promptttspp / data_prep /README.md
MasayaKawamura's picture
Initial commit
82334b0
# data_prep
This directory contains the following data preparation scripts:
1. MFA data preparation: Code for extracting phone alignments by MontrΓ©al Forced Aligner (MFA)
2. Style prompt data preparation: Code for preparing synthetic annotations of style prompts.
## 0. Download LibriTTS_R
Before running any scripts, be sure to put the [LibriTTS-R](https://www.openslr.org/141/) dataset to `./LibriTTS_R`. You must have the following directory structure:
```
LibriTTS_R/
β”œβ”€β”€ BOOKS.txt
β”œβ”€β”€ CHAPTERS.txt
β”œβ”€β”€ LICENSE.txt
β”œβ”€β”€ NOTE.txt
β”œβ”€β”€ README_librispeech.txt
β”œβ”€β”€ README_libritts.txt
β”œβ”€β”€ README_libritts_r.txt
β”œβ”€β”€ SPEAKERS.txt
β”œβ”€β”€ dev-clean
β”œβ”€β”€ dev-other
β”œβ”€β”€ reader_book.tsv
β”œβ”€β”€ speakers.tsv
β”œβ”€β”€ test-clean
β”œβ”€β”€ test-other
β”œβ”€β”€ train-clean-100
β”œβ”€β”€ train-clean-360
└── train-other-500
```
## 1. MFA data preparation
### Setup for MFA
```
conda install -c conda-forge montreal-forced-aligner
```
```
mfa model download dictionary english_us_arpa
mfa model download acoustic english_us_arpa
```
### Usage
Please check `runall_mfa.sh` for the usage.
Note that running MFA for all the utterances in LibriTTS-R takes a long time (likely a few days).
### Directory structure
After all the data preparation steps, the following directories will be created:
- `libritts_r_per_spk_cleaned`
- `${spk}`
- `textgrid`: text grid files
- `wav24k`: 24kHz wav files
```
β”œβ”€β”€ 100
β”‚Β Β  β”œβ”€β”€ textgrid
β”‚Β Β  └── wav24k
β”œβ”€β”€ 1001
β”‚Β Β  β”œβ”€β”€ textgrid
β”‚Β Β  └── wav24k
β”œβ”€β”€ 1006
β”‚Β Β  β”œβ”€β”€ textgrid
β”‚Β Β  └── wav24k
...
```
## 2. Style prompt data preparation
Code for estimating per-utterance style tags (e.g., low pitch, normal pitch and high pitch) from the data statistics.
### Usage
Please check `runall_style_prompt_tags.sh` for the usage.