Spaces:
Running
on
Zero
Running
on
Zero
pablovela5620
commited on
Commit
•
87df1fa
1
Parent(s):
e841ccd
Upload gradio_app.py with huggingface_hub
Browse files- gradio_app.py +69 -85
gradio_app.py
CHANGED
@@ -33,7 +33,6 @@ import numpy as np
|
|
33 |
import PIL
|
34 |
import torch
|
35 |
from pathlib import Path
|
36 |
-
from queue import SimpleQueue
|
37 |
import trimesh
|
38 |
import subprocess
|
39 |
|
@@ -44,13 +43,13 @@ from typing import Final, Literal
|
|
44 |
|
45 |
from jaxtyping import Float64, Float32, UInt8
|
46 |
|
47 |
-
from monopriors.relative_depth_models import
|
48 |
-
get_relative_predictor,
|
49 |
-
)
|
50 |
|
51 |
from mini_nvs_solver.custom_diffusers_pipeline.svd import StableVideoDiffusionPipeline
|
52 |
from mini_nvs_solver.custom_diffusers_pipeline.scheduler import EulerDiscreteScheduler
|
53 |
-
|
|
|
|
|
54 |
|
55 |
SVD_HEIGHT: Final[int] = 576
|
56 |
SVD_WIDTH: Final[int] = 1024
|
@@ -58,8 +57,8 @@ NEAR: Final[float] = 0.0001
|
|
58 |
FAR: Final[float] = 500.0
|
59 |
|
60 |
if gr.NO_RELOAD:
|
61 |
-
DepthAnythingV2Predictor =
|
62 |
-
device="cuda"
|
63 |
)
|
64 |
SVD_PIPE = StableVideoDiffusionPipeline.from_pretrained(
|
65 |
"stabilityai/stable-video-diffusion-img2vid-xt",
|
@@ -71,40 +70,16 @@ if gr.NO_RELOAD:
|
|
71 |
SVD_PIPE.scheduler = scheduler
|
72 |
|
73 |
|
74 |
-
def svd_render_threaded(
|
75 |
-
image_o: PIL.Image.Image,
|
76 |
-
masks: Float64[torch.Tensor, "b 72 128"],
|
77 |
-
cond_image: PIL.Image.Image,
|
78 |
-
lambda_ts: Float64[torch.Tensor, "n b"],
|
79 |
-
num_denoise_iters: Literal[2, 25, 50, 100],
|
80 |
-
weight_clamp: float,
|
81 |
-
log_queue: SimpleQueue | None = None,
|
82 |
-
):
|
83 |
-
frames: list[PIL.Image.Image] = SVD_PIPE(
|
84 |
-
[image_o],
|
85 |
-
log_queue=log_queue,
|
86 |
-
temp_cond=cond_image,
|
87 |
-
mask=masks,
|
88 |
-
lambda_ts=lambda_ts,
|
89 |
-
weight_clamp=weight_clamp,
|
90 |
-
num_frames=25,
|
91 |
-
decode_chunk_size=8,
|
92 |
-
num_inference_steps=num_denoise_iters,
|
93 |
-
).frames[0]
|
94 |
-
if log_queue is not None:
|
95 |
-
log_queue.put(frames)
|
96 |
-
|
97 |
-
|
98 |
def svd_render(
|
99 |
image_o: PIL.Image.Image,
|
100 |
masks: Float64[torch.Tensor, "b 72 128"],
|
101 |
cond_image: PIL.Image.Image,
|
102 |
lambda_ts: Float64[torch.Tensor, "n b"],
|
103 |
-
num_denoise_iters: Literal[2, 25, 50, 100],
|
104 |
weight_clamp: float,
|
105 |
-
|
106 |
):
|
107 |
-
frames: list[PIL.Image.Image] =
|
108 |
[image_o],
|
109 |
log_queue=None,
|
110 |
temp_cond=cond_image,
|
@@ -132,8 +107,12 @@ def gradio_warped_image(
|
|
132 |
major_radius: float = 60.0,
|
133 |
minor_radius: float = 70.0,
|
134 |
num_frames: int = 25, # StableDiffusion Video generates 25 frames
|
135 |
-
progress=gr.Progress(track_tqdm=
|
136 |
):
|
|
|
|
|
|
|
|
|
137 |
# ensure that the degrees per frame is a float
|
138 |
degrees_per_frame = float(degrees_per_frame)
|
139 |
|
@@ -181,7 +160,7 @@ def gradio_warped_image(
|
|
181 |
cam_params=camera_list[0],
|
182 |
near=NEAR,
|
183 |
far=FAR,
|
184 |
-
depth_predictor=
|
185 |
)
|
186 |
|
187 |
rr.log(
|
