Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import cv2 | |
import numpy as np | |
from torch.nn.modules.loss import _Loss | |
import torch.nn.functional as F | |
from utils.utils import postprocess, display, BBoxTransform, ClipBoxes | |
from typing import Optional, List | |
from functools import partial | |
BINARY_MODE: str = "binary" | |
MULTICLASS_MODE: str = "multiclass" | |
MULTILABEL_MODE: str = "multilabel" | |
def calc_iou(a, b): | |
# a(anchor) [boxes, (y1, x1, y2, x2)] | |
# b(gt, coco-style) [boxes, (x1, y1, x2, y2)] | |
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1]) | |
iw = torch.min(torch.unsqueeze(a[:, 3], dim=1), b[:, 2]) - torch.max(torch.unsqueeze(a[:, 1], 1), b[:, 0]) | |
ih = torch.min(torch.unsqueeze(a[:, 2], dim=1), b[:, 3]) - torch.max(torch.unsqueeze(a[:, 0], 1), b[:, 1]) | |
iw = torch.clamp(iw, min=0) | |
ih = torch.clamp(ih, min=0) | |
ua = torch.unsqueeze((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), dim=1) + area - iw * ih | |
ua = torch.clamp(ua, min=1e-8) | |
intersection = iw * ih | |
IoU = intersection / ua | |
return IoU | |
class FocalLoss(nn.Module): | |
def __init__(self): | |
super(FocalLoss, self).__init__() | |
def forward(self, classifications, regressions, anchors, annotations, **kwargs): | |
alpha = 0.25 | |
gamma = 2.0 | |
batch_size = classifications.shape[0] | |
classification_losses = [] | |
regression_losses = [] | |
anchor = anchors[0, :, :] # assuming all image sizes are the same, which it is | |
dtype = anchors.dtype | |
anchor_widths = anchor[:, 3] - anchor[:, 1] | |
anchor_heights = anchor[:, 2] - anchor[:, 0] | |
anchor_ctr_x = anchor[:, 1] + 0.5 * anchor_widths | |
anchor_ctr_y = anchor[:, 0] + 0.5 * anchor_heights | |
for j in range(batch_size): | |
classification = classifications[j, :, :] | |
regression = regressions[j, :, :] | |
bbox_annotation = annotations[j] | |
bbox_annotation = bbox_annotation[bbox_annotation[:, 4] != -1] | |
# print(bbox_annotation) | |
classification = torch.clamp(classification, 1e-4, 1.0 - 1e-4) | |
if bbox_annotation.shape[0] == 0: | |
if torch.cuda.is_available(): | |
alpha_factor = torch.ones_like(classification) * alpha | |
alpha_factor = alpha_factor.cuda() | |
alpha_factor = 1. - alpha_factor | |
focal_weight = classification | |
focal_weight = alpha_factor * torch.pow(focal_weight, gamma) | |
bce = -(torch.log(1.0 - classification)) | |
cls_loss = focal_weight * bce | |
regression_losses.append(torch.tensor(0).to(dtype).cuda()) | |
classification_losses.append(cls_loss.sum()) | |
else: | |
alpha_factor = torch.ones_like(classification) * alpha | |
alpha_factor = 1. - alpha_factor | |
focal_weight = classification | |
focal_weight = alpha_factor * torch.pow(focal_weight, gamma) | |
bce = -(torch.log(1.0 - classification)) | |
cls_loss = focal_weight * bce | |
regression_losses.append(torch.tensor(0).to(dtype)) | |
classification_losses.append(cls_loss.sum()) | |
continue | |
IoU = calc_iou(anchor[:, :], bbox_annotation[:, :4]) | |
IoU_max, IoU_argmax = torch.max(IoU, dim=1) | |
# compute the loss for classification | |
#targets = torch.ones_like(classification) * -1 | |
targets = torch.zeros_like(classification) | |
if torch.cuda.is_available(): | |
targets = targets.cuda() | |
assigned_annotations = bbox_annotation[IoU_argmax, :] | |
positive_indices = torch.full_like(IoU_max,False,dtype=torch.bool) #torch.ge(IoU_max, 0.2) | |
tensorA = (assigned_annotations[:, 2] - assigned_annotations[:, 0]) * (assigned_annotations[:, 3] - assigned_annotations[:, 1]) > 10 * 10 | |
# for idx,iou in enumerate(IoU_max): | |
# if tensorA[idx]: # Set iou threshold = 0.5 | |
# if iou >= 0.5: | |
# positive_indices[idx] = True | |
# # targets[idx,:] = True | |
# # else: | |
# # positive_indices[idx] = False | |
# else: | |
# if iou >= 0.15: | |
# positive_indices[idx] = True | |
# # else: | |
# # positive_indices[idx] = False | |
# # targets[torch.lt(IoU_max, 0.4), :] = 0 | |
positive_indices[torch.logical_or(torch.logical_and(tensorA,IoU_max >= 0.5),torch.logical_and(~tensorA,IoU_max >= 0.15))] = True | |
