Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,690 Bytes
2b8b77d 1314d69 2b8b77d 003a054 978580d 003a054 1314d69 cd2465c ff24fe8 9303de6 b1c5569 17a8f06 9303de6 efbe74e 1314d69 978580d 2d30f4b f217e4d 9a397ea 978580d f217e4d dc2976a f217e4d e4f255d 978580d f217e4d dc2976a f217e4d 2d30f4b 978580d 2d30f4b 978580d dc2976a 978580d dc2976a 978580d dc2976a 978580d 2d30f4b 978580d cd2465c dc2976a f217e4d dc2976a f217e4d 64b9ad0 9303de6 dc2976a 9724323 1314d69 dc2976a 978580d 1314d69 978580d 1314d69 978580d 1314d69 978580d dc2976a 978580d dc2976a 978580d dc2976a 4b0fbd1 cd2465c 64b9ad0 dc2976a 1314d69 4b0fbd1 b486cec efbe74e 1314d69 cd2465c bbab3de cd2465c f217e4d d5a8945 7b9e6e4 f217e4d 978580d 164edec 6ea5f8e 3f860d6 8a38e02 164edec 9724323 164edec 9724323 164edec e4f255d e4e5057 164edec e4e5057 164edec 003a054 164edec 3f860d6 8a38e02 164edec d6b3ea2 164edec 9724323 164edec e4f255d 7b9e6e4 efbe74e 7b9e6e4 e4f255d 7b9e6e4 50d6862 164edec cd2465c 50d6862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import gradio as gr
import spaces
from clip_slider_pipeline import T5SliderFlux
from diffusers import FluxPipeline
import torch
import time
import numpy as np
import cv2
from PIL import Image
def process_controlnet_img(image):
controlnet_img = np.array(image)
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
controlnet_img = HWC3(controlnet_img)
controlnet_img = Image.fromarray(controlnet_img)
# load pipelines
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",
torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
t5_slider = T5SliderFlux(pipe, device=torch.device("cuda"))
# pipe_adapter = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
# pipe_adapter.scheduler = EulerDiscreteScheduler.from_config(pipe_adapter.scheduler.config)
# #pipe_adapter.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
# # scale = 0.8
# # pipe_adapter.set_ip_adapter_scale(scale)
# clip_slider_ip = CLIPSliderXL(sd_pipe=pipe_adapter, device=torch.device("cuda"))
# controlnet = ControlNetModel.from_pretrained(
# "xinsir/controlnet-canny-sdxl-1.0", # insert here your choice of controlnet
# torch_dtype=torch.float16
# )
# vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
# pipe_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained(
# "sd-community/sdxl-flash",
# controlnet=controlnet,
# vae=vae,
# torch_dtype=torch.float16,
# )
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
# clip_slider_inv = CLIPSliderXL_inv(sd_pipe=pipe_inv,device=torch.device("cuda"))
@spaces.GPU(duration=120)
def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale,
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
avg_diff_x_1, avg_diff_x_2,
avg_diff_y_1, avg_diff_y_2,
img2img_type = None, img = None,
controlnet_scale= None, ip_adapter_scale=None,
):
start_time = time.time()
# check if avg diff for directions need to be re-calculated
print("slider_x", slider_x)
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
avg_diff = t5_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
avg_diff_2nd = t5_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations).to(torch.float16)
y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
end_time = time.time()
print(f"direction time: {end_time - start_time:.2f} ms")
start_time = time.time()
if img2img_type=="controlnet canny" and img is not None:
control_img = process_controlnet_img(img)
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
elif img2img_type=="ip adapter" and img is not None:
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
else: # text to image
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
end_time = time.time()
print(f"generation time: {end_time - start_time:.2f} ms")
comma_concepts_x = ', '.join(slider_x)
comma_concepts_y = ', '.join(slider_y)
avg_diff_x = avg_diff.cpu()
avg_diff_y = avg_diff_2nd.cpu()
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, image
@spaces.GPU
def update_scales(x,y,prompt,seed, steps, guidance_scale,
avg_diff_x, avg_diff_y,
img2img_type = None, img = None,
controlnet_scale= None, ip_adapter_scale=None,):
avg_diff = avg_diff_x.cuda()
avg_diff_2nd = avg_diff_y.cuda()
if img2img_type=="controlnet canny" and img is not None:
control_img = process_controlnet_img(img)
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
elif img2img_type=="ip adapter" and img is not None:
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
else:
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
return image
@spaces.GPU
def update_x(x,y,prompt,seed, steps,
avg_diff_x, avg_diff_y,
img2img_type = None,
img = None):
avg_diff = avg_diff_x.cuda()
avg_diff_2nd = avg_diff_y.cuda()
image = t5_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
return image
@spaces.GPU
def update_y(x,y,prompt,seed, steps,
avg_diff_x, avg_diff_y,
img2img_type = None,
img = None):
avg_diff = avg_diff_x.cuda()
avg_diff_2nd = avg_diff_y.cuda()
image = t5_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
return image
css = '''
#group {
position: relative;
width: 420px;
height: 420px;
margin-bottom: 20px;
background-color: white
}
#x {
position: absolute;
bottom: 0;
left: 25px;
width: 400px;
}
#y {
position: absolute;
bottom: 20px;
left: 67px;
width: 400px;
transform: rotate(-90deg);
transform-origin: left bottom;
}
#image_out{position:absolute; width: 80%; right: 10px; top: 40px}
'''
with gr.Blocks(css=css) as demo:
x_concept_1 = gr.State("")
x_concept_2 = gr.State("")
y_concept_1 = gr.State("")
y_concept_2 = gr.State("")
avg_diff_x = gr.State()
avg_diff_y = gr.State()
with gr.Tab("text2image"):
with gr.Row():
with gr.Column():
slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
slider_y = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
prompt = gr.Textbox(label="Prompt")
submit = gr.Button("find directions")
with gr.Column():
with gr.Group(elem_id="group"):
x = gr.Slider(minimum=-7, value=0, maximum=7, elem_id="x", interactive=False)
y = gr.Slider(minimum=-7, value=0, maximum=7, elem_id="y", interactive=False)
output_image = gr.Image(elem_id="image_out")
with gr.Row():
generate_butt = gr.Button("generate")
with gr.Accordion(label="advanced options", open=False):
iterations = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=400)
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
with gr.Tab(label="image2image"):
with gr.Row():
with gr.Column():
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="")
prompt_a = gr.Textbox(label="Prompt")
submit_a = gr.Button("Submit")
with gr.Column():
with gr.Group(elem_id="group"):
x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
output_image_a = gr.Image(elem_id="image_out")
with gr.Row():
generate_butt_a = gr.Button("generate")
with gr.Accordion(label="advanced options", open=False):
iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300)
steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
guidance_scale_a = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
controlnet_conditioning_scale = gr.Slider(
label="controlnet conditioning scale",
minimum=0.5,
maximum=5.0,
step=0.1,
value=0.7,
)
ip_adapter_scale = gr.Slider(
label="ip adapter scale",
minimum=0.5,
maximum=5.0,
step=0.1,
value=0.8,
)
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
submit.click(fn=generate,
inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y,],
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image])
generate_butt.click(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x, avg_diff_y], outputs=[output_image])
generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])
submit_a.click(fn=generate,
inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale],
outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image_a])
if __name__ == "__main__":
demo.launch() |