Spaces:
Running
on
Zero
Running
on
Zero
pablovela5620
commited on
Upload gradio_app.py with huggingface_hub
Browse files- gradio_app.py +69 -38
gradio_app.py
CHANGED
@@ -33,7 +33,6 @@ import numpy as np
|
|
33 |
import PIL
|
34 |
import torch
|
35 |
from pathlib import Path
|
36 |
-
import threading
|
37 |
from queue import SimpleQueue
|
38 |
import trimesh
|
39 |
import subprocess
|
@@ -96,8 +95,31 @@ def svd_render_threaded(
|
|
96 |
log_queue.put(frames)
|
97 |
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
if IN_SPACES:
|
100 |
-
|
101 |
image_to_depth = spaces.GPU(image_to_depth)
|
102 |
|
103 |
|
@@ -207,44 +229,53 @@ def gradio_warped_image(
|
|
207 |
progress(0.15, desc="Starting diffusion")
|
208 |
|
209 |
# to allow logging from a separate thread
|
210 |
-
log_queue: SimpleQueue = SimpleQueue()
|
211 |
-
handle = threading.Thread(
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
)
|
223 |
|
224 |
-
handle.start()
|
225 |
-
i = 0
|
226 |
-
while True:
|
227 |
-
msg = log_queue.get()
|
228 |
-
match msg:
|
229 |
-
case frames if all(isinstance(frame, PIL.Image.Image) for frame in frames):
|
230 |
-
break
|
231 |
-
case entity_path, entity, times:
|
232 |
-
i += 1
|
233 |
-
rr.reset_time()
|
234 |
-
for timeline, time in times:
|
235 |
-
if isinstance(time, int):
|
236 |
-
rr.set_time_sequence(timeline, time)
|
237 |
-
else:
|
238 |
-
rr.set_time_seconds(timeline, time)
|
239 |
-
static = False
|
240 |
-
if entity_path == "diffusion_step":
|
241 |
-
static = True
|
242 |
-
rr.log(entity_path, entity, static=static)
|
243 |
-
yield stream.read(), None, [], f"{i} out of {num_denoise_iters}"
|
244 |
-
case _:
|
245 |
-
assert False
|
246 |
-
handle.join()
|
247 |
-
|
248 |
# all frames but the first one
|
249 |
frame: np.ndarray
|
250 |
for frame_id, (frame, cam_pararms) in enumerate(zip(frames, camera_list)):
|
|
|
33 |
import PIL
|
34 |
import torch
|
35 |
from pathlib import Path
|
|
|
36 |
from queue import SimpleQueue
|
37 |
import trimesh
|
38 |
import subprocess
|
|
|
95 |
log_queue.put(frames)
|
96 |
|
97 |
|
98 |
+
def svd_render(
|
99 |
+
image_o: PIL.Image.Image,
|
100 |
+
masks: Float64[torch.Tensor, "b 72 128"],
|
101 |
+
cond_image: PIL.Image.Image,
|
102 |
+
lambda_ts: Float64[torch.Tensor, "n b"],
|
103 |
+
num_denoise_iters: Literal[2, 25, 50, 100],
|
104 |
+
weight_clamp: float,
|
105 |
+
log_queue: SimpleQueue | None = None,
|
106 |
+
):
|
107 |
+
frames: list[PIL.Image.Image] = SVD_PIPE(
|
108 |
+
[image_o],
|
109 |
+
log_queue=None,
|
110 |
+
temp_cond=cond_image,
|
111 |
+
mask=masks,
|
112 |
+
lambda_ts=lambda_ts,
|
113 |
+
weight_clamp=weight_clamp,
|
114 |
+
num_frames=25,
|
115 |
+
decode_chunk_size=8,
|
116 |
+
num_inference_steps=num_denoise_iters,
|
117 |
+
).frames[0]
|
118 |
+
return frames
|
119 |
+
|
120 |
+
|
121 |
if IN_SPACES:
|
122 |
+
svd_render = spaces.GPU(svd_render)
|
123 |
image_to_depth = spaces.GPU(image_to_depth)
|
124 |
|
125 |
|
|
|
229 |
progress(0.15, desc="Starting diffusion")
|
230 |
|
231 |
# to allow logging from a separate thread
|
232 |
+
# log_queue: SimpleQueue = SimpleQueue()
|
233 |
+
# handle = threading.Thread(
|
234 |
+
# target=svd_render_threaded,
|
235 |
+
# kwargs={
|
236 |
+
# "image_o": rgb_resized,
|
237 |
+
# "masks": masks,
|
238 |
+
# "cond_image": cond_image,
|
239 |
+
# "lambda_ts": lambda_ts,
|
240 |
+
# "num_denoise_iters": num_denoise_iters,
|
241 |
+
# "weight_clamp": 0.2,
|
242 |
+
# "log_queue": None,
|
243 |
+
# },
|
244 |
+
# )
|
245 |
+
|
246 |
+
# handle.start()
|
247 |
+
# i = 0
|
248 |
+
# while True:
|
249 |
+
# msg = log_queue.get()
|
250 |
+
# match msg:
|
251 |
+
# case frames if all(isinstance(frame, PIL.Image.Image) for frame in frames):
|
252 |
+
# break
|
253 |
+
# case entity_path, entity, times:
|
254 |
+
# i += 1
|
255 |
+
# rr.reset_time()
|
256 |
+
# for timeline, time in times:
|
257 |
+
# if isinstance(time, int):
|
258 |
+
# rr.set_time_sequence(timeline, time)
|
259 |
+
# else:
|
260 |
+
# rr.set_time_seconds(timeline, time)
|
261 |
+
# static = False
|
262 |
+
# if entity_path == "diffusion_step":
|
263 |
+
# static = True
|
264 |
+
# rr.log(entity_path, entity, static=static)
|
265 |
+
# yield stream.read(), None, [], f"{i} out of {num_denoise_iters}"
|
266 |
+
# case _:
|
267 |
+
# assert False
|
268 |
+
# handle.join()
|
269 |
+
frames = svd_render(
|
270 |
+
image_o=rgb_resized,
|
271 |
+
masks=masks,
|
272 |
+
cond_image=cond_image,
|
273 |
+
lambda_ts=lambda_ts,
|
274 |
+
num_denoise_iters=num_denoise_iters,
|
275 |
+
weight_clamp=0.2,
|
276 |
+
log_queue=None,
|
277 |
)
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
# all frames but the first one
|
280 |
frame: np.ndarray
|
281 |
for frame_id, (frame, cam_pararms) in enumerate(zip(frames, camera_list)):
|