@@ -220,7 +199,7 @@ def gradio_warped_image(
|
|
220 |
masks.append(mask_erosion_tensor)
|
221 |
|
222 |
log_camera(cam_log_path, current_cam, np.asarray(warped_frame2))
|
223 |
-
yield stream.read(), None, [], ""
|
224 |
|
225 |
masks: Float64[torch.Tensor, "b 72 128"] = torch.cat(masks)
|
226 |
# load sigmas to optimize for timestep
|
@@ -228,54 +207,56 @@ def gradio_warped_image(
|
|
228 |
lambda_ts: Float64[torch.Tensor, "n b"] = load_lambda_ts(num_denoise_iters)
|
229 |
progress(0.15, desc="Starting diffusion")
|
230 |
|
231 |
-
#
|
232 |
-
#
|
233 |
-
#
|
234 |
-
#
|
235 |
-
#
|
236 |
-
#
|
237 |
-
#
|
238 |
-
#
|
239 |
-
# "lambda_ts": lambda_ts,
|
240 |
-
# "num_denoise_iters": num_denoise_iters,
|
241 |
-
# "weight_clamp": 0.2,
|
242 |
-
# "log_queue": None,
|
243 |
-
# },
|
244 |
# )
|
245 |
|
246 |
-
#
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
# rr.set_time_seconds(timeline, time)
|
261 |
-
# static = False
|
262 |
-
# if entity_path == "diffusion_step":
|
263 |
-
# static = True
|
264 |
-
# rr.log(entity_path, entity, static=static)
|
265 |
-
# yield stream.read(), None, [], f"{i} out of {num_denoise_iters}"
|
266 |
-
# case _:
|
267 |
-
# assert False
|
268 |
-
# handle.join()
|
269 |
-
frames = svd_render(
|
270 |
-
image_o=rgb_resized,
|
271 |
-
masks=masks,
|
272 |
-
cond_image=cond_image,
|
273 |
-
lambda_ts=lambda_ts,
|
274 |
-
num_denoise_iters=num_denoise_iters,
|
275 |
-
weight_clamp=0.2,
|
276 |
-
log_queue=None,
|
277 |
)
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
# all frames but the first one
|
280 |
frame: np.ndarray
|
281 |
for frame_id, (frame, cam_pararms) in enumerate(zip(frames, camera_list)):
|
@@ -283,20 +264,22 @@ def gradio_warped_image(
|
|
283 |
rr.set_time_sequence("frame_id", frame_id)
|
284 |
cam_log_path = parent_log_path / "generated_camera"
|
285 |
generated_rgb_np: UInt8[np.ndarray, "h w 3"] = np.array(frame)
|
|
|
286 |
log_camera(cam_log_path, cam_pararms, generated_rgb_np, depth=None)
|
287 |
-
yield stream.read(), None, [], "
|
288 |
|
289 |
frames_to_nerfstudio(
|
290 |
rgb_np_original, frames, trimesh_pc_original, camera_list, save_path
|
291 |
)
|
292 |
# zip up nerfstudio data
|
293 |
zip_file_path = save_path / "nerfstudio.zip"
|
294 |
-
progress(0.95, desc="Zipping up camera data in nerfstudio format")
|
295 |
# Run the zip command
|
296 |
subprocess.run(["zip", "-r", str(zip_file_path), str(save_path)], check=True)
|
297 |
video_file_path = save_path / "output.mp4"
|
298 |
mmcv.frames2video(str(save_path), str(video_file_path), fps=7)
|
299 |
print(f"Video saved to {video_file_path}")
|
|
|
300 |
yield stream.read(), video_file_path, [str(zip_file_path)], "finished"
|
301 |
|
302 |
|
@@ -328,7 +311,7 @@ with gr.Blocks() as demo:
|
|
328 |
)
|
329 |
iteration_num = gr.Textbox(
|
330 |
value="",
|
331 |
-
label="
|
332 |
)
|
333 |
with gr.Tab(label="Outputs"):
|
334 |
video_output = gr.Video(interactive=False)
|
@@ -339,6 +322,7 @@ with gr.Blocks() as demo:
|
|
339 |
with gr.Row():
|
340 |
viewer = Rerun(
|
341 |
streaming=True,
|
|
|
342 |
)
|
343 |
|
344 |
warp_img_btn.click(
