Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ flash_pipe.scheduler = EulerDiscreteScheduler.from_config(flash_pipe.scheduler.c
|
|
11 |
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda"))
|
12 |
|
13 |
@spaces.GPU
|
14 |
-
def generate(slider_x, slider_y, prompt, iterations, steps,
|
15 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
16 |
avg_diff_x_1, avg_diff_x_2,
|
17 |
avg_diff_y_1, avg_diff_y_2):
|
@@ -27,7 +27,7 @@ def generate(slider_x, slider_y, prompt, iterations, steps,
|
|
27 |
end_time = time.time()
|
28 |
print(f"direction time: {end_time - start_time:.2f} ms")
|
29 |
start_time = time.time()
|
30 |
-
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
|
31 |
end_time = time.time()
|
32 |
print(f"generation time: {end_time - start_time:.2f} ms")
|
33 |
comma_concepts_x = ', '.join(slider_x)
|
@@ -41,19 +41,19 @@ def generate(slider_x, slider_y, prompt, iterations, steps,
|
|
41 |
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
|
42 |
|
43 |
@spaces.GPU
|
44 |
-
def update_x(x,y,prompt, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
45 |
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
|
46 |
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
|
47 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
48 |
return image
|
49 |
|
50 |
@spaces.GPU
|
51 |
-
def update_y(x,y,prompt, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
52 |
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
|
53 |
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
|
54 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
55 |
return image
|
56 |
-
|
57 |
css = '''
|
58 |
#group {
|
59 |
position: relative;
|
@@ -104,13 +104,13 @@ with gr.Blocks(css=css) as demo:
|
|
104 |
with gr.Accordion(label="advanced options", open=False):
|
105 |
iterations = gr.Slider(label = "num iterations", minimum=0, value=100, maximum=300)
|
106 |
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
107 |
-
|
108 |
|
109 |
submit.click(fn=generate,
|
110 |
-
inputs=[slider_x, slider_y, prompt, iterations, steps, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
111 |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
112 |
-
x.change(fn=update_x, inputs=[x,y, prompt, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
113 |
-
y.change(fn=update_y, inputs=[x,y, prompt, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
demo.launch()
|
|
|
11 |
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda"))
|
12 |
|
13 |
@spaces.GPU
|
14 |
+
def generate(slider_x, slider_y, prompt, seed, iterations, steps,
|
15 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
16 |
avg_diff_x_1, avg_diff_x_2,
|
17 |
avg_diff_y_1, avg_diff_y_2):
|
|
|
27 |
end_time = time.time()
|
28 |
print(f"direction time: {end_time - start_time:.2f} ms")
|
29 |
start_time = time.time()
|
30 |
+
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
|
31 |
end_time = time.time()
|
32 |
print(f"generation time: {end_time - start_time:.2f} ms")
|
33 |
comma_concepts_x = ', '.join(slider_x)
|
|
|
41 |
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
|
42 |
|
43 |
@spaces.GPU
|
44 |
+
def update_x(x,y,prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
45 |
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
|
46 |
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
|
47 |
+
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
48 |
return image
|
49 |
|
50 |
@spaces.GPU
|
51 |
+
def update_y(x,y,prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
52 |
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
|
53 |
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
|
54 |
+
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
55 |
return image
|
56 |
+
|
57 |
css = '''
|
58 |
#group {
|
59 |
position: relative;
|
|
|
104 |
with gr.Accordion(label="advanced options", open=False):
|
105 |
iterations = gr.Slider(label = "num iterations", minimum=0, value=100, maximum=300)
|
106 |
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
107 |
+
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
108 |
|
109 |
submit.click(fn=generate,
|
110 |
+
inputs=[slider_x, slider_y, prompt, seed, iterations, steps, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
111 |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
112 |
+
x.change(fn=update_x, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
113 |
+
y.change(fn=update_y, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
demo.launch()
|