File size: 24,605 Bytes
4e0e2d3
38b82b3
5d39f28
 
b96c8c5
 
4e0e2d3
b96c8c5
 
 
5d39f28
4f7e95f
b96c8c5
3b2835d
 
 
 
4f7e95f
3b2835d
15347cd
 
 
 
4f7e95f
15347cd
b96c8c5
 
 
5d39f28
 
bcb57a1
a447492
5d39f28
 
b96c8c5
 
 
 
c6a81f6
a447492
 
5d39f28
 
 
b96c8c5
5d39f28
b96c8c5
80c0bfe
b96c8c5
 
 
 
c6a81f6
b96c8c5
 
 
5d39f28
4f7e95f
5d39f28
b96c8c5
a6a747f
b96c8c5
 
4f7e95f
5d39f28
b96c8c5
58f80cc
b96c8c5
 
4f7e95f
5d39f28
b96c8c5
3c02d45
b96c8c5
3c02d45
4f7e95f
3c02d45
b96c8c5
3c02d45
b96c8c5
3c02d45
4f7e95f
3c02d45
b96c8c5
 
 
 
4f7e95f
b96c8c5
071e791
 
 
 
4f7e95f
071e791
 
 
 
 
4f7e95f
071e791
b96c8c5
3c02d45
b96c8c5
3c02d45
4f7e95f
b96c8c5
a447492
 
 
 
4f7e95f
a447492
b96c8c5
5d39f28
b96c8c5
5d39f28
4f7e95f
5d39f28
b96c8c5
5d39f28
b96c8c5
5d39f28
4f7e95f
5d39f28
b96c8c5
5d39f28
b96c8c5
 
4f7e95f
b96c8c5
 
 
 
 
4f7e95f
5d39f28
ec25ef6
 
 
 
 
 
 
 
 
 
 
4f7e95f
ec25ef6
b96c8c5
5d39f28
b96c8c5
 
 
 
5d39f28
b96c8c5
 
 
58f80cc
4f7e95f
b96c8c5
cec477c
 
 
 
 
 
 
 
 
 
 
 
 
4f7e95f
cec477c
 
 
 
 
4f7e95f
cec477c
b96c8c5
5d39f28
b96c8c5
 
 
 
5d39f28
 
 
b96c8c5
5d39f28
 
cec477c
 
5d39f28
b96c8c5
 
 
 
5d39f28
cec477c
 
 
 
 
 
 
 
 
 
 
ffd045a
c6a81f6
 
 
 
 
 
 
 
cec477c
 
5d39f28
cec477c
 
 
 
 
b96c8c5
 
cec477c
b96c8c5
5d39f28
cec477c
75cc483
071e791
2115a66
b96c8c5
5d39f28
cec477c
 
 
 
 
5d39f28
 
cec477c
 
5d39f28
cec477c
b96c8c5
00e74d5
b96c8c5
c6a81f6
 
bcb57a1
c6a81f6
cec477c
c6a81f6
 
 
 
b96c8c5
d680fb0
c6a81f6
5d39f28
 
 
b96c8c5
2115a66
b96c8c5
 
 
 
ec25ef6
cec477c
2115a66
c643307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d39f28
c1cbdbc
b96c8c5
 
 
194a41e
c75a58b
80c0bfe
c75a58b
 
5d39f28
 
cec477c
56914a9
b96c8c5
 
5d39f28
 
 
b96c8c5
 
5d39f28
 
ec25ef6
2115a66
ee8690d
5d39f28
a447492
b96c8c5
 
5d39f28
 
 
ee8690d
2115a66
5d39f28
071e791
 
 
5d39f28
cec477c
ec25ef6
cec477c
071e791
ec25ef6
 
 
 
 
 
5d39f28
cec477c
 
 
 
 
 
 
 
9d56f84
 
cec477c
 
75cc483
 
 
 
 
 
 
 
 
5d39f28
 
96cb6bb
 
5d39f28
2115a66
b96c8c5
2115a66
4f7e95f
 
2115a66
b96c8c5
5d39f28
c643307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cec477c
c643307
 