num_positive_anchors = positive_indices.sum() | |
# for box in assigned_annotations[positive_indices, :]: | |
# xmin,ymin,xmax,ymax, cls = box | |
# print("WIDTH HEIGHT:", (xmax-xmin),"\t", (ymax-ymin)) | |
# for box in bbox_annotation: | |
# xmin,ymin,xmax,ymax, cls = box | |
# print("111 WIDTH HEIGHT:", (xmax-xmin),"\t", (ymax-ymin)) | |
# targets[positive_indices, :] = 0 | |
targets[positive_indices, assigned_annotations[positive_indices, 4].long()] = 1 | |
alpha_factor = torch.ones_like(targets) * alpha | |
if torch.cuda.is_available(): | |
alpha_factor = alpha_factor.cuda() | |
alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, 1. - alpha_factor) | |
focal_weight = torch.where(torch.eq(targets, 1.), 1. - classification, classification) | |
focal_weight = alpha_factor * torch.pow(focal_weight, gamma) | |
bce = -(targets * torch.log(classification) + (1.0 - targets) * torch.log(1.0 - classification)) | |
cls_loss = focal_weight * bce | |
zeros = torch.zeros_like(cls_loss) | |
if torch.cuda.is_available(): | |
zeros = zeros.cuda() | |
cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, zeros) | |
classification_losses.append(cls_loss.sum() / torch.clamp(num_positive_anchors.to(dtype), min=1.0)) | |
if positive_indices.sum() > 0: | |
assigned_annotations = assigned_annotations[positive_indices, :] | |
anchor_widths_pi = anchor_widths[positive_indices] | |
anchor_heights_pi = anchor_heights[positive_indices] | |
anchor_ctr_x_pi = anchor_ctr_x[positive_indices] | |
anchor_ctr_y_pi = anchor_ctr_y[positive_indices] | |
gt_widths = assigned_annotations[:, 2] - assigned_annotations[:, 0] | |
gt_heights = assigned_annotations[:, 3] - assigned_annotations[:, 1] | |
gt_ctr_x = assigned_annotations[:, 0] + 0.5 * gt_widths | |
gt_ctr_y = assigned_annotations[:, 1] + 0.5 * gt_heights | |
gt_widths = torch.clamp(gt_widths, min=1) | |
gt_heights = torch.clamp(gt_heights, min=1) | |
targets_dx = (gt_ctr_x - anchor_ctr_x_pi) / anchor_widths_pi | |
targets_dy = (gt_ctr_y - anchor_ctr_y_pi) / anchor_heights_pi | |
targets_dw = torch.log(gt_widths / anchor_widths_pi) | |
targets_dh = torch.log(gt_heights / anchor_heights_pi) | |
targets = torch.stack((targets_dy, targets_dx, targets_dh, targets_dw)) | |
targets = targets.t() | |
regression_diff = torch.abs(targets - regression[positive_indices, :]) | |
regression_loss = torch.where( | |
torch.le(regression_diff, 1.0 / 9.0), | |
0.5 * 9.0 * torch.pow(regression_diff, 2), | |
regression_diff - 0.5 / 9.0 | |
) | |
regression_losses.append(regression_loss.mean()) | |
else: | |
if torch.cuda.is_available(): | |
regression_losses.append(torch.tensor(0).to(dtype).cuda()) | |
else: | |
regression_losses.append(torch.tensor(0).to(dtype)) | |
# debug | |
imgs = kwargs.get('imgs', None) | |
if imgs is not None: | |
regressBoxes = BBoxTransform() | |
clipBoxes = ClipBoxes() | |
obj_list = kwargs.get('obj_list', None) | |
out = postprocess(imgs.detach(), | |
torch.stack([anchors[0]] * imgs.shape[0], 0).detach(), regressions.detach(), classifications.detach(), | |
regressBoxes, clipBoxes, | |
0.25, 0.3) | |
imgs = imgs.permute(0, 2, 3, 1).cpu().numpy() | |
imgs = ((imgs * [0.229, 0.224, 0.225] + [0.485, 0.456, 0.406]) * 255).astype(np.uint8) | |
imgs = [cv2.cvtColor(img, cv2.COLOR_RGB2BGR) for img in imgs] | |
display(out, imgs, obj_list, imshow=False, imwrite=True) | |
return torch.stack(classification_losses).mean(dim=0, keepdim=True), \ | |
torch.stack(regression_losses).mean(dim=0, keepdim=True) * 50 # https://github.com/google/automl/blob/6fdd1de778408625c1faf368a327fe36ecd41bf7/efficientdet/hparams_config.py#L233 | |
def focal_loss_with_logits( | |
output: torch.Tensor, | |
target: torch.Tensor, | |
gamma: float = 2.0, | |
alpha: Optional[float] = 0.25, | |
reduction: str = "mean", | |
normalized: bool = False, | |
reduced_threshold: Optional[float] = None, | |
eps: float = 1e-6, | |
) -> torch.Tensor: | |
