Spaces:
Sleeping
Sleeping
File size: 5,139 Bytes
ca64dfe 988c5f2 55bd66e 988c5f2 7321565 d30c02a 26b862a 7321565 5eddda9 988c5f2 7321565 988c5f2 55bd66e 7321565 988c5f2 7321565 988c5f2 7321565 988c5f2 7321565 988c5f2 ca64dfe cbe2d25 ca64dfe cbe2d25 ca64dfe cbe2d25 ca64dfe 7321565 cbe2d25 988c5f2 7321565 ca64dfe 26b862a d30c02a cbe2d25 23a54f8 7321565 23a54f8 7321565 23a54f8 cbe2d25 23a54f8 cbe2d25 23a54f8 cbe2d25 d30c02a 988c5f2 23a54f8 96d766a 988c5f2 96d766a d30c02a 85b8a02 d30c02a 988c5f2 d30c02a 96d766a e294c88 96d766a d30c02a 85b8a02 988c5f2 7321565 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import spaces
import os
import gradio as gr
import torch
from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFacePipeline
# System prompts
DEFAULT_SYSTEM_PROMPT = """
You are a ROS2 expert assistant. Based on the context provided, give direct and concise answers.
If the information is not in the context, respond with "I don't find that information in the available documentation."
Keep responses to 1-2 lines maximum.
""".strip()
def generate_prompt(context: str, question: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
return f"""
[INST] <<SYS>>
{system_prompt}
<</SYS>>
Context: {context}
Question: {question}
Answer: [/INST]
""".strip()
# Initialize embeddings and database
embeddings = HuggingFaceInstructEmbeddings(
model_name="hkunlp/instructor-base",
model_kwargs={"device": "cpu"}
)
db = Chroma(
persist_directory="db",
embedding_function=embeddings
)
def initialize_model():
model_id = "meta-llama/Llama-3.2-3B-Instruct"
token = os.environ.get("HF_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=token,
device_map="cuda" if torch.cuda.is_available() else "cpu"
)
return model, tokenizer
class CustomTextStreamer(TextStreamer):
def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
self.output_text = ""
def put(self, value):
self.output_text += value
super().put(value)
@spaces.GPU
def respond(message, history, system_message, max_tokens, temperature, top_p):
try:
model, tokenizer = initialize_model()
# Get context from database
retriever = db.as_retriever(search_kwargs={"k": 2})
docs = retriever.get_relevant_documents(message)
context = "\n".join([doc.page_content for doc in docs])
# Generate prompt
prompt = generate_prompt(context=context, question=message, system_prompt=system_message)
# Generate response without streamer for direct string output
output = text_pipeline(
prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=1.15,
return_full_text=False
)[0]['generated_text']
yield output.strip()
except Exception as e:
yield f"An error occurred: {str(e)}"
# def respond(message, history, system_message, max_tokens, temperature, top_p):
# try:
# model, tokenizer = initialize_model()
# # Get relevant context from the database
# retriever = db.as_retriever(search_kwargs={"k": 2})
# docs = retriever.get_relevant_documents(message)
# context = "\n".join([doc.page_content for doc in docs])
# # Generate the complete prompt
# prompt = generate_prompt(context=context, question=message, system_prompt=system_message)
# # Set up the streamer
# streamer = CustomTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# # Set up the pipeline
# text_pipeline = pipeline(
# "text-generation",
# model=model,
# tokenizer=tokenizer,
# max_new_tokens=max_tokens,
# temperature=temperature,
# top_p=top_p,
# repetition_penalty=1.15,
# streamer=streamer,
# )
# # Generate response
# _ = text_pipeline(prompt, max_new_tokens=max_tokens)
# # Return only the generated response
# yield streamer.output_text.strip()
# except Exception as e:
# yield f"An error occurred: {str(e)}"
# Create Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value=DEFAULT_SYSTEM_PROMPT,
label="System Message",
lines=3,
visible=False
),
gr.Slider(
minimum=1,
maximum=2048,
value=500,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.1,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
),
],
title="ROS2 Expert Assistant",
description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.",
)
if __name__ == "__main__":
demo.launch(share=True) |