Spaces:
Sleeping
Sleeping
# code in this file is adpated from | |
# https://github.com/ildoonet/pytorch-randaugment/blob/master/RandAugment/augmentations.py | |
# https://github.com/google-research/fixmatch/blob/master/third_party/auto_augment/augmentations.py | |
# https://github.com/google-research/fixmatch/blob/master/libml/ctaugment.py | |
import logging | |
import random | |
import numpy as np | |
import PIL | |
import PIL.ImageOps | |
import PIL.ImageEnhance | |
import PIL.ImageDraw | |
from PIL import Image | |
logger = logging.getLogger(__name__) | |
PARAMETER_MAX = 10 | |
def AutoContrast(img, **kwarg): | |
return PIL.ImageOps.autocontrast(img) | |
def Brightness(img, v, max_v, bias=0): | |
v = _float_parameter(v, max_v) + bias | |
return PIL.ImageEnhance.Brightness(img).enhance(v) | |
def Color(img, v, max_v, bias=0): | |
v = _float_parameter(v, max_v) + bias | |
return PIL.ImageEnhance.Color(img).enhance(v) | |
def Contrast(img, v, max_v, bias=0): | |
v = _float_parameter(v, max_v) + bias | |
return PIL.ImageEnhance.Contrast(img).enhance(v) | |
def Cutout(img, v, max_v, bias=0): | |
if v == 0: | |
return img | |
v = _float_parameter(v, max_v) + bias | |
v = int(v * min(img.size)) | |
return CutoutAbs(img, v) | |
def CutoutAbs(img, v, **kwarg): | |
w, h = img.size | |
x0 = np.random.uniform(0, w) | |
y0 = np.random.uniform(0, h) | |
x0 = int(max(0, x0 - v / 2.)) | |
y0 = int(max(0, y0 - v / 2.)) | |
x1 = int(min(w, x0 + v)) | |
y1 = int(min(h, y0 + v)) | |
xy = (x0, y0, x1, y1) | |
# gray | |
# color = (127, 127, 127) | |
# black | |
color = (0, 0, 0) | |
img = img.copy() | |
PIL.ImageDraw.Draw(img).rectangle(xy, color) | |
return img | |
def Equalize(img, **kwarg): | |
return PIL.ImageOps.equalize(img) | |
def Identity(img, **kwarg): | |
return img | |
def Invert(img, **kwarg): | |
return PIL.ImageOps.invert(img) | |
def Posterize(img, v, max_v, bias=0): | |
v = _int_parameter(v, max_v) + bias | |
return PIL.ImageOps.posterize(img, v) | |
def Rotate(img, v, max_v, bias=0): | |
v = _int_parameter(v, max_v) + bias | |
if random.random() < 0.5: | |
v = -v | |
return img.rotate(v) | |
def Sharpness(img, v, max_v, bias=0): | |
v = _float_parameter(v, max_v) + bias | |
return PIL.ImageEnhance.Sharpness(img).enhance(v) | |
def ShearX(img, v, max_v, bias=0): | |
v = _float_parameter(v, max_v) + bias | |
if random.random() < 0.5: | |
v = -v | |
return img.transform(img.size, PIL.Image.AFFINE, (1, v, 0, 0, 1, 0)) | |
def ShearY(img, v, max_v, bias=0): | |
v = _float_parameter(v, max_v) + bias | |
if random.random() < 0.5: | |
v = -v | |
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, v, 1, 0)) | |
def Solarize(img, v, max_v, bias=0): | |
v = _int_parameter(v, max_v) + bias | |
return PIL.ImageOps.solarize(img, 256 - v) | |
def SolarizeAdd(img, v, max_v, bias=0, threshold=128): | |
v = _int_parameter(v, max_v) + bias | |
if random.random() < 0.5: | |
v = -v | |
img_np = np.array(img).astype(np.int) | |
img_np = img_np + v | |
img_np = np.clip(img_np, 0, 255) | |
img_np = img_np.astype(np.uint8) | |
img = Image.fromarray(img_np) | |
return PIL.ImageOps.solarize(img, threshold) | |
def TranslateX(img, v, max_v, bias=0): | |
v = _float_parameter(v, max_v) + bias | |
if random.random() < 0.5: | |
v = -v | |
v = int(v * img.size[0]) | |
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0)) | |
def TranslateY(img, v, max_v, bias=0): | |
v = _float_parameter(v, max_v) + bias | |
if random.random() < 0.5: | |
v = -v | |
v = int(v * img.size[1]) | |
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v)) | |
def _float_parameter(v, max_v): | |
return float(v) * max_v / PARAMETER_MAX | |
def _int_parameter(v, max_v): | |
return int(v * max_v / PARAMETER_MAX) | |
def fixmatch_augment_pool(): | |
# FixMatch paper | |
augs = [(AutoContrast, None, None), | |
(Brightness, 0.9, 0.05), | |
(Color, 0.9, 0.05), | |
(Contrast, 0.9, 0.05), | |
(Equalize, None, None), | |
(Identity, None, None), | |
(Posterize, 4, 4), | |
(Rotate, 30, 0), | |
(Sharpness, 0.9, 0.05), | |
(ShearX, 0.3, 0), | |
(ShearY, 0.3, 0), | |
(Solarize, 256, 0), | |
(TranslateX, 0.3, 0), | |
(TranslateY, 0.3, 0)] | |
return augs | |
def my_augment_pool(): | |
# Test | |
augs = [(AutoContrast, None, None), | |
(Brightness, 1.8, 0.1), | |
(Color, 1.8, 0.1), | |
(Contrast, 1.8, 0.1), | |
(Cutout, 0.2, 0), | |
(Equalize, None, None), | |
(Invert, None, None), | |
(Posterize, 4, 4), | |
(Rotate, 30, 0), | |
(Sharpness, 1.8, 0.1), | |
(ShearX, 0.3, 0), | |
(ShearY, 0.3, 0), | |
(Solarize, 256, 0), | |
(SolarizeAdd, 110, 0), | |
(TranslateX, 0.45, 0), | |
(TranslateY, 0.45, 0)] | |
return augs | |
class RandAugmentPC(object): | |
def __init__(self, n, m): | |
assert n >= 1 | |
assert 1 <= m <= 10 | |
self.n = n | |
self.m = m | |
self.augment_pool = my_augment_pool() | |
def __call__(self, img): | |
ops = random.choices(self.augment_pool, k=self.n) | |
for op, max_v, bias in ops: | |
prob = np.random.uniform(0.2, 0.8) | |
if random.random() + prob >= 1: | |
img = op(img, v=self.m, max_v=max_v, bias=bias) | |
img = CutoutAbs(img, int(32*0.5)) | |
return img | |
class RandAugmentMC(object): | |
def __init__(self, n, m): | |
assert n >= 1 | |
assert 1 <= m <= 10 | |
self.n = n | |
self.m = m | |
self.augment_pool = fixmatch_augment_pool() | |
def __call__(self, img): | |
ops = random.choices(self.augment_pool, k=self.n) | |
for op, max_v, bias in ops: | |
v = np.random.randint(1, self.m) | |
if random.random() < 0.5: | |
img = op(img, v=v, max_v=max_v, bias=bias) | |
img = CutoutAbs(img, int(32*0.5)) | |
return img | |