Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,991 Bytes
8954b2d 9bf332b 038e5f0 9bf332b 038e5f0 9bf332b 87df1fa 9bf332b 038e5f0 87df1fa 9bf332b 87df1fa 9bf332b 6d9153c 87df1fa 6d9153c 87df1fa 6d9153c 87df1fa 6d9153c 9bf332b 6d9153c 2032b2a 9bf332b 87df1fa 9bf332b 87df1fa 9bf332b 87df1fa 9bf332b 87df1fa 9bf332b 87df1fa 6d9153c 87df1fa 9bf332b 87df1fa 9bf332b 87df1fa 9bf332b 87df1fa 9bf332b 87df1fa 9bf332b 87df1fa 9bf332b 87df1fa 9bf332b 87df1fa 9bf332b 87df1fa 9bf332b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
try:
import spaces # type: ignore
IN_SPACES = True
except ImportError:
print("Not running on Zero")
IN_SPACES = False
import PIL
import PIL.Image
from PIL.Image import Image
from mini_nvs_solver.rr_logging_utils import (
log_camera,
create_svd_blueprint,
)
from mini_nvs_solver.pose_utils import generate_camera_parameters
from mini_nvs_solver.camera_parameters import PinholeParameters
from mini_nvs_solver.depth_utils import image_to_depth
from mini_nvs_solver.image_warping import image_depth_warping
from mini_nvs_solver.sigma_utils import load_lambda_ts
from mini_nvs_solver.nerfstudio_data import frames_to_nerfstudio
import gradio as gr
from gradio_rerun import Rerun
import rerun as rr
import rerun.blueprint as rrb
import numpy as np
import PIL
import torch
from pathlib import Path
import trimesh
import subprocess
import mmcv
from uuid import uuid4
from typing import Final, Literal
from jaxtyping import Float64, Float32, UInt8
from monopriors.relative_depth_models.depth_anything_v2 import DepthAnythingV2Predictor
from mini_nvs_solver.custom_diffusers_pipeline.svd import StableVideoDiffusionPipeline
from mini_nvs_solver.custom_diffusers_pipeline.scheduler import EulerDiscreteScheduler
from mini_nvs_solver.threaded_logging_utils import svd_render_threaded
from queue import Queue
import threading
SVD_HEIGHT: Final[int] = 576
SVD_WIDTH: Final[int] = 1024
NEAR: Final[float] = 0.0001
FAR: Final[float] = 500.0
if gr.NO_RELOAD:
depth_predictor: DepthAnythingV2Predictor = DepthAnythingV2Predictor(
device="cuda", encoder="vitl"
)
SVD_PIPE = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt",
torch_dtype=torch.float16,
variant="fp16",
)
SVD_PIPE.to("cuda")
scheduler = EulerDiscreteScheduler.from_config(SVD_PIPE.scheduler.config)
SVD_PIPE.scheduler = scheduler
def svd_render(
image_o: PIL.Image.Image,
masks: Float64[torch.Tensor, "b 72 128"],
cond_image: PIL.Image.Image,
lambda_ts: Float64[torch.Tensor, "n b"],
num_denoise_iters: Literal[2, 5, 25, 50, 100],
weight_clamp: float,
svd_pipe: StableVideoDiffusionPipeline,
):
frames: list[PIL.Image.Image] = svd_pipe(
[image_o],
log_queue=None,
temp_cond=cond_image,
mask=masks,
lambda_ts=lambda_ts,
weight_clamp=weight_clamp,
num_frames=25,
decode_chunk_size=8,
num_inference_steps=num_denoise_iters,
).frames[0]
return frames
if IN_SPACES:
svd_render = spaces.GPU(svd_render)
image_to_depth = spaces.GPU(image_to_depth, duration=400)
@rr.thread_local_stream("warped_image")
def gradio_warped_image(
image_path: str,
num_denoise_iters: Literal[2, 25, 50, 100],
direction: Literal["left", "right"],
degrees_per_frame: int | float,
major_radius: float = 60.0,
minor_radius: float = 70.0,
num_frames: int = 25, # StableDiffusion Video generates 25 frames
progress=gr.Progress(track_tqdm=False),
):
if num_denoise_iters != 2 and IN_SPACES:
gr.Warning(