 
 
a3f09af
 
80c0bfe
00e74d5
 
c643307
194a41e
80c0bfe
 
 
1ff2dfa
80c0bfe
 
c6a81f6
80c0bfe
 
 
ec25ef6
071e791
 
80c0bfe
 
a447492
80c0bfe
 
 
cec477c
 
80c0bfe
 
712647c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import gradio as gr
import torch
from diffusers import DiffusionPipeline
from diffusers import AutoencoderKL
from config import *
from helpers import *

def device_change(device, config):
    
    config = set_config(config, 'device', device)
    
    return config, config, assemble_code(config)

def model_refiner_change(refiner, config):
    
    config = set_config(config, 'refiner', refiner)
    
    return config, config, assemble_code(config)

def cpu_offload_change(cpu_offload, config):
    
    config = set_config(config, 'cpu_offload', cpu_offload)
    
    return config, config, assemble_code(config)

def models_change(model, scheduler, config):

    config = set_config(config, 'model', model)

    use_safetensors = False
    refiner = "none"
    trigger_token = ""
    
    # no model selected (because this is UI init run)
    if type(model) != list and str(model) != 'None':
        
        use_safetensors = str(models[model]['use_safetensors'])
        model_description = models[model]['description']
        refiner = models[model]['refiner']
        trigger_token = models[model]['trigger_token'] 
        
        # if no scheduler is selected, choose the default one for this model
        if scheduler == None:
            
            scheduler = models[model]['scheduler']

    else:

        model_description = 'Please select a model.'
        
    config["use_safetensors"] = str(use_safetensors)
    config["scheduler"] = str(scheduler)
    config["refiner"] = str(refiner)
    
    # safety_checker_change(in_safety_checker.value, config)
    # requires_safety_checker_change(in_requires_safety_checker.value, config)

    return model_description, refiner, trigger_token, use_safetensors, scheduler, config, config, assemble_code(config)

def data_type_change(data_type, config):

    config = set_config(config, 'data_type', data_type)

    return config, config, assemble_code(config)

def tensorfloat32_change(allow_tensorfloat32, config):  
        
    config = set_config(config, 'allow_tensorfloat32', allow_tensorfloat32)

    return config, config, assemble_code(config)

def inference_steps_change(inference_steps, config):
    
    config = set_config(config, 'inference_steps', inference_steps)

    return config, config, assemble_code(config)

def manual_seed_change(manual_seed, config):
    
    config = set_config(config, 'manual_seed', manual_seed)

    return config, config, assemble_code(config)

def guidance_scale_change(guidance_scale, config):

    config = set_config(config, 'guidance_scale', guidance_scale)

    return config, config, assemble_code(config)

def enable_vae_slicing_change(enable_vae_slicing, config):

    config = set_config(config, 'enable_vae_slicing', enable_vae_slicing)

    return config, config, assemble_code(config)

def enable_vae_tiling_change(enable_vae_tiling, config):

    config = set_config(config, 'enable_vae_tiling', enable_vae_tiling)

    return config, config, assemble_code(config)

def prompt_change(prompt, config):
    
    config = set_config(config, 'prompt', prompt)

    return config, config, assemble_code(config)

def trigger_token_change(trigger_token, config):
    
    config = set_config(config, 'trigger_token', trigger_token)

    return config, config, assemble_code(config)

def negative_prompt_change(negative_prompt, config):
    
    config = set_config(config, 'negative_prompt', negative_prompt)
    
    return config, config, assemble_code(config)

def variant_change(variant, config):
    
    config = set_config(config, 'variant', variant)

    return config, config, assemble_code(config)
    
def safety_checker_change(safety_checker, config):
        
    config = set_config(config, 'safety_checker', safety_checker)

    return config, config, assemble_code(config)

def requires_safety_checker_change(requires_safety_checker, config):

    config = set_config(config, 'requires_safety_checker', requires_safety_checker)

    return config, config, assemble_code(config)

def auto_encoders_change(auto_encoder, config):
    
    if str(auto_encoder) != 'None' and type(auto_encoder) != list:
        
        auto_encoder_description = auto_encoders[auto_encoder]
        
    else:
        auto_encoder_description = ''

    config = set_config(config, 'auto_encoder', auto_encoder)

    return auto_encoder_description, config, config, assemble_code(config)

def schedulers_change(scheduler, config):
    
    if str(scheduler) != 'None' and type(scheduler) != list:
        
        scheduler_description = schedulers[scheduler]
        
    else:
        scheduler_description = 'Please select a scheduler.'
        