|
@@ -350,7 +334,7 @@ with gr.Blocks() as demo:
|
|
350 |
gr.Examples(
|
351 |
[
|
352 |
[
|
353 |
-
"/
|
354 |
],
|
355 |
],
|
356 |
fn=warp_img_btn,
|
|
|
33 |
import PIL
|
34 |
import torch
|
35 |
from pathlib import Path
|
|
|
36 |
import trimesh
|
37 |
import subprocess
|
38 |
|
|
|
43 |
|
44 |
from jaxtyping import Float64, Float32, UInt8
|
45 |
|
46 |
+
from monopriors.relative_depth_models.depth_anything_v2 import DepthAnythingV2Predictor
|
|
|
|
|
47 |
|
48 |
from mini_nvs_solver.custom_diffusers_pipeline.svd import StableVideoDiffusionPipeline
|
49 |
from mini_nvs_solver.custom_diffusers_pipeline.scheduler import EulerDiscreteScheduler
|
50 |
+
from mini_nvs_solver.threaded_logging_utils import svd_render_threaded
|
51 |
+
from queue import Queue
|
52 |
+
import threading
|
53 |
|
54 |
SVD_HEIGHT: Final[int] = 576
|
55 |
SVD_WIDTH: Final[int] = 1024
|
|
|
57 |
FAR: Final[float] = 500.0
|
58 |
|
59 |
if gr.NO_RELOAD:
|
60 |
+
depth_predictor: DepthAnythingV2Predictor = DepthAnythingV2Predictor(
|
61 |
+
device="cuda", encoder="vitl"
|
62 |
)
|
63 |
SVD_PIPE = StableVideoDiffusionPipeline.from_pretrained(
|
64 |
"stabilityai/stable-video-diffusion-img2vid-xt",
|
|
|
70 |
SVD_PIPE.scheduler = scheduler
|
71 |
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def svd_render(
|
74 |
image_o: PIL.Image.Image,
|
75 |
masks: Float64[torch.Tensor, "b 72 128"],
|
76 |
cond_image: PIL.Image.Image,
|
77 |
lambda_ts: Float64[torch.Tensor, "n b"],
|
78 |
+
num_denoise_iters: Literal[2, 5, 25, 50, 100],
|
79 |
weight_clamp: float,
|
80 |
+
svd_pipe: StableVideoDiffusionPipeline,
|
81 |
):
|
82 |
+
frames: list[PIL.Image.Image] = svd_pipe(
|
83 |
[image_o],
|
84 |
log_queue=None,
|
85 |
temp_cond=cond_image,
|
|
|
107 |
major_radius: float = 60.0,
|
108 |
minor_radius: float = 70.0,
|
109 |
num_frames: int = 25, # StableDiffusion Video generates 25 frames
|
110 |
+
progress=gr.Progress(track_tqdm=False),
|
111 |
):
|
112 |
+
if num_denoise_iters != 2 and IN_SPACES:
|
113 |
+
gr.Warning(
|
114 |
+
"Running on Zero, anything greater than 2 iterations may cause GPU abort due to long running time"
|
115 |
+
)
|
116 |
# ensure that the degrees per frame is a float
|
117 |
degrees_per_frame = float(degrees_per_frame)
|
118 |
|
|
|
160 |
cam_params=camera_list[0],
|
161 |
near=NEAR,
|
162 |
far=FAR,
|
163 |
+
depth_predictor=depth_predictor,
|
164 |
)
|
165 |
|
166 |
rr.log(
|
|
|
199 |
masks.append(mask_erosion_tensor)
|
200 |
|
201 |
log_camera(cam_log_path, current_cam, np.asarray(warped_frame2))
|
202 |
+
yield stream.read(), None, [], "Warping images"
|
203 |
|
204 |
masks: Float64[torch.Tensor, "b 72 128"] = torch.cat(masks)
|
205 |
# load sigmas to optimize for timestep
|
|
|
207 |
lambda_ts: Float64[torch.Tensor, "n b"] = load_lambda_ts(num_denoise_iters)
|
208 |
progress(0.15, desc="Starting diffusion")
|
209 |
|
210 |
+
# frames: list[PIL.Image.Image] = svd_render(
|
211 |
+
# image_o=rgb_resized,
|
212 |
+
# masks=masks,
|
213 |
+
# cond_image=cond_image,
|
214 |
+
# lambda_ts=lambda_ts,
|
215 |
+
# num_denoise_iters=num_denoise_iters,
|
