Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,132 @@
|
|
|
|
|
|
|
|
1 |
from llama_cpp import Llama
|
2 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
3 |
-
import
|
4 |
-
import
|
5 |
-
from
|
6 |
-
from fastapi.middleware.cors import CORSMiddleware
|
7 |
-
import os
|
8 |
from dotenv import load_dotenv
|
9 |
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
load_dotenv()
|
|
|
|
|
12 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
|
13 |
|
14 |
-
global_data = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
def
|
21 |
-
|
22 |
-
try:
|
23 |
-
model = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'], use_auth_token=HUGGINGFACE_TOKEN)
|
24 |
-
models[model_name] = model
|
25 |
-
global_data['models'] = models
|
26 |
-
return model
|
27 |
-
except Exception as e:
|
28 |
-
print(f"Error loading model {model_name}: {e}")
|
29 |
-
return None
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
if model is None:
|
34 |
-
exit(1)
|
35 |
|
36 |
class ChatRequest(BaseModel):
|
37 |
message: str
|
38 |
|
39 |
-
def
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
lines = [line.strip() for line in text.split('\n') if line.strip()]
|
44 |
-
return '\n'.join(dict.fromkeys(lines))
|
45 |
|
46 |
-
|
|
|
|
|
47 |
try:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
except Exception as e:
|
53 |
-
|
54 |
-
return f"Error: {e}"
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
inputs = normalize_input(request.message)
|
65 |
-
chunk_size = 400
|
66 |
-
chunks = [inputs[i:i + chunk_size] for i in range(0, len(inputs), chunk_size)]
|
67 |
-
overall_response = ""
|
68 |
-
for chunk in chunks:
|
69 |
-
with ThreadPoolExecutor() as executor:
|
70 |
-
futures = [executor.submit(generate_model_response, model, chunk) for model in models.values()]
|
71 |
-
responses = [{'model': name, 'response': future.result()} for name, future in zip(models, as_completed(futures))]
|
72 |
-
for response in responses:
|
73 |
-
overall_response += f"**{response['model']}:**\n{response['response']}\n\n"
|
74 |
-
return {"response": overall_response}
|
75 |
|
76 |
if __name__ == "__main__":
|
77 |
-
port = int(os.environ.get("PORT",
|
78 |
uvicorn.run(app, host="0.0.0.0", port=port)
|
|
|
1 |
+
import os
|
2 |
+
import gc
|
3 |
+
import io
|
4 |
from llama_cpp import Llama
|
5 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
6 |
+
from fastapi import FastAPI, Request, HTTPException
|
7 |
+
from fastapi.responses import JSONResponse
|
8 |
+
from tqdm import tqdm
|
|
|
|
|
9 |
from dotenv import load_dotenv
|
10 |
from pydantic import BaseModel
|
11 |
+
from huggingface_hub import hf_hub_download, login
|
12 |
+
from nltk.tokenize import word_tokenize
|
13 |
+
from nltk.corpus import stopwords
|
14 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
15 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
16 |
+
import nltk
|
17 |
+
|
18 |
+
nltk.download('punkt')
|
19 |
+
nltk.download('stopwords')
|
20 |
|
21 |
load_dotenv()
|
22 |
+
|
23 |
+
app = FastAPI()
|
24 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
25 |
+
if HUGGINGFACE_TOKEN:
|
26 |
+
login(token=HUGGINGFACE_TOKEN)
|
27 |
|
28 |
+
global_data = {
|
29 |
+
'model_configs': [
|
30 |
+
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "name": "GPT-2 XL"},
|
31 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "name": "Gemma 2-27B"},
|
32 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "name": "Phi-3 Mini 128K Instruct"},
|
33 |
+
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "name": "Starcoder2 3B"},
|
34 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "name": "Qwen2 1.5B Instruct"},
|
35 |
+
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "name": "Mistral Nemo Instruct 2407"},
|
36 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "name": "Phi 3 Mini 128K Instruct XXS"},
|
37 |
+
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "name": "TinyLlama 1.1B Chat"},
