File size: 6,089 Bytes
c20a1af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# code in this file is adpated from
# https://github.com/ildoonet/pytorch-randaugment/blob/master/RandAugment/augmentations.py
# https://github.com/google-research/fixmatch/blob/master/third_party/auto_augment/augmentations.py
# https://github.com/google-research/fixmatch/blob/master/libml/ctaugment.py
import logging
import random

import numpy as np
import PIL
import PIL.ImageOps
import PIL.ImageEnhance
import PIL.ImageDraw
from PIL import Image

logger = logging.getLogger(__name__)

PARAMETER_MAX = 10


def AutoContrast(img, **kwarg):
    return PIL.ImageOps.autocontrast(img)


def Brightness(img, v, max_v, bias=0):
    v = _float_parameter(v, max_v) + bias
    return PIL.ImageEnhance.Brightness(img).enhance(v)


def Color(img, v, max_v, bias=0):
    v = _float_parameter(v, max_v) + bias
    return PIL.ImageEnhance.Color(img).enhance(v)


def Contrast(img, v, max_v, bias=0):
    v = _float_parameter(v, max_v) + bias
    return PIL.ImageEnhance.Contrast(img).enhance(v)


def Cutout(img, v, max_v, bias=0):
    if v == 0:
        return img
    v = _float_parameter(v, max_v) + bias
    v = int(v * min(img.size))
    return CutoutAbs(img, v)


def CutoutAbs(img, v, **kwarg):
    w, h = img.size
    x0 = np.random.uniform(0, w)
    y0 = np.random.uniform(0, h)
    x0 = int(max(0, x0 - v / 2.))
    y0 = int(max(0, y0 - v / 2.))
    x1 = int(min(w, x0 + v))
    y1 = int(min(h, y0 + v))
    xy = (x0, y0, x1, y1)
    
    # gray
    # color = (127, 127, 127)

    # black
    color = (0, 0, 0)

    img = img.copy()
    PIL.ImageDraw.Draw(img).rectangle(xy, color)
    return img


def Equalize(img, **kwarg):
    return PIL.ImageOps.equalize(img)


def Identity(img, **kwarg):
    return img


def Invert(img, **kwarg):
    return PIL.ImageOps.invert(img)


def Posterize(img, v, max_v, bias=0):
    v = _int_parameter(v, max_v) + bias
    return PIL.ImageOps.posterize(img, v)


def Rotate(img, v, max_v, bias=0):
    v = _int_parameter(v, max_v) + bias
    if random.random() < 0.5:
        v = -v
    return img.rotate(v)


def Sharpness(img, v, max_v, bias=0):
    v = _float_parameter(v, max_v) + bias
    return PIL.ImageEnhance.Sharpness(img).enhance(v)


def ShearX(img, v, max_v, bias=0):
    v = _float_parameter(v, max_v) + bias
    if random.random() < 0.5:
        v = -v
    return img.transform(img.size, PIL.Image.AFFINE, (1, v, 0, 0, 1, 0))


def ShearY(img, v, max_v, bias=0):
    v = _float_parameter(v, max_v) + bias
    if random.random() < 0.5:
        v = -v
    return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, v, 1, 0))


def Solarize(img, v, max_v, bias=0):
    v = _int_parameter(v, max_v) + bias
    return PIL.ImageOps.solarize(img, 256 - v)


def SolarizeAdd(img, v, max_v, bias=0, threshold=128):
    v = _int_parameter(v, max_v) + bias
    if random.random() < 0.5:
        v = -v
    img_np = np.array(img).astype(np.int)
    img_np = img_np + v
    img_np = np.clip(img_np, 0, 255)
    img_np = img_np.astype(np.uint8)
    img = Image.fromarray(img_np)
    return PIL.ImageOps.solarize(img, threshold)


def TranslateX(img, v, max_v, bias=0):
    v = _float_parameter(v, max_v) + bias
    if random.random() < 0.5:
        v = -v
    v = int(v * img.size[0])
    return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0))


def TranslateY(img, v, max_v, bias=0):
    v = _float_parameter(v, max_v) + bias
    if random.random() < 0.5:
        v = -v
    v = int(v * img.size[1])
    return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v))


def _float_parameter(v, max_v):
    return float(v) * max_v / PARAMETER_MAX


def _int_parameter(v, max_v):
    return int(v * max_v / PARAMETER_MAX)


def fixmatch_augment_pool():
    # FixMatch paper
    augs = [(AutoContrast, None, None),
            (Brightness, 0.9, 0.05),
            (Color, 0.9, 0.05),
            (Contrast, 0.9, 0.05),
            (Equalize, None, None),
            (Identity, None, None),
            (Posterize, 4, 4),
            (Rotate, 30, 0),
            (Sharpness, 0.9, 0.05),
            (ShearX, 0.3, 0),
            (ShearY, 0.3, 0),
            (Solarize, 256, 0),
            (TranslateX, 0.3, 0),
            (TranslateY, 0.3, 0)]
    return augs


def my_augment_pool():
    # Test
    augs = [(AutoContrast, None, None),
            (Brightness, 1.8, 0.1),
            (Color, 1.8, 0.1),
            (Contrast, 1.8, 0.1),
            (Cutout, 0.2, 0),
            (Equalize, None, None),
            (Invert, None, None),
            (Posterize, 4, 4),
            (Rotate, 30, 0),
            (Sharpness, 1.8, 0.1),
            (ShearX, 0.3, 0),
            (ShearY, 0.3, 0),
            (Solarize, 256, 0),
            (SolarizeAdd, 110, 0),
            (TranslateX, 0.45, 0),
            (TranslateY, 0.45, 0)]
    return augs


class RandAugmentPC(object):
    def __init__(self, n, m):
        assert n >= 1
        assert 1 <= m <= 10
        self.n = n
        self.m = m
        self.augment_pool = my_augment_pool()

    def __call__(self, img):
        ops = random.choices(self.augment_pool, k=self.n)
        for op, max_v, bias in ops:
            prob = np.random.uniform(0.2, 0.8)
            if random.random() + prob >= 1:
                img = op(img, v=self.m, max_v=max_v, bias=bias)
        img = CutoutAbs(img, int(32*0.5))
        return img


class RandAugmentMC(object):
    def __init__(self, n, m):
        assert n >= 1
        assert 1 <= m <= 10
        self.n = n
        self.m = m
        self.augment_pool = fixmatch_augment_pool()

    def __call__(self, img):
        ops = random.choices(self.augment_pool, k=self.n)
        for op, max_v, bias in ops:
            v = np.random.randint(1, self.m)
            if random.random() < 0.5:
                img = op(img, v=v, max_v=max_v, bias=bias)
        img = CutoutAbs(img, int(32*0.5))
        return img