216 |
+
# weight_clamp=0.2,
|
217 |
+
# svd_pipe=SVD_PIPE,
|
|
|
|
|
|
|
|
|
|
|
218 |
# )
|
219 |
|
220 |
+
# to allow logging from a separate thread
|
221 |
+
log_queue: Queue = Queue()
|
222 |
+
handle = threading.Thread(
|
223 |
+
target=svd_render_threaded,
|
224 |
+
kwargs={
|
225 |
+
"image_o": rgb_resized,
|
226 |
+
"masks": masks,
|
227 |
+
"cond_image": cond_image,
|
228 |
+
"lambda_ts": lambda_ts,
|
229 |
+
"num_denoise_iters": num_denoise_iters,
|
230 |
+
"weight_clamp": 0.2,
|
231 |
+
"svd_pipe": SVD_PIPE,
|
232 |
+
"log_queue": log_queue,
|
233 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
)
|
235 |
|
236 |
+
handle.start()
|
237 |
+
i = 0
|
238 |
+
while True:
|
239 |
+
msg = log_queue.get()
|
240 |
+
match msg:
|
241 |
+
case frames if all(isinstance(frame, PIL.Image.Image) for frame in frames):
|
242 |
+
break
|
243 |
+
case entity_path, entity, times:
|
244 |
+
i += 1
|
245 |
+
rr.reset_time()
|
246 |
+
for timeline, time in times:
|
247 |
+
if isinstance(time, int):
|
248 |
+
rr.set_time_sequence(timeline, time)
|
249 |
+
else:
|
250 |
+
rr.set_time_seconds(timeline, time)
|
251 |
+
static = False
|
252 |
+
if entity_path == "latents":
|
253 |
+
static = True
|
254 |
+
rr.log(entity_path, entity, static=static)
|
255 |
+
yield stream.read(), None, [], f"{i} out of {num_denoise_iters}"
|
256 |
+
case _:
|
257 |
+
assert False
|
258 |
+
handle.join()
|
259 |
+
|
260 |
# all frames but the first one
|
261 |
frame: np.ndarray
|
262 |
for frame_id, (frame, cam_pararms) in enumerate(zip(frames, camera_list)):
|
|
|
264 |
rr.set_time_sequence("frame_id", frame_id)
|
265 |
cam_log_path = parent_log_path / "generated_camera"
|
266 |
generated_rgb_np: UInt8[np.ndarray, "h w 3"] = np.array(frame)
|
267 |
+
print(f"Logging frame {frame_id}")
|
268 |
log_camera(cam_log_path, cam_pararms, generated_rgb_np, depth=None)
|
269 |
+
yield stream.read(), None, [], "Logging generated frames"
|
270 |
|
271 |
frames_to_nerfstudio(
|
272 |
rgb_np_original, frames, trimesh_pc_original, camera_list, save_path
|
273 |
)
|
274 |
# zip up nerfstudio data
|
275 |
zip_file_path = save_path / "nerfstudio.zip"
|
276 |
+
# progress(0.95, desc="Zipping up camera data in nerfstudio format")
|
277 |
# Run the zip command
|
278 |
subprocess.run(["zip", "-r", str(zip_file_path), str(save_path)], check=True)
|
279 |
video_file_path = save_path / "output.mp4"
|
280 |
mmcv.frames2video(str(save_path), str(video_file_path), fps=7)
|
281 |
print(f"Video saved to {video_file_path}")
|
282 |
+
|
283 |
yield stream.read(), video_file_path, [str(zip_file_path)], "finished"
|
284 |
|
285 |
|
|
|
311 |
)
|
312 |
iteration_num = gr.Textbox(
|
313 |
value="",
|
314 |
+
label="Status",
|
315 |
)
|
316 |
with gr.Tab(label="Outputs"):
|
317 |
video_output = gr.Video(interactive=False)
|
|
|
322 |
with gr.Row():
|
323 |
viewer = Rerun(
|
324 |
streaming=True,
|
325 |
+
height=800,
|
326 |
)
|
327 |
|
328 |
warp_img_btn.click(
|
|
|
334 |
gr.Examples(
|
335 |
[
|
336 |
[
|
337 |
+
"examples/000001.jpg",
|
338 |
],
|
339 |
],
|
340 |
fn=warp_img_btn,
|