File size: 11,991 Bytes
8954b2d
 
 
 
 
 
 
 
9bf332b
 
 
 
038e5f0
9bf332b
 
 
 
038e5f0
 
 
 
 
 
9bf332b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87df1fa
9bf332b
038e5f0
 
87df1fa
 
 
9bf332b
 
 
 
 
 
 
87df1fa
 
9bf332b
 
 
 
 
 
 
 
 
 
 
6d9153c
 
 
 
 
87df1fa
6d9153c
87df1fa
6d9153c
87df1fa
6d9153c
 
 
 
 
 
 
 
 
 
 
 
 
9bf332b
6d9153c
2032b2a
9bf332b
 
 
 
 
 
 
 
 
 
 
87df1fa
9bf332b
87df1fa
 
 
 
9bf332b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87df1fa
9bf332b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87df1fa
9bf332b
 
 
 
 
 
 
87df1fa
 
 
 
 
 
 
 
6d9153c
 
87df1fa
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf332b
 
87df1fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf332b
 
 
 
 
 
 
87df1fa
9bf332b
87df1fa
9bf332b
 
 
 
 
 
87df1fa
9bf332b
 
 
 
 
87df1fa
9bf332b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87df1fa
9bf332b
 
 
 
 
 
 
 
 
 
87df1fa
9bf332b
 
 
 
 
 
 
 
 
 
 
87df1fa
9bf332b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
try:
    import spaces  # type: ignore

    IN_SPACES = True
except ImportError:
    print("Not running on Zero")
    IN_SPACES = False

import PIL
import PIL.Image
from PIL.Image import Image

from mini_nvs_solver.rr_logging_utils import (
    log_camera,
    create_svd_blueprint,
)

from mini_nvs_solver.pose_utils import generate_camera_parameters
from mini_nvs_solver.camera_parameters import PinholeParameters
from mini_nvs_solver.depth_utils import image_to_depth
from mini_nvs_solver.image_warping import image_depth_warping
from mini_nvs_solver.sigma_utils import load_lambda_ts
from mini_nvs_solver.nerfstudio_data import frames_to_nerfstudio


import gradio as gr
from gradio_rerun import Rerun

import rerun as rr
import rerun.blueprint as rrb

import numpy as np
import PIL
import torch
from pathlib import Path
import trimesh
import subprocess

import mmcv
from uuid import uuid4

from typing import Final, Literal

from jaxtyping import Float64, Float32, UInt8

from monopriors.relative_depth_models.depth_anything_v2 import DepthAnythingV2Predictor

from mini_nvs_solver.custom_diffusers_pipeline.svd import StableVideoDiffusionPipeline
from mini_nvs_solver.custom_diffusers_pipeline.scheduler import EulerDiscreteScheduler
from mini_nvs_solver.threaded_logging_utils import svd_render_threaded
from queue import Queue
import threading

SVD_HEIGHT: Final[int] = 576
SVD_WIDTH: Final[int] = 1024
NEAR: Final[float] = 0.0001
FAR: Final[float] = 500.0

if gr.NO_RELOAD:
    depth_predictor: DepthAnythingV2Predictor = DepthAnythingV2Predictor(
        device="cuda", encoder="vitl"
    )
    SVD_PIPE = StableVideoDiffusionPipeline.from_pretrained(
        "stabilityai/stable-video-diffusion-img2vid-xt",
        torch_dtype=torch.float16,
        variant="fp16",
    )
    SVD_PIPE.to("cuda")
    scheduler = EulerDiscreteScheduler.from_config(SVD_PIPE.scheduler.config)
    SVD_PIPE.scheduler = scheduler


def svd_render(
    image_o: PIL.Image.Image,
    masks: Float64[torch.Tensor, "b 72 128"],
    cond_image: PIL.Image.Image,
    lambda_ts: Float64[torch.Tensor, "n b"],
    num_denoise_iters: Literal[2, 5, 25, 50, 100],
    weight_clamp: float,
    svd_pipe: StableVideoDiffusionPipeline,
):
    frames: list[PIL.Image.Image] = svd_pipe(
        [image_o],
        log_queue=None,
        temp_cond=cond_image,
        mask=masks,
        lambda_ts=lambda_ts,
        weight_clamp=weight_clamp,
        num_frames=25,
        decode_chunk_size=8,
        num_inference_steps=num_denoise_iters,
    ).frames[0]
    return frames


if IN_SPACES:
    svd_render = spaces.GPU(svd_render)
    image_to_depth = spaces.GPU(image_to_depth, duration=400)