"Running on Zero, anything greater than 2 iterations may cause GPU abort due to long running time"
)
# ensure that the degrees per frame is a float
degrees_per_frame = float(degrees_per_frame)
image_path: Path = Path(image_path) if isinstance(image_path, str) else image_path
assert image_path.exists(), f"Image file not found: {image_path}"
save_path: Path = image_path.parent / f"{image_path.stem}_{uuid4()}"
# setup rerun logging
stream = rr.binary_stream()
parent_log_path = Path("world")
rr.log(f"{parent_log_path}", rr.ViewCoordinates.LDB, static=True)
blueprint: rrb.Blueprint = create_svd_blueprint(parent_log_path)
rr.send_blueprint(blueprint)
# Load image and resize to SVD dimensions
rgb_original: Image = PIL.Image.open(image_path)
rgb_resized: Image = rgb_original.resize(
(SVD_WIDTH, SVD_HEIGHT), PIL.Image.Resampling.NEAREST
)
rgb_np_original: UInt8[np.ndarray, "h w 3"] = np.array(rgb_original)
rgb_np_hw3: UInt8[np.ndarray, "h w 3"] = np.array(rgb_resized)
# generate initial camera parameters for video trajectory
camera_list: list[PinholeParameters] = generate_camera_parameters(
num_frames=num_frames,
image_width=SVD_WIDTH,
image_height=SVD_HEIGHT,
degrees_per_frame=degrees_per_frame,
major_radius=major_radius,
minor_radius=minor_radius,
direction=direction,
)
assert len(camera_list) == num_frames, "Number of camera parameters mismatch"
# Estimate depth map and pointcloud for the input image
depth: Float32[np.ndarray, "h w"]
trimesh_pc: trimesh.PointCloud
depth_original: Float32[np.ndarray, "original_h original_w"]
trimesh_pc_original: trimesh.PointCloud
depth, trimesh_pc, depth_original, trimesh_pc_original = image_to_depth(
rgb_np_original=rgb_np_original,
rgb_np_hw3=rgb_np_hw3,
cam_params=camera_list[0],
near=NEAR,
far=FAR,
depth_predictor=depth_predictor,
)
rr.log(
f"{parent_log_path}/point_cloud",
rr.Points3D(
positions=trimesh_pc.vertices,
colors=trimesh_pc.colors,
),
static=True,
)
start_cam: PinholeParameters = camera_list[0]
cond_image: list[PIL.Image.Image] = []
masks: list[Float64[torch.Tensor, "1 72 128"]] = []
# Perform image depth warping to generated camera parameters
current_cam: PinholeParameters
for frame_id, current_cam in enumerate(camera_list):
rr.set_time_sequence("frame_id", frame_id)
if frame_id == 0:
cam_log_path: Path = parent_log_path / "warped_camera"
log_camera(cam_log_path, current_cam, rgb_np_hw3, depth)
else:
# clear logged depth from the previous frame
rr.log(f"{cam_log_path}/pinhole/depth", rr.Clear(recursive=False))
cam_log_path: Path = parent_log_path / "warped_camera"
# do image warping
warped_frame2, mask_erosion_tensor = image_depth_warping(
image=rgb_np_hw3,
depth=depth,
cam_T_world_44_s=start_cam.extrinsics.cam_T_world,
cam_T_world_44_t=current_cam.extrinsics.cam_T_world,
K=current_cam.intrinsics.k_matrix,
)
cond_image.append(warped_frame2)
masks.append(mask_erosion_tensor)
log_camera(cam_log_path, current_cam, np.asarray(warped_frame2))
yield stream.read(), None, [], "Warping images"
masks: Float64[torch.Tensor, "b 72 128"] = torch.cat(masks)
# load sigmas to optimize for timestep
progress(0.1, desc="Optimizing timesteps for diffusion")
lambda_ts: Float64[torch.Tensor, "n b"] = load_lambda_ts(num_denoise_iters)
progress(0.15, desc="Starting diffusion")
# frames: list[PIL.Image.Image] = svd_render(
# image_o=rgb_resized,
# masks=masks,
# cond_image=cond_image,
# lambda_ts=lambda_ts,
# num_denoise_iters=num_denoise_iters,
# weight_clamp=0.2,
# svd_pipe=SVD_PIPE,
# )
# to allow logging from a separate thread
log_queue: Queue = Queue()