    config = set_config(config, 'scheduler', scheduler)

    return scheduler_description, config, config, assemble_code(config)
    
def adapters_textual_inversion_change(adapter_textual_inversion, config):
    
    if str(adapter_textual_inversion) != 'None' and type(adapter_textual_inversion) != list:
        
        adapter_textual_inversion_description = adapters['textual_inversion'][adapter_textual_inversion]['description']
        in_adapters_textual_inversion_token = adapters['textual_inversion'][adapter_textual_inversion]['token']
        
    else:
        adapter_textual_inversion_description = ""
        in_adapters_textual_inversion_token = ""
    
    config = set_config(config, 'adapter_textual_inversion', adapter_textual_inversion)
    
    return adapter_textual_inversion_description, in_adapters_textual_inversion_token, config, config, assemble_code(config)

def textual_inversion_token_change(adapter_textual_inversion_token, config):
    
    config = set_config(config, 'adapter_textual_inversion_token', adapter_textual_inversion_token)

    return config, config, assemble_code(config)

def run_inference(config, config_history, progress=gr.Progress(track_tqdm=True)):
    
    # str_config = str_config.replace("'", '"').replace('None', 'null').replace('False', 'false')
    # config = json.loads(str_config)

    if str(config["model"]) != 'None' and str(config["scheduler"]) != 'None':
        
        progress((1,3), desc="Preparing pipeline initialization...")
        
        torch.backends.cuda.matmul.allow_tf32 = get_bool(config["allow_tensorfloat32"]) # Use TensorFloat-32 as of https://huggingface.co/docs/diffusers/main/en/optimization/fp16 faster, but slightly less accurate computations
        
        progress((2,3), desc="Initializing pipeline...")
        
        # INIT PIPELINE
        pipeline = DiffusionPipeline.from_pretrained(
            config["model"], 
            use_safetensors = get_bool(config["use_safetensors"]), 
            torch_dtype = get_data_type(config["data_type"]), 
            variant = get_variant(config["variant"])).to(config["device"])
        
        if str(config["cpu_offload"]).lower() != 'false':
            pipeline.enable_model_cpu_offload()

        # AUTO ENCODER
        if str(config["auto_encoder"]).lower() != 'none': 
            pipeline.vae = AutoencoderKL.from_pretrained(config["auto_encoder"], torch_dtype=get_data_type(config["data_type"])).to(config["device"])

        if str(config["enable_vae_slicing"]).lower() != 'false': pipeline.enable_vae_slicing()
        if str(config["enable_vae_tiling"]).lower() != 'false': pipeline.enable_vae_tiling()
                
        # INIT REFINER
        if config['refiner'].lower() != 'none':
            refiner = DiffusionPipeline.from_pretrained(
                    config['refiner'],
                    text_encoder_2=pipeline.text_encoder_2,
                    vae=pipeline.vae,
                    torch_dtype=get_data_type(config["data_type"]),
                    use_safetensors=get_bool(config["use_safetensors"]), 
                    variant = get_variant(config["variant"])).to(config["device"])
            
            if str(config["cpu_offload"]).lower() != 'false':
                refiner.enable_model_cpu_offload()

            if str(config["enable_vae_slicing"]).lower() != 'false': refiner.enable_vae_slicing()
            if str(config["enable_vae_tiling"]).lower() != 'false': refiner.enable_vae_tiling()
            
        # SAFETY CHECKER
        if str(config["safety_checker"]).lower() == 'false': pipeline.safety_checker = None 
        pipeline.requires_safety_checker = get_bool(config["requires_safety_checker"])
            
        # SCHEDULER/SOLVER
        pipeline.scheduler = get_scheduler(config["scheduler"], pipeline.scheduler.config)
        
        # MANUAL SEED/GENERATOR
        if config["manual_seed"] is None or config["manual_seed"] == '' or int(config["manual_seed"]) < 0:
            generator = None
        else:
            generator = torch.manual_seed(int(config["manual_seed"])) 
        
        # ADAPTERS
        # TEXTUAL INVERSION
        if str(config["adapter_textual_inversion"]).lower() != 'none':
            pipeline.load_textual_inversion(config["adapter_textual_inversion"], token=config["adapter_textual_inversion_token"])
        
        progress((3,3), desc="Creating the result...")

