Spaces:
Sleeping
Sleeping
import spaces | |
import os | |
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM | |
from langchain_community.embeddings import HuggingFaceInstructEmbeddings | |
from langchain_community.vectorstores import Chroma | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import RetrievalQA | |
from langchain_community.llms import HuggingFacePipeline | |
# System prompts | |
DEFAULT_SYSTEM_PROMPT = """ | |
You are a ROS2 expert assistant. Based on the context provided, give direct and concise answers. | |
If the information is not in the context, respond with "I don't find that information in the available documentation." | |
Keep responses to 1-2 lines maximum. | |
""".strip() | |
def generate_prompt(context: str, question: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str: | |
return f""" | |
[INST] <<SYS>> | |
{system_prompt} | |
<</SYS>> | |
Context: {context} | |
Question: {question} | |
Answer: [/INST] | |
""".strip() | |
# Initialize embeddings and database | |
embeddings = HuggingFaceInstructEmbeddings( | |
model_name="hkunlp/instructor-base", | |
model_kwargs={"device": "cpu"} | |
) | |
db = Chroma( | |
persist_directory="db", | |
embedding_function=embeddings | |
) | |
def initialize_model(): | |
model_id = "meta-llama/Llama-3.2-3B-Instruct" | |
token = os.environ.get("HF_TOKEN") | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
token=token, | |
device_map="cuda" if torch.cuda.is_available() else "cpu" | |
) | |
return model, tokenizer | |
class CustomTextStreamer(TextStreamer): | |
def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True): | |
super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens) | |
self.output_text = "" | |
def put(self, value): | |
self.output_text += value | |
super().put(value) | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
try: | |
model, tokenizer = initialize_model() | |
# Get context from database | |
retriever = db.as_retriever(search_kwargs={"k": 2}) | |
docs = retriever.get_relevant_documents(message) | |
context = "\n".join([doc.page_content for doc in docs]) | |
# Generate prompt | |
prompt = generate_prompt(context=context, question=message, system_prompt=system_message) | |
# Generate response without streamer for direct string output | |
output = text_pipeline( | |
prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=1.15, | |
return_full_text=False | |
)[0]['generated_text'] | |
yield output.strip() | |
except Exception as e: | |
yield f"An error occurred: {str(e)}" | |
# def respond(message, history, system_message, max_tokens, temperature, top_p): | |
# try: | |
# model, tokenizer = initialize_model() | |
# # Get relevant context from the database | |
# retriever = db.as_retriever(search_kwargs={"k": 2}) | |
# docs = retriever.get_relevant_documents(message) | |
# context = "\n".join([doc.page_content for doc in docs]) | |
# # Generate the complete prompt | |
# prompt = generate_prompt(context=context, question=message, system_prompt=system_message) | |
# # Set up the streamer | |
# streamer = CustomTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
# # Set up the pipeline | |
# text_pipeline = pipeline( | |
# "text-generation", | |
# model=model, | |
# tokenizer=tokenizer, | |
# max_new_tokens=max_tokens, | |
# temperature=temperature, | |
# top_p=top_p, | |
# repetition_penalty=1.15, | |
# streamer=streamer, | |
# ) | |
# # Generate response | |
# _ = text_pipeline(prompt, max_new_tokens=max_tokens) | |
# # Return only the generated response | |
# yield streamer.output_text.strip() | |
# except Exception as e: | |
# yield f"An error occurred: {str(e)}" | |
# Create Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value=DEFAULT_SYSTEM_PROMPT, | |
label="System Message", | |
lines=3, | |
visible=False | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=500, | |
step=1, | |
label="Max new tokens" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.1, | |
step=0.1, | |
label="Temperature" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p" | |
), | |
], | |
title="ROS2 Expert Assistant", | |
description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.", | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |