
+ temporal_up = i_level_reverse < self.num_temporal_ups
1001
+ else:
1002
+ temporal_up = 0 < i_level_reverse < self.num_temporal_ups + 1
1003
+ spatial_up = temporal_up or (
1004
+ i_level_reverse < self.num_spatial_ups
1005
+ and self.num_spatial_ups > self.num_temporal_ups
1006
+ )
1007
+ up.upsample = CausalHybridUpsample3d(
1008
+ block_in, spatial_up=spatial_up, temporal_up=temporal_up
1009
+ )
1010
+ curr_res = curr_res * 2
1011
+ self.up.insert(0, up) # prepend to get consistent order
1012
+
1013
+ # end
1014
+ self.norm_out = CausalNormalize(block_in, num_groups=1)
1015
+ self.conv_out = nn.Sequential(
1016
+ CausalConv3d(block_in, out_ch, kernel_size=(1, 3, 3), stride=1, padding=1),
1017
+ CausalConv3d(out_ch, out_ch, kernel_size=(3, 1, 1), stride=1, padding=0),
1018
+ )
1019
+
1020
+ def forward(self, z):
1021
+ h = self.conv_in(z)
1022
+
1023
+ # middle block.
1024
+ h = self.mid.block_1(h)
1025
+ h = self.mid.attn_1(h)
1026
+ h = self.mid.block_2(h)
1027
+
1028
+ # decoder blocks.
1029
+ for i_level in reversed(range(self.num_resolutions)):
1030
+ for i_block in range(self.num_res_blocks + 1):
1031
+ h = self.up[i_level].block[i_block](h)
1032
+ if len(self.up[i_level].attn) > 0:
1033
+ h = self.up[i_level].attn[i_block](h)
1034
+ if i_level != 0:
1035
+ h = self.up[i_level].upsample(h)
1036
+
1037
+ h = self.norm_out(h)
1038
+ h = nonlinearity(h)
1039
+ h = self.conv_out(h)
1040
+ h = self.unpatcher3d(h)
1041
+ return h