handle = threading.Thread(
target=svd_render_threaded,
kwargs={
"image_o": rgb_resized,
"masks": masks,
"cond_image": cond_image,
"lambda_ts": lambda_ts,
"num_denoise_iters": num_denoise_iters,
"weight_clamp": 0.2,
"svd_pipe": SVD_PIPE,
"log_queue": log_queue,
},
)
handle.start()
i = 0
while True:
msg = log_queue.get()
match msg:
case frames if all(isinstance(frame, PIL.Image.Image) for frame in frames):
break
case entity_path, entity, times:
i += 1
rr.reset_time()
for timeline, time in times:
if isinstance(time, int):
rr.set_time_sequence(timeline, time)
else:
rr.set_time_seconds(timeline, time)
static = False
if entity_path == "latents":
static = True
rr.log(entity_path, entity, static=static)
yield stream.read(), None, [], f"{i} out of {num_denoise_iters}"
case _:
assert False
handle.join()
# all frames but the first one
frame: np.ndarray
for frame_id, (frame, cam_pararms) in enumerate(zip(frames, camera_list)):
# add one since the first frame is the original image
rr.set_time_sequence("frame_id", frame_id)
cam_log_path = parent_log_path / "generated_camera"
generated_rgb_np: UInt8[np.ndarray, "h w 3"] = np.array(frame)
print(f"Logging frame {frame_id}")
log_camera(cam_log_path, cam_pararms, generated_rgb_np, depth=None)
yield stream.read(), None, [], "Logging generated frames"
frames_to_nerfstudio(
rgb_np_original, frames, trimesh_pc_original, camera_list, save_path
)
# zip up nerfstudio data
zip_file_path = save_path / "nerfstudio.zip"
# progress(0.95, desc="Zipping up camera data in nerfstudio format")
# Run the zip command
subprocess.run(["zip", "-r", str(zip_file_path), str(save_path)], check=True)
video_file_path = save_path / "output.mp4"
mmcv.frames2video(str(save_path), str(video_file_path), fps=7)
print(f"Video saved to {video_file_path}")
yield stream.read(), video_file_path, [str(zip_file_path)], "finished"
with gr.Blocks() as demo:
with gr.Tab("Streaming"):
with gr.Row():
img = gr.Image(interactive=True, label="Image", type="filepath")
with gr.Tab(label="Settings"):
with gr.Column():
warp_img_btn = gr.Button("Warp Images")
num_iters = gr.Radio(
choices=[2, 25, 50, 100],
value=2,
label="Number of iterations",
type="value",
)
cam_direction = gr.Radio(
choices=["left", "right"],
value="left",
label="Camera direction",
type="value",
)
degrees_per_frame = gr.Slider(
minimum=0.25,
maximum=1.0,
step=0.05,
value=0.3,
label="Degrees per frame",
)
iteration_num = gr.Textbox(
value="",
label="Status",
)
with gr.Tab(label="Outputs"):
video_output = gr.Video(interactive=False)
image_files_output = gr.File(interactive=False, file_count="multiple")
# Rerun 0.16 has issues when embedded in a Gradio tab, so we share a viewer between all the tabs.
# In 0.17 we can instead scope each viewer to its own tab to clean up these examples further.
with gr.Row():
viewer = Rerun(
streaming=True,
height=800,
)
warp_img_btn.click(
gradio_warped_image,
inputs=[img, num_iters, cam_direction, degrees_per_frame],
outputs=[viewer, video_output, image_files_output, iteration_num],
)
gr.Examples(
[
[
"examples/000001.jpg",
],
],
fn=warp_img_btn,
inputs=[img, num_iters, cam_direction, degrees_per_frame],
outputs=[viewer, video_output, image_files_output],
)
if __name__ == "__main__":
demo.queue().launch()
|