import spaces import os import gradio as gr import torch from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM from langchain_community.embeddings import HuggingFaceInstructEmbeddings from langchain_community.vectorstores import Chroma from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA from langchain_community.llms import HuggingFacePipeline # System prompts DEFAULT_SYSTEM_PROMPT = """ You are a ROS2 expert assistant. Based on the context provided, give direct and concise answers. If the information is not in the context, respond with "I don't find that information in the available documentation." Keep responses to 1-2 lines maximum. """.strip() def generate_prompt(context: str, question: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str: return f""" [INST] <> {system_prompt} <> Context: {context} Question: {question} Answer: [/INST] """.strip() # Initialize embeddings and database embeddings = HuggingFaceInstructEmbeddings( model_name="hkunlp/instructor-base", model_kwargs={"device": "cpu"} ) db = Chroma( persist_directory="db", embedding_function=embeddings ) def initialize_model(): model_id = "meta-llama/Llama-3.2-3B-Instruct" token = os.environ.get("HF_TOKEN") tokenizer = AutoTokenizer.from_pretrained(model_id, token=token) model = AutoModelForCausalLM.from_pretrained( model_id, token=token, device_map="cuda" if torch.cuda.is_available() else "cpu" ) return model, tokenizer class CustomTextStreamer(TextStreamer): def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True): super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens) self.output_text = "" def put(self, value): self.output_text += value super().put(value) @spaces.GPU def respond(message, history, system_message, max_tokens, temperature, top_p): try: model, tokenizer = initialize_model() # Get context from database retriever = db.as_retriever(search_kwargs={"k": 2}) docs = retriever.get_relevant_documents(message) context = "\n".join([doc.page_content for doc in docs]) # Generate prompt prompt = generate_prompt(context=context, question=message, system_prompt=system_message) # Generate response without streamer for direct string output output = text_pipeline( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, repetition_penalty=1.15, return_full_text=False )[0]['generated_text'] yield output.strip() except Exception as e: yield f"An error occurred: {str(e)}" # def respond(message, history, system_message, max_tokens, temperature, top_p): # try: # model, tokenizer = initialize_model() # # Get relevant context from the database # retriever = db.as_retriever(search_kwargs={"k": 2}) # docs = retriever.get_relevant_documents(message) # context = "\n".join([doc.page_content for doc in docs]) # # Generate the complete prompt # prompt = generate_prompt(context=context, question=message, system_prompt=system_message) # # Set up the streamer # streamer = CustomTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # # Set up the pipeline # text_pipeline = pipeline( # "text-generation", # model=model, # tokenizer=tokenizer, # max_new_tokens=max_tokens, # temperature=temperature, # top_p=top_p, # repetition_penalty=1.15, # streamer=streamer, # ) # # Generate response # _ = text_pipeline(prompt, max_new_tokens=max_tokens) # # Return only the generated response # yield streamer.output_text.strip() # except Exception as e: # yield f"An error occurred: {str(e)}" # Create Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value=DEFAULT_SYSTEM_PROMPT, label="System Message", lines=3, visible=False ), gr.Slider( minimum=1, maximum=2048, value=500, step=1, label="Max new tokens" ), gr.Slider( minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p" ), ], title="ROS2 Expert Assistant", description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.", ) if __name__ == "__main__": demo.launch(share=True)