        prompt = config["prompt"] + config["trigger_token"] + config["adapter_textual_inversion_token"]
        
        image = pipeline(
            prompt = prompt,
            negative_prompt = config["negative_prompt"],
            generator = generator,
            num_inference_steps = int(config["inference_steps"]), 
            guidance_scale = float(config["guidance_scale"])).images

        if config['refiner'].lower() != 'none':
            image = refiner(
                prompt = prompt,
                num_inference_steps = int(config["inference_steps"]), 
                image=image,
            ).images
            
        config_history.append(config.copy())

        return image[0], dict_list_to_markdown_table(config_history), config_history
    
    else:
    
        return "Please select a model AND a scheduler.", None, config_history

appConfig = load_app_config()
models = appConfig.get("models", {})
schedulers = appConfig.get("schedulers", {})
devices =  appConfig.get("devices", [])
auto_encoders = appConfig.get("auto_encoders", [])
adapters = appConfig.get("adapters", [])

js = '''function js(){
        window.set_cookie = function(key, value, config){
            document.cookie = key+'='+value+'; Path=/; SameSite=Strict';
            return [value, config]
        }
        window.set_model_cookie = function(model, config){
            document.cookie = 'model='+ model+'; Path=/; SameSite=Strict';
            // some things I just don't understand, this is one of them
            return [model, null, null, null, null, model, config, null]
        }
        window.set_adapter_textual_inversion_cookie = function(adapter_textual_inversion, config){
            document.cookie = 'adapter_textual_inversion='+ adapter_textual_inversion+'; Path=/; SameSite=Strict';
            // some things I just don't understand, this is one of them
            return [adapter_textual_inversion, null, adapter_textual_inversion, config, null]
        }
        window.set_cookie_2 = function(key, value, config){
            document.cookie = key+'='+value+'; Path=/; SameSite=Strict';
            // some things I just don't understand, this is one of them
            return [value, null, config, null]
        }
    }
    '''

# interface
with gr.Blocks(analytics_enabled=False) as demo:
    
    config = gr.State(value=get_initial_config())
    config_history = gr.State(value=[])

    gr.Markdown('''## Text-2-Image Playground
                <small>by <a target="_blank" href="https://www.linkedin.com/in/nickyreinert/">Nicky Reinert</a> | 
                home base: https://huggingface.co/spaces/n42/pictero
                </small>''')
    gr.Markdown("### Device specific settings")
    with gr.Row():
        in_devices = gr.Dropdown(label="Device:", value=config.value["device"], choices=devices, filterable=True, multiselect=False, allow_custom_value=True, info="(you may add a custom device address at any time)")
        in_data_type = gr.Radio(label="Data Type:", value=config.value["data_type"], choices=["bfloat16", "float16", "float32"], info="`bfloat16` is not supported on MPS devices right now; `float16` may also not be supported on all devices, Half-precision weights, will save GPU memory, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16")
        in_allow_tensorfloat32 = gr.Radio(label="Allow TensorFloat32:", value=config.value["allow_tensorfloat32"], choices=["True", "False"], info="is not supported on MPS devices right now; use TensorFloat-32 is faster, but results in slightly less accurate computations, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16 ")
        in_variant = gr.Radio(label="Variant:", value=config.value["variant"], choices=["fp16", None], info="Use half-precision weights will save GPU memory, not all models support that, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16 ")
        
    gr.Markdown("### Model specific settings")
    with gr.Row():
        in_models = gr.Dropdown(choices=list(models.keys()), label="Model")
        out_model_description = gr.Textbox(value="", label="Description")
    with gr.Row():
        with gr.Column(scale=1):
            in_trigger_token = gr.Textbox(value=config.value["trigger_token"], label="Trigger Token", info="will be added to your prompt to `activate` a fine tuned model")
            in_use_safetensors = gr.Radio(label="Use safe tensors:", choices=["True", "False"], interactive=False)
            in_model_refiner = gr.Dropdown(value=config.value["refiner"], choices=["none"], label="Refiner", allow_custom_value=True, multiselect=False)
        with gr.Column(scale=1):
            in_cpu_offload = gr.Radio(label="CPU Offload:", value=config.value["cpu_offload"], choices=["True", "False"], info="This may increase performance, as it offloads computations from the GPU to the CPU. But this can also lead to slower executions and lower effectiveness. Compare running time and outputs before making sure, that this setting will help you")
            in_safety_checker = gr.Radio(label="Enable safety checker:", value=config.value["safety_checker"], choices=["True", "False"])
            in_requires_safety_checker = gr.Radio(label="Requires safety checker:", value=config.value["requires_safety_checker"], choices=["True", "False"])

    gr.Markdown("### Scheduler")
    with gr.Row():
        in_schedulers = gr.Dropdown(value="", choices=list(schedulers.keys()), label="Scheduler/Solver", info="schedulers employ various strategies for noise control, the scheduler controls parameter adaption between each inference step, depending on the right scheduler for your model, it may only take 10 or 20 steps to achieve very good results, see https://huggingface.co/docs/diffusers/using-diffusers/loading#schedulers" )
        out_scheduler_description = gr.Textbox(value="", label="Description")
    
