File size: 8,216 Bytes
f5bef42
 
 
d0e7d36
 
f5bef42
 
 
d0e7d36
678a7bb
f5bef42
fcf1090
f5bef42
 
b394a28
 
 
f5bef42
d0e7d36
f5bef42
 
d0e7d36
f5bef42
 
d0e7d36
f5bef42
b6a92e6
fcf1090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faafde2
959c6bd
f5bef42
cb4a018
f5bef42
 
 
 
cb4a018
f5bef42
 
 
 
 
 
b394a28
f5bef42
 
 
 
 
678a7bb
f5bef42
 
d0e7d36
f5bef42
 
d0e7d36
 
 
 
f5bef42
 
 
 
 
 
 
 
 
 
 
 
 
 
b394a28
f5bef42
 
 
 
 
 
 
 
fcf1090
 
 
 
 
 
 
 
f5bef42
 
 
 
 
 
 
d0e7d36
f5bef42
d0e7d36
f5bef42
 
 
d0e7d36
f5bef42
 
 
 
 
 
 
 
d0e7d36
f5bef42
d0e7d36
f5bef42
 
 
 
 
 
 
 
abccdc4
b394a28
 
 
 
 
fcf1090
b394a28
 
fcf1090
 
 
 
b394a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcf1090
b394a28
d0e7d36
b394a28
 
 
 
33213c1
2784732
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import gc
import io
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse
from tqdm import tqdm
from dotenv import load_dotenv
from pydantic import BaseModel
from huggingface_hub import hf_hub_download, login
import spacy
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import uvicorn
import psutil
import torch

load_dotenv()

app = FastAPI()
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
if HUGGINGFACE_TOKEN:
    login(token=HUGGINGFACE_TOKEN)

global_data = {
    'model_configs' == [
       {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
       {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
       {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
       {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
       {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
       {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
       {"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
       {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
       {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
       {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
       {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
       {"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
       {"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
       {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
       {"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
       {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
       {"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
       {"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"},
       {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
   ]
}

class ModelManager:
    def __init__(self):
        self.models = {}
        self.load_models()

    def load_models(self):
        for config in tqdm(global_data['model_configs'], desc="Loading models"):
            model_name = config['name']
            if model_name not in self.models:
                try:
                    model_path = hf_hub_download(repo_id=config['repo_id'], use_auth_token=HUGGINGFACE_TOKEN)
                    model = Llama.from_file(model_path, n_ctx=512, n_gpu=1)
                    self.models[model_name] = model
                except Exception as e:
                    self.models[model_name] = None
                finally:
                    gc.collect()

    def get_model(self, model_name: str):
        return self.models.get(model_name)


model_manager = ModelManager()

class ChatRequest(BaseModel):
    message: str

async def generate_model_response(model, inputs: str) -> str:
    try:
        if model:
            response = model(inputs, max_tokens=150)
            return response['choices'][0]['text'].strip()
        else:
            return "Model not loaded"
    except Exception as e:
        return f"Error: Could not generate a response. Details: {e}"

async def process_message(message: str) -> dict:
    inputs = message.strip()
    responses = {}

    with ThreadPoolExecutor(max_workers=min(len(global_data['model_configs']), 4)) as executor:
        futures = [executor.submit(generate_model_response, model_manager.get_model(config['name']), inputs) for config in global_data['model_configs'] if model_manager.get_model(config['name'])]
        for i, future in enumerate(tqdm(as_completed(futures), total=len(futures), desc="Generating responses")):
            try:
                model_name = global_data['model_configs'][i]['name']
                responses[model_name] = future.result()
            except Exception as e:
                responses[model_name] = f"Error processing {model_name}: {e}"

    nlp = spacy.load("en_core_web_sm")
    stop_words = spacy.lang.en.stop_words.STOP_WORDS

    def custom_tokenizer(text):
        doc = nlp(text)
        return [token.lemma_.lower() for token in doc if not token.is_stop and not token.is_punct]

    vectorizer = TfidfVectorizer(tokenizer=custom_tokenizer)
    reference_text = message
    response_texts = list(responses.values())
    tfidf_matrix = vectorizer.fit_transform([reference_text] + response_texts)
    similarities = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])
    best_response_index = similarities.argmax()
    best_response_model = list(responses.keys())[best_response_index]
    best_response_text = response_texts[best_response_index]

    return {"best_response": {"model": best_response_model, "text": best_response_text}, "all_responses": responses}


@app.post("/generate_multimodel")
async def api_generate_multimodel(request: Request):
    try:
        data = await request.json()
        message = data.get("message")
        if not message:
            raise HTTPException(status_code=400, detail="Missing message")
        response = await process_message(message)
        return JSONResponse(response)
    except HTTPException as e:
        raise e
    except Exception as e:
        return JSONResponse({"error": str(e)}, status_code=500)


@app.on_event("startup")
async def startup_event():
    pass

@app.on_event("shutdown")
async def shutdown_event():
    gc.collect()

def release_resources():
    try:
        torch.cuda.empty_cache()
        gc.collect()
    except Exception as e:
        pass

def resource_manager():
    MAX_RAM_PERCENT = 20
    MAX_CPU_PERCENT = 20
    MAX_GPU_PERCENT = 20
    MAX_RAM_MB = 2048

    while True:
        try:
            virtual_mem = psutil.virtual_memory()
            current_ram_percent = virtual_mem.percent
            current_ram_mb = virtual_mem.used / (1024 * 1024)

            if current_ram_percent > MAX_RAM_PERCENT or current_ram_mb > MAX_RAM_MB:
                release_resources()

            current_cpu_percent = psutil.cpu_percent()
            if current_cpu_percent > MAX_CPU_PERCENT:
                psutil.Process(os.getpid()).nice()

            if torch.cuda.is_available():
                gpu = torch.cuda.current_device()
                gpu_mem = torch.cuda.memory_percent(gpu)

                if gpu_mem > MAX_GPU_PERCENT:
                    release_resources()

        except Exception as e:
            pass

if __name__ == "__main__":
    import threading
    resource_thread = threading.Thread(target=resource_manager)
    resource_thread.daemon = True
    resource_thread.start()
    port = int(os.environ.get("PORT", 7860))
    uvicorn.run(app, host="0.0.0.0", port=port)