@rr.thread_local_stream("warped_image")
def gradio_warped_image(
    image_path: str,
    num_denoise_iters: Literal[2, 25, 50, 100],
    direction: Literal["left", "right"],
    degrees_per_frame: int | float,
    major_radius: float = 60.0,
    minor_radius: float = 70.0,
    num_frames: int = 25,  # StableDiffusion Video generates 25 frames
    progress=gr.Progress(track_tqdm=False),
):
    if num_denoise_iters != 2 and IN_SPACES:
        gr.Warning(
            "Running on Zero, anything greater than 2 iterations may cause GPU abort due to long running time"
        )
    # ensure that the degrees per frame is a float
    degrees_per_frame = float(degrees_per_frame)

    image_path: Path = Path(image_path) if isinstance(image_path, str) else image_path
    assert image_path.exists(), f"Image file not found: {image_path}"
    save_path: Path = image_path.parent / f"{image_path.stem}_{uuid4()}"

    # setup rerun logging
    stream = rr.binary_stream()
    parent_log_path = Path("world")
    rr.log(f"{parent_log_path}", rr.ViewCoordinates.LDB, static=True)
    blueprint: rrb.Blueprint = create_svd_blueprint(parent_log_path)
    rr.send_blueprint(blueprint)

    # Load image and resize to SVD dimensions
    rgb_original: Image = PIL.Image.open(image_path)
    rgb_resized: Image = rgb_original.resize(
        (SVD_WIDTH, SVD_HEIGHT), PIL.Image.Resampling.NEAREST
    )
    rgb_np_original: UInt8[np.ndarray, "h w 3"] = np.array(rgb_original)
    rgb_np_hw3: UInt8[np.ndarray, "h w 3"] = np.array(rgb_resized)

    # generate initial camera parameters for video trajectory
    camera_list: list[PinholeParameters] = generate_camera_parameters(
        num_frames=num_frames,
        image_width=SVD_WIDTH,
        image_height=SVD_HEIGHT,
        degrees_per_frame=degrees_per_frame,
        major_radius=major_radius,
        minor_radius=minor_radius,
        direction=direction,
    )

    assert len(camera_list) == num_frames, "Number of camera parameters mismatch"

    # Estimate depth map and pointcloud for the input image
    depth: Float32[np.ndarray, "h w"]
    trimesh_pc: trimesh.PointCloud
    depth_original: Float32[np.ndarray, "original_h original_w"]
    trimesh_pc_original: trimesh.PointCloud

    depth, trimesh_pc, depth_original, trimesh_pc_original = image_to_depth(
        rgb_np_original=rgb_np_original,
        rgb_np_hw3=rgb_np_hw3,
        cam_params=camera_list[0],
        near=NEAR,
        far=FAR,
        depth_predictor=depth_predictor,
    )

    rr.log(
        f"{parent_log_path}/point_cloud",
        rr.Points3D(
            positions=trimesh_pc.vertices,
            colors=trimesh_pc.colors,
        ),
        static=True,
    )

    start_cam: PinholeParameters = camera_list[0]
    cond_image: list[PIL.Image.Image] = []
    masks: list[Float64[torch.Tensor, "1 72 128"]] = []

    # Perform image depth warping to generated camera parameters
    current_cam: PinholeParameters
    for frame_id, current_cam in enumerate(camera_list):
        rr.set_time_sequence("frame_id", frame_id)
        if frame_id == 0:
            cam_log_path: Path = parent_log_path / "warped_camera"
            log_camera(cam_log_path, current_cam, rgb_np_hw3, depth)
        else:
            # clear logged depth from the previous frame
            rr.log(f"{cam_log_path}/pinhole/depth", rr.Clear(recursive=False))
            cam_log_path: Path = parent_log_path / "warped_camera"
            # do image warping
            warped_frame2, mask_erosion_tensor = image_depth_warping(
                image=rgb_np_hw3,
                depth=depth,
                cam_T_world_44_s=start_cam.extrinsics.cam_T_world,
                cam_T_world_44_t=current_cam.extrinsics.cam_T_world,
                K=current_cam.intrinsics.k_matrix,
            )
            cond_image.append(warped_frame2)
            masks.append(mask_erosion_tensor)

            log_camera(cam_log_path, current_cam, np.asarray(warped_frame2))
            yield stream.read(), None, [], "Warping images"

    masks: Float64[torch.Tensor, "b 72 128"] = torch.cat(masks)
    # load sigmas to optimize for timestep
    progress(0.1, desc="Optimizing timesteps for diffusion")
    lambda_ts: Float64[torch.Tensor, "n b"] = load_lambda_ts(num_denoise_iters)
    progress(0.15, desc="Starting diffusion")

