Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import spaces
|
|
3 |
import torch
|
4 |
from clip_slider_pipeline import CLIPSliderXL
|
5 |
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, AutoencoderKL
|
|
|
6 |
|
7 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
8 |
flash_pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
|
@@ -14,7 +15,7 @@ def generate(slider_x, slider_y, prompt, iterations, steps,
|
|
14 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
15 |
avg_diff_x_1, avg_diff_x_2,
|
16 |
avg_diff_y_1, avg_diff_y_2):
|
17 |
-
|
18 |
# check if avg diff for directions need to be re-calculated
|
19 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
|
20 |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
@@ -23,8 +24,12 @@ def generate(slider_x, slider_y, prompt, iterations, steps,
|
|
23 |
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
|
24 |
avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations)
|
25 |
y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
|
26 |
-
|
|
|
|
|
27 |
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
|
|
|
|
|
28 |
comma_concepts_x = ', '.join(slider_x)
|
29 |
comma_concepts_y = ', '.join(slider_y)
|
30 |
|
|
|
3 |
import torch
|
4 |
from clip_slider_pipeline import CLIPSliderXL
|
5 |
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, AutoencoderKL
|
6 |
+
import time
|
7 |
|
8 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
9 |
flash_pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
|
|
|
15 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
16 |
avg_diff_x_1, avg_diff_x_2,
|
17 |
avg_diff_y_1, avg_diff_y_2):
|
18 |
+
start_time = time.time()
|
19 |
# check if avg diff for directions need to be re-calculated
|
20 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
|
21 |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
|
|
24 |
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
|
25 |
avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations)
|
26 |
y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
|
27 |
+
end_time = time.time()
|
28 |
+
print(f"direction time: {end_time - start_time:.2f} ms")
|
29 |
+
start_time = time.time()
|
30 |
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
|
31 |
+
end_time = time.time()
|
32 |
+
print(f"generation time: {end_time - start_time:.2f} ms")
|
33 |
comma_concepts_x = ', '.join(slider_x)
|
34 |
comma_concepts_y = ', '.join(slider_y)
|
35 |
|