# code in this file is adpated from # https://github.com/ildoonet/pytorch-randaugment/blob/master/RandAugment/augmentations.py # https://github.com/google-research/fixmatch/blob/master/third_party/auto_augment/augmentations.py # https://github.com/google-research/fixmatch/blob/master/libml/ctaugment.py import logging import random import numpy as np import PIL import PIL.ImageOps import PIL.ImageEnhance import PIL.ImageDraw from PIL import Image logger = logging.getLogger(__name__) PARAMETER_MAX = 10 def AutoContrast(img, **kwarg): return PIL.ImageOps.autocontrast(img) def Brightness(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias return PIL.ImageEnhance.Brightness(img).enhance(v) def Color(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias return PIL.ImageEnhance.Color(img).enhance(v) def Contrast(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias return PIL.ImageEnhance.Contrast(img).enhance(v) def Cutout(img, v, max_v, bias=0): if v == 0: return img v = _float_parameter(v, max_v) + bias v = int(v * min(img.size)) return CutoutAbs(img, v) def CutoutAbs(img, v, **kwarg): w, h = img.size x0 = np.random.uniform(0, w) y0 = np.random.uniform(0, h) x0 = int(max(0, x0 - v / 2.)) y0 = int(max(0, y0 - v / 2.)) x1 = int(min(w, x0 + v)) y1 = int(min(h, y0 + v)) xy = (x0, y0, x1, y1) # gray # color = (127, 127, 127) # black color = (0, 0, 0) img = img.copy() PIL.ImageDraw.Draw(img).rectangle(xy, color) return img def Equalize(img, **kwarg): return PIL.ImageOps.equalize(img) def Identity(img, **kwarg): return img def Invert(img, **kwarg): return PIL.ImageOps.invert(img) def Posterize(img, v, max_v, bias=0): v = _int_parameter(v, max_v) + bias return PIL.ImageOps.posterize(img, v) def Rotate(img, v, max_v, bias=0): v = _int_parameter(v, max_v) + bias if random.random() < 0.5: v = -v return img.rotate(v) def Sharpness(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias return PIL.ImageEnhance.Sharpness(img).enhance(v) def ShearX(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias if random.random() < 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, v, 0, 0, 1, 0)) def ShearY(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias if random.random() < 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, v, 1, 0)) def Solarize(img, v, max_v, bias=0): v = _int_parameter(v, max_v) + bias return PIL.ImageOps.solarize(img, 256 - v) def SolarizeAdd(img, v, max_v, bias=0, threshold=128): v = _int_parameter(v, max_v) + bias if random.random() < 0.5: v = -v img_np = np.array(img).astype(np.int) img_np = img_np + v img_np = np.clip(img_np, 0, 255) img_np = img_np.astype(np.uint8) img = Image.fromarray(img_np) return PIL.ImageOps.solarize(img, threshold) def TranslateX(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias if random.random() < 0.5: v = -v v = int(v * img.size[0]) return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0)) def TranslateY(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias if random.random() < 0.5: v = -v v = int(v * img.size[1]) return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v)) def _float_parameter(v, max_v): return float(v) * max_v / PARAMETER_MAX def _int_parameter(v, max_v): return int(v * max_v / PARAMETER_MAX) def fixmatch_augment_pool(): # FixMatch paper augs = [(AutoContrast, None, None), (Brightness, 0.9, 0.05), (Color, 0.9, 0.05), (Contrast, 0.9, 0.05), (Equalize, None, None), (Identity, None, None), (Posterize, 4, 4), (Rotate, 30, 0), (Sharpness, 0.9, 0.05), (ShearX, 0.3, 0), (ShearY, 0.3, 0), (Solarize, 256, 0), (TranslateX, 0.3, 0), (TranslateY, 0.3, 0)] return augs def my_augment_pool(): # Test augs = [(AutoContrast, None, None), (Brightness, 1.8, 0.1), (Color, 1.8, 0.1), (Contrast, 1.8, 0.1), (Cutout, 0.2, 0), (Equalize, None, None), (Invert, None, None), (Posterize, 4, 4), (Rotate, 30, 0), (Sharpness, 1.8, 0.1), (ShearX, 0.3, 0), (ShearY, 0.3, 0), (Solarize, 256, 0), (SolarizeAdd, 110, 0), (TranslateX, 0.45, 0), (TranslateY, 0.45, 0)] return augs class RandAugmentPC(object): def __init__(self, n, m): assert n >= 1 assert 1 <= m <= 10 self.n = n self.m = m self.augment_pool = my_augment_pool() def __call__(self, img): ops = random.choices(self.augment_pool, k=self.n) for op, max_v, bias in ops: prob = np.random.uniform(0.2, 0.8) if random.random() + prob >= 1: img = op(img, v=self.m, max_v=max_v, bias=bias) img = CutoutAbs(img, int(32*0.5)) return img class RandAugmentMC(object): def __init__(self, n, m): assert n >= 1 assert 1 <= m <= 10 self.n = n self.m = m self.augment_pool = fixmatch_augment_pool() def __call__(self, img): ops = random.choices(self.augment_pool, k=self.n) for op, max_v, bias in ops: v = np.random.randint(1, self.m) if random.random() < 0.5: img = op(img, v=v, max_v=max_v, bias=bias) img = CutoutAbs(img, int(32*0.5)) return img