File size: 5,139 Bytes
ca64dfe
988c5f2
 
55bd66e
988c5f2
7321565
 
d30c02a
26b862a
7321565
5eddda9
988c5f2
 
7321565
 
 
988c5f2
55bd66e
7321565
988c5f2
 
 
 
7321565
988c5f2
7321565
 
988c5f2
7321565
988c5f2
 
 
 
 
 
 
 
 
ca64dfe
cbe2d25
ca64dfe
 
cbe2d25
ca64dfe
cbe2d25
 
ca64dfe
7321565
cbe2d25
 
 
988c5f2
7321565
 
 
 
 
 
 
 
 
ca64dfe
26b862a
d30c02a
cbe2d25
 
23a54f8
7321565
 
 
 
23a54f8
7321565
 
23a54f8
 
 
cbe2d25
 
 
 
23a54f8
 
cbe2d25
23a54f8
cbe2d25
d30c02a
988c5f2
23a54f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d766a
988c5f2
96d766a
 
 
d30c02a
 
85b8a02
 
 
d30c02a
 
 
 
 
 
 
 
 
 
988c5f2
d30c02a
 
 
 
96d766a
 
 
 
 
e294c88
96d766a
 
d30c02a
85b8a02
988c5f2
 
 
7321565
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import spaces
import os
import gradio as gr
import torch
from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFacePipeline

# System prompts
DEFAULT_SYSTEM_PROMPT = """
You are a ROS2 expert assistant. Based on the context provided, give direct and concise answers.
If the information is not in the context, respond with "I don't find that information in the available documentation."
Keep responses to 1-2 lines maximum.
""".strip()

def generate_prompt(context: str, question: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
    return f"""
[INST] <<SYS>>
{system_prompt}
<</SYS>>
Context: {context}
Question: {question}
Answer: [/INST]
""".strip()

# Initialize embeddings and database
embeddings = HuggingFaceInstructEmbeddings(
    model_name="hkunlp/instructor-base",
    model_kwargs={"device": "cpu"}
)

db = Chroma(
    persist_directory="db",
    embedding_function=embeddings
)

def initialize_model():
    model_id = "meta-llama/Llama-3.2-3B-Instruct"
    token = os.environ.get("HF_TOKEN")
    
    tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        token=token,
        device_map="cuda" if torch.cuda.is_available() else "cpu"
    )
    
    return model, tokenizer

class CustomTextStreamer(TextStreamer):
    def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
        super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
        self.output_text = ""

    def put(self, value):
        self.output_text += value
        super().put(value)

@spaces.GPU
def respond(message, history, system_message, max_tokens, temperature, top_p):
    try:
        model, tokenizer = initialize_model()
        
        # Get context from database
        retriever = db.as_retriever(search_kwargs={"k": 2})
        docs = retriever.get_relevant_documents(message)
        context = "\n".join([doc.page_content for doc in docs])
        
        # Generate prompt
        prompt = generate_prompt(context=context, question=message, system_prompt=system_message)
        
        # Generate response without streamer for direct string output
        output = text_pipeline(
            prompt,
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            repetition_penalty=1.15,
            return_full_text=False
        )[0]['generated_text']
        
        yield output.strip()
        
    except Exception as e:
        yield f"An error occurred: {str(e)}"
# def respond(message, history, system_message, max_tokens, temperature, top_p):
#     try:
#         model, tokenizer = initialize_model()
        
#         # Get relevant context from the database
#         retriever = db.as_retriever(search_kwargs={"k": 2})
#         docs = retriever.get_relevant_documents(message)
#         context = "\n".join([doc.page_content for doc in docs])
        
#         # Generate the complete prompt
#         prompt = generate_prompt(context=context, question=message, system_prompt=system_message)
        
#         # Set up the streamer
#         streamer = CustomTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
        
#         # Set up the pipeline
#         text_pipeline = pipeline(
#             "text-generation",
#             model=model,
#             tokenizer=tokenizer,
#             max_new_tokens=max_tokens,
#             temperature=temperature,
#             top_p=top_p,
#             repetition_penalty=1.15,
#             streamer=streamer,
#         )
        
#         # Generate response
#         _ = text_pipeline(prompt, max_new_tokens=max_tokens)
        
#         # Return only the generated response
#         yield streamer.output_text.strip()
        
#     except Exception as e:
#         yield f"An error occurred: {str(e)}"

# Create Gradio interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(
            value=DEFAULT_SYSTEM_PROMPT,
            label="System Message",
            lines=3,
            visible=False
        ),
        gr.Slider(
            minimum=1,
            maximum=2048,
            value=500,
            step=1,
            label="Max new tokens"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=4.0,
            value=0.1,
            step=0.1,
            label="Temperature"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p"
        ),
    ],
    title="ROS2 Expert Assistant",
    description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.",
)

if __name__ == "__main__":
    demo.launch(share=True)