    # gr.Markdown("### Adapters")
    # with gr.Row():
    #     gr.Markdown('Choose an adapter.')
        
    gr.Markdown("### Auto Encoder")
    with gr.Row():
        gr.Markdown("**VAE** stands for Variational Auto Encoders. An 'autoencoder' is an artificial neural network that is able to encode input data and decode to output data to bascially recreate the input. The VAE whereas adds a couple of additional layers of complexity to create new and unique output.")
    with gr.Row():
        with gr.Column():
            in_auto_encoders = gr.Dropdown(value="None", choices=list(auto_encoders.keys()), label="Auto encoder", info="leave empty to not add an auto encoder")
            out_auto_encoder_description = gr.Textbox(value="", label="Description")
        with gr.Column():
            in_enable_vae_slicing = gr.Radio(label="Enable VAE slicing:", value=config.value["enable_vae_slicing"], choices=["True", "False"], info="decoding the batches of latents one image at a time, which may reduce memory usage, see https://huggingface.co/docs/diffusers/main/en/optimization/memory")
            in_enable_vae_tiling= gr.Radio(label="Enable VAE tiling:", value=config.value["enable_vae_tiling"], choices=["True", "False"], info="splitting the image into overlapping tiles, decoding the tiles, and then blending the outputs together to compose the final image, see https://huggingface.co/docs/diffusers/main/en/optimization/memory")
        
    gr.Markdown("### Adapters")
    with gr.Row():
        gr.Markdown('''Adapters allow you to apply finetuned weights to your base model. They come in many flavors depending on how they were trained. See see https://huggingface.co/docs/diffusers/using-diffusers/loading_adapters''')
    with gr.Row():
        gr.Markdown('#### Textual Inversion Adapters')
    with gr.Row():
        gr.Markdown('(a technique that enables a model like Stable Diffusion to learn a new concept from just a few sample images)')
    with gr.Row():
        in_adapters_textual_inversion = gr.Dropdown(value="None", choices=list(adapters['textual_inversion'].keys()), label="Textual Inversion Adapter", info="leave empty to not use an adapter")
        in_adapters_textual_inversion_token = gr.Textbox(value="None", label="Token", info="required to activate the token, will be added to your prompt")
        out_adapters_textual_inversion_description = gr.Textbox(value="", label="Description")
        
    gr.Markdown("### Inference settings")
    with gr.Row():
        in_prompt = gr.TextArea(label="Prompt", value=config.value["prompt"])
        in_negative_prompt = gr.TextArea(label="Negative prompt", value=config.value["negative_prompt"])
    with gr.Row():
        in_inference_steps = gr.Number(label="Inference steps", value=config.value["inference_steps"], info="Each step improves the final result but also results in higher computation")
        in_manual_seed = gr.Number(label="Manual seed", value=config.value["manual_seed"], info="Set this to -1 or leave it empty to randomly generate an image. A fixed value will result in a similar image for every run")
        in_guidance_scale = gr.Slider(minimum=0, maximum=100, step=0.1, label="Guidance Scale", value=config.value["guidance_scale"], info="A low guidance scale leads to a faster inference time, with the drawback that negative prompts don’t have any effect on the denoising process.")
    
    gr.Markdown("### Output")
    with gr.Row():
        btn_start_pipeline = gr.Button(value="Run", variant="primary")
        btn_stop_pipeline = gr.Button(value="Stop", variant="stop")
    with gr.Row():
        out_image = gr.Image()
        out_code = gr.Code(assemble_code(config.value), label="Code")
    with gr.Row():
        # out_config = gr.Code(value=str(config.value), label="Current config")
        out_config = gr.JSON(value=config.value, label="Current config")
    with gr.Row():
        out_config_history = gr.Markdown(dict_list_to_markdown_table(config_history.value))
    