    # frames: list[PIL.Image.Image] = svd_render(
    #     image_o=rgb_resized,
    #     masks=masks,
    #     cond_image=cond_image,
    #     lambda_ts=lambda_ts,
    #     num_denoise_iters=num_denoise_iters,
    #     weight_clamp=0.2,
    #     svd_pipe=SVD_PIPE,
    # )

    # to allow logging from a separate thread
    log_queue: Queue = Queue()
    handle = threading.Thread(
        target=svd_render_threaded,
        kwargs={
            "image_o": rgb_resized,
            "masks": masks,
            "cond_image": cond_image,
            "lambda_ts": lambda_ts,
            "num_denoise_iters": num_denoise_iters,
            "weight_clamp": 0.2,
            "svd_pipe": SVD_PIPE,
            "log_queue": log_queue,
        },
    )

    handle.start()
    i = 0
    while True:
        msg = log_queue.get()
        match msg:
            case frames if all(isinstance(frame, PIL.Image.Image) for frame in frames):
                break
            case entity_path, entity, times:
                i += 1
                rr.reset_time()
                for timeline, time in times:
                    if isinstance(time, int):
                        rr.set_time_sequence(timeline, time)
                    else:
                        rr.set_time_seconds(timeline, time)
                static = False
                if entity_path == "latents":
                    static = True
                rr.log(entity_path, entity, static=static)
                yield stream.read(), None, [], f"{i} out of {num_denoise_iters}"
            case _:
                assert False
    handle.join()

    # all frames but the first one
    frame: np.ndarray
    for frame_id, (frame, cam_pararms) in enumerate(zip(frames, camera_list)):
        # add one since the first frame is the original image
        rr.set_time_sequence("frame_id", frame_id)
        cam_log_path = parent_log_path / "generated_camera"
        generated_rgb_np: UInt8[np.ndarray, "h w 3"] = np.array(frame)
        print(f"Logging frame {frame_id}")
        log_camera(cam_log_path, cam_pararms, generated_rgb_np, depth=None)
        yield stream.read(), None, [], "Logging generated frames"

    frames_to_nerfstudio(
        rgb_np_original, frames, trimesh_pc_original, camera_list, save_path
    )
    # zip up nerfstudio data
    zip_file_path = save_path / "nerfstudio.zip"
    # progress(0.95, desc="Zipping up camera data in nerfstudio format")
    # Run the zip command
    subprocess.run(["zip", "-r", str(zip_file_path), str(save_path)], check=True)
    video_file_path = save_path / "output.mp4"
    mmcv.frames2video(str(save_path), str(video_file_path), fps=7)
    print(f"Video saved to {video_file_path}")

    yield stream.read(), video_file_path, [str(zip_file_path)], "finished"


with gr.Blocks() as demo:
    with gr.Tab("Streaming"):
        with gr.Row():
            img = gr.Image(interactive=True, label="Image", type="filepath")
            with gr.Tab(label="Settings"):
                with gr.Column():
                    warp_img_btn = gr.Button("Warp Images")
                    num_iters = gr.Radio(
                        choices=[2, 25, 50, 100],
                        value=2,
                        label="Number of iterations",
                        type="value",
                    )
                    cam_direction = gr.Radio(
                        choices=["left", "right"],
                        value="left",
                        label="Camera direction",
                        type="value",
                    )
                    degrees_per_frame = gr.Slider(
                        minimum=0.25,
                        maximum=1.0,
                        step=0.05,
                        value=0.3,
                        label="Degrees per frame",
                    )
                    iteration_num = gr.Textbox(
                        value="",
                        label="Status",
                    )
            with gr.Tab(label="Outputs"):
                video_output = gr.Video(interactive=False)
                image_files_output = gr.File(interactive=False, file_count="multiple")

    # Rerun 0.16 has issues when embedded in a Gradio tab, so we share a viewer between all the tabs.
    # In 0.17 we can instead scope each viewer to its own tab to clean up these examples further.
    with gr.Row():
        viewer = Rerun(
            streaming=True,
            height=800,
        )

    warp_img_btn.click(
        gradio_warped_image,
        inputs=[img, num_iters, cam_direction, degrees_per_frame],
        outputs=[viewer, video_output, image_files_output, iteration_num],
    )

    gr.Examples(
        [
            [
                "examples/000001.jpg",
            ],
        ],
        fn=warp_img_btn,
        inputs=[img, num_iters, cam_direction, degrees_per_frame],
        outputs=[viewer, video_output, image_files_output],
    )


if __name__ == "__main__":
    demo.queue().launch()