Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from llama_cpp import Llama
|
3 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
4 |
+
import re
|
5 |
+
import httpx
|
6 |
+
import asyncio
|
7 |
+
import gradio as gr
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
import json
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
15 |
+
|
16 |
+
global_data = {
|
17 |
+
'models': {},
|
18 |
+
'tokens': {
|
19 |
+
'eos': 'eos_token',
|
20 |
+
'pad': 'pad_token',
|
21 |
+
'padding': 'padding_token',
|
22 |
+
'unk': 'unk_token',
|
23 |
+
'bos': 'bos_token',
|
24 |
+
'sep': 'sep_token',
|
25 |
+
'cls': 'cls_token',
|
26 |
+
'mask': 'mask_token'
|
27 |
+
}
|
28 |
+
}
|
29 |
+
|
30 |
+
model_configs = [
|
31 |
+
{"repo_id": "Hjgugugjhuhjggg/mergekit-ties-tzamfyy-Q2_K-GGUF", "filename": "mergekit-ties-tzamfyy-q2_k.gguf", "name": "my_model"}
|
32 |
+
# Add more models here as needed. Ensure the repo_id and filename are correct.
|
33 |
+
]
|
34 |
+
|
35 |
+
class ModelManager:
|
36 |
+
def __init__(self):
|
37 |
+
self.models = {}
|
38 |
+
|
39 |
+
def load_model(self, model_config):
|
40 |
+
if model_config['name'] not in self.models:
|
41 |
+
try:
|
42 |
+
model = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'], use_auth_token=HUGGINGFACE_TOKEN)
|
43 |
+
self.models[model_config['name']] = model
|
44 |
+
print(f"Model '{model_config['name']}' loaded successfully.")
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Error loading model {model_config['name']}: {e}")
|
47 |
+
self.models[model_config['name']] = None # Indicate loading failure
|
48 |
+
|
49 |
+
|
50 |
+
def load_all_models(self):
|
51 |
+
with ThreadPoolExecutor() as executor:
|
52 |
+
futures = [executor.submit(self.load_model, config) for config in model_configs]
|
53 |
+
for future in as_completed(futures):
|
54 |
+
future.result() # Propagate exceptions during loading
|
55 |
+
return self.models
|
56 |
+
|
57 |
+
model_manager = ModelManager()
|
58 |
+
global_data['models'] = model_manager.load_all_models()
|
59 |
+
|
60 |
+
|
61 |
+
class ChatRequest(BaseModel):
|
62 |
+
message: str
|
63 |
+
|
64 |
+
def normalize_input(input_text):
|
65 |
+
return input_text.strip()
|
66 |
+
|
67 |
+
def remove_duplicates(text):
|
68 |
+
lines = text.split('\n')
|
69 |
+
unique_lines = []
|
70 |
+
seen_lines = set()
|
71 |
+
for line in lines:
|
72 |
+
line = line.strip() #Added to remove extra whitespace
|
73 |
+
if line and line not in seen_lines:
|
74 |
+
unique_lines.append(line)
|
75 |
+
seen_lines.add(line)
|
76 |
+
return '\n'.join(unique_lines)
|
77 |
+
|
78 |
+
def generate_model_response(model, inputs):
|
79 |
+
try:
|
80 |
+
if model is None: #Handle failed model loading
|
81 |
+
return ""
|
82 |
+
response = model(inputs)
|
83 |
+
return remove_duplicates(response['choices'][0]['text'])
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Error generating model response: {e}")
|
86 |
+
return f"Error: {e}" #Return informative error message
|
87 |
+
|
88 |
+
def remove_repetitive_responses(responses):
|
89 |
+
unique_responses = {}
|
90 |
+
for response in responses:
|
91 |
+
if response['model'] not in unique_responses and response['response']: #added check for empty responses
|
92 |
+
unique_responses[response['model']] = response['response']
|
93 |
+
return unique_responses
|
94 |
+
|
95 |
+
|
96 |
+
async def process_message(message, history):
|
97 |
+
inputs = normalize_input(message)
|
98 |
+
with ThreadPoolExecutor() as executor:
|
99 |
+
futures = [
|
100 |
+
executor.submit(generate_model_response, model, inputs)
|
101 |
+
for model in global_data['models'].values()
|
102 |
+
]
|
103 |
+
responses = [{'model': model_name, 'response': future.result()} for model_name, future in zip(global_data['models'].keys(), as_completed(futures))]
|
104 |
+
|
105 |
+
unique_responses = remove_repetitive_responses(responses)
|
106 |
+
formatted_response = ""
|
107 |
+
for model, response in unique_responses.items():
|
108 |
+
formatted_response += f"**{model}:**\n{response}\n\n"
|
109 |
+
|
110 |
+
history.append((message, formatted_response))
|
111 |
+
return history, ""
|
112 |
+
|
113 |
+
|
114 |
+
iface = gr.Interface(
|
115 |
+
fn=process_message,
|
116 |
+
inputs=[
|
117 |
+
gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
118 |
+
gr.State([])
|
119 |
+
],
|
120 |
+
outputs=[
|
121 |
+
gr.Chatbot(),
|
122 |
+
gr.Textbox(label="cURL command", visible=False) #Hidden cURL command
|
123 |
+
],
|
124 |
+
title="Multi-Model LLM API",
|
125 |
+
description="Enter a message and get responses from multiple LLMs.",
|
126 |
+
)
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
port = int(os.environ.get("PORT", 7860))
|
130 |
+
iface.launch(server_port=port)
|