    # `SPECIAL` CHANGE LISTENERS
    in_models.change(models_change, inputs=[in_models, in_schedulers, config], outputs=[out_model_description, in_model_refiner, in_trigger_token, in_use_safetensors, in_schedulers, config, out_config, out_code], js="(model, config) => set_model_cookie(model, config)")
    in_schedulers.change(schedulers_change, inputs=[in_schedulers, config], outputs=[out_scheduler_description, config, out_config, out_code], js="(value, config) => set_cookie_2('scheduler', value, config)")
    in_auto_encoders.change(auto_encoders_change, inputs=[in_auto_encoders, config], outputs=[out_auto_encoder_description, config, out_config, out_code], js="(value, config) => set_cookie_2('auto_encoder', value, config)")
    in_adapters_textual_inversion.change(adapters_textual_inversion_change, inputs=[in_adapters_textual_inversion, config], outputs=[out_adapters_textual_inversion_description, in_adapters_textual_inversion_token, config, out_config, out_code], js="(adapter_textual_inversion, config) => set_adapter_textual_inversion_cookie(adapter_textual_inversion, config)")
    
    # `GENERIC` CHANGE LISTENERS, SAME INPUT, SAME OUTPUT STRUCTURE
    in_devices.change(fn=device_change, inputs=[in_devices, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('device', value, config)")
    in_data_type.change(data_type_change, inputs=[in_data_type, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('data_type', value, config)")
    in_allow_tensorfloat32.change(tensorfloat32_change, inputs=[in_allow_tensorfloat32, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('allow_tensorfloat32', value, config)")
    in_variant.change(variant_change, inputs=[in_variant, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('variant', value, config)")
    in_model_refiner.change(model_refiner_change, inputs=[in_model_refiner, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('model_refiner', value, config)")
    in_cpu_offload.change(cpu_offload_change, inputs=[in_cpu_offload, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('cpu_offload', value, config)")
    in_safety_checker.change(safety_checker_change, inputs=[in_safety_checker, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('safety_checker', value, config)")
    in_requires_safety_checker.change(requires_safety_checker_change, inputs=[in_requires_safety_checker, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('requires_safety_checker', value, config)")
    in_inference_steps.change(inference_steps_change, inputs=[in_inference_steps, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('inference_steps', value, config)")
    in_manual_seed.change(manual_seed_change, inputs=[in_manual_seed, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('manual_seed', value, config)")
    in_guidance_scale.change(guidance_scale_change, inputs=[in_guidance_scale, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('guidance_scale', value, config)")
    in_enable_vae_slicing.change(enable_vae_slicing_change, inputs=[in_enable_vae_slicing, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('enable_vae_slicing', value, config)")
    in_enable_vae_tiling.change(enable_vae_tiling_change, inputs=[in_enable_vae_tiling, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('enable_vae_tiling', value, config)")
    in_adapters_textual_inversion_token.change(textual_inversion_token_change, inputs=[in_adapters_textual_inversion_token, config], outputs=[config, out_config, out_code])
    in_prompt.change(prompt_change, inputs=[in_prompt, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('prompt', value, config)")
    in_trigger_token.change(trigger_token_change, inputs=[in_trigger_token, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('trigger_token', value, config)")
    in_negative_prompt.change(negative_prompt_change, inputs=[in_negative_prompt, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('negative_prompt', value, config)")
    
    ev_run_inference = btn_start_pipeline.click(run_inference, inputs=[config, config_history], outputs=[out_image, out_config_history, config_history])
    btn_stop_pipeline.click(fn=None, inputs=None, outputs=None, cancels=[ev_run_inference])

    # send current respect initial config to init_config to populate parameters to all relevant input fields
    # if GET parameter is set, it will overwrite initial config parameters
    demo.load(fn=get_config_from_url, js=js,
        inputs=[config], 
        outputs=[
            in_models,
            in_devices,
            in_cpu_offload,
            in_use_safetensors,
            in_data_type,
            in_model_refiner,
            in_variant,
            in_safety_checker,
            in_requires_safety_checker,
            in_auto_encoders,
            in_enable_vae_slicing,
            in_enable_vae_tiling,
            in_schedulers,
            in_prompt,
            in_trigger_token,
            in_negative_prompt,
            in_inference_steps,
            in_manual_seed,
            in_guidance_scale,
            in_adapters_textual_inversion
            ])

demo.launch(show_error=True)