|
38 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "name": "Meta Llama 3.1-8B"},
|
39 |
+
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "name": "Codegemma 2B"},
|
40 |
+
],
|
41 |
+
'training_data': io.StringIO(),
|
42 |
+
}
|
43 |
|
44 |
+
class ModelManager:
|
45 |
+
def __init__(self):
|
46 |
+
self.models = {}
|
47 |
+
self.load_models()
|
48 |
|
49 |
+
def load_models(self):
|
50 |
+
for config in tqdm(global_data['model_configs'], desc="Loading models"):
|
51 |
+
model_name = config['name']
|
52 |
+
if model_name not in self.models:
|
53 |
+
try:
|
54 |
+
model_path = hf_hub_download(repo_id=config['repo_id'], use_auth_token=HUGGINGFACE_TOKEN)
|
55 |
+
model = Llama.from_file(model_path)
|
56 |
+
self.models[model_name] = model
|
57 |
+
except Exception as e:
|
58 |
+
self.models[model_name] = None
|
59 |
+
finally:
|
60 |
+
gc.collect()
|
61 |
|
62 |
+
def get_model(self, model_name: str):
|
63 |
+
return self.models.get(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
|
66 |
+
model_manager = ModelManager()
|
|
|
|
|
67 |
|
68 |
class ChatRequest(BaseModel):
|
69 |
message: str
|
70 |
|
71 |
+
async def generate_model_response(model, inputs: str) -> str:
|
72 |
+
try:
|
73 |
+
if model:
|
74 |
+
response = model(inputs, max_tokens=150)
|
75 |
+
return response['choices'][0]['text'].strip()
|
76 |
+
else:
|
77 |
+
return "Model not loaded"
|
78 |
+
except Exception as e:
|
79 |
+
return f"Error: Could not generate a response. Details: {e}"
|
80 |
+
|
81 |
+
async def process_message(message: str) -> dict:
|
82 |
+
inputs = message.strip()
|
83 |
+
responses = {}
|
84 |
+
|
85 |
+
with ThreadPoolExecutor(max_workers=len(global_data['model_configs'])) as executor:
|
86 |
+
futures = [executor.submit(generate_model_response, model_manager.get_model(config['name']), inputs) for config in global_data['model_configs'] if model_manager.get_model(config['name'])]
|
87 |
+
for i, future in enumerate(tqdm(as_completed(futures), total=len(futures), desc="Generating responses")):
|
88 |
+
try:
|
89 |
+
model_name = global_data['model_configs'][i]['name']
|
90 |
+
responses[model_name] = future.result()
|
91 |
+
except Exception as e:
|
92 |
+
responses[model_name] = f"Error processing {model_name}: {e}"
|
93 |
+
|
94 |
+
stop_words = set(stopwords.words('english'))
|
95 |
+
vectorizer = TfidfVectorizer(tokenizer=word_tokenize, stop_words=stop_words)
|
96 |
+
reference_text = message
|
97 |
+
response_texts = list(responses.values())
|
98 |
+
tfidf_matrix = vectorizer.fit_transform([reference_text] + response_texts)
|
99 |
+
similarities = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])
|
100 |
+
best_response_index = similarities.argmax()
|
101 |
+
best_response_model = list(responses.keys())[best_response_index]
|
102 |
+
best_response_text = response_texts[best_response_index]
|
103 |
|
104 |
+
return {"best_response": {"model": best_response_model, "text": best_response_text}, "all_responses": responses}
|
|
|
|
|
105 |
|
106 |
+
|
107 |
+
@app.post("/generate_multimodel")
|
108 |
+
async def api_generate_multimodel(request: Request):
|
109 |
try:
|
110 |
+
data = await request.json()
|
111 |
+
message = data.get("message")
|
112 |
+
if not message:
|
113 |
+
raise HTTPException(status_code=400, detail="Missing message")
|
114 |
+
response = await process_message(message)
|
115 |
+
return JSONResponse(response)
|
116 |
+
except HTTPException as e:
|
117 |
+
raise e
|
118 |
except Exception as e:
|
119 |
+
return JSONResponse({"error": str(e)}, status_code=500)
|
|
|
120 |
|
121 |
+
|
122 |
+
@app.on_event("startup")
|
123 |
+
async def startup_event():
|
124 |
+
pass
|
125 |
+
|
126 |
+
@app.on_event("shutdown")
|
127 |
+
async def shutdown_event():
|
128 |
+
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
if __name__ == "__main__":
|
131 |
+
port = int(os.environ.get("PORT", 8000))
|
132 |
uvicorn.run(app, host="0.0.0.0", port=port)
|