"""Compute binary focal loss between target and output logits. | |
See :class:`~pytorch_toolbelt.losses.FocalLoss` for details. | |
Args: | |
output: Tensor of arbitrary shape (predictions of the model) | |
target: Tensor of the same shape as input | |
gamma: Focal loss power factor | |
alpha: Weight factor to balance positive and negative samples. Alpha must be in [0...1] range, | |
high values will give more weight to positive class. | |
reduction (string, optional): Specifies the reduction to apply to the output: | |
'none' | 'mean' | 'sum' | 'batchwise_mean'. 'none': no reduction will be applied, | |
'mean': the sum of the output will be divided by the number of | |
elements in the output, 'sum': the output will be summed. Note: :attr:`size_average` | |
and :attr:`reduce` are in the process of being deprecated, and in the meantime, | |
specifying either of those two args will override :attr:`reduction`. | |
'batchwise_mean' computes mean loss per sample in batch. Default: 'mean' | |
normalized (bool): Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf). | |
reduced_threshold (float, optional): Compute reduced focal loss (https://arxiv.org/abs/1903.01347). | |
References: | |
https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/loss/losses.py | |
""" | |
target = target.type(output.type()) | |
# print(output.size(), target.size()) | |
logpt = F.binary_cross_entropy_with_logits(output, target, reduction="none") | |
pt = torch.exp(-logpt) | |
# compute the loss | |
if reduced_threshold is None: | |
focal_term = (1.0 - pt).pow(gamma) | |
else: | |
focal_term = ((1.0 - pt) / reduced_threshold).pow(gamma) | |
focal_term[pt < reduced_threshold] = 1 | |
loss = focal_term * logpt | |
if alpha is not None: | |
loss *= alpha * target + (1 - alpha) * (1 - target) | |
if normalized: | |
norm_factor = focal_term.sum().clamp_min(eps) | |
loss /= norm_factor | |
if reduction == "mean": | |
loss = loss.mean() | |
if reduction == "sum": | |
loss = loss.sum() | |
if reduction == "batchwise_mean": | |
loss = loss.sum(0) | |
return loss | |
class FocalLossSeg(_Loss): | |
def __init__( | |
self, | |
mode: str, | |
alpha: Optional[float] = None, | |
gamma: Optional[float] = 2.0, | |
ignore_index: Optional[int] = None, | |
reduction: Optional[str] = "mean", | |
normalized: bool = False, | |
reduced_threshold: Optional[float] = None, | |
): | |
"""Compute Focal loss | |
Args: | |
mode: Loss mode 'binary', 'multiclass' or 'multilabel' | |
alpha: Prior probability of having positive value in target. | |
gamma: Power factor for dampening weight (focal strength). | |
ignore_index: If not None, targets may contain values to be ignored. | |
Target values equal to ignore_index will be ignored from loss computation. | |
normalized: Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf). | |
reduced_threshold: Switch to reduced focal loss. Note, when using this mode you | |
should use `reduction="sum"`. | |
Shape | |
- **y_pred** - torch.Tensor of shape (N, C, H, W) | |
- **y_true** - torch.Tensor of shape (N, H, W) or (N, C, H, W) | |
Reference | |
https://github.com/BloodAxe/pytorch-toolbelt | |
""" | |
assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE} | |
super().__init__() | |
self.mode = mode | |
self.ignore_index = ignore_index | |
self.focal_loss_fn = partial( | |
focal_loss_with_logits, | |
alpha=alpha, | |
gamma=gamma, | |
reduced_threshold=reduced_threshold, | |
reduction=reduction, | |
normalized=normalized, | |
) | |
def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: | |
if self.mode in {BINARY_MODE, MULTILABEL_MODE}: | |
y_true = y_true.view(-1) | |
y_pred = y_pred.view(-1) | |
if self.ignore_index is not None: | |
# Filter predictions with ignore label from loss computation | |
not_ignored = y_true != self.ignore_index | |
y_pred = y_pred[not_ignored] | |
y_true = y_true[not_ignored] | |
loss = self.focal_loss_fn(y_pred, y_true) | |
elif self.mode == MULTICLASS_MODE: | |
num_classes = y_pred.size(1) | |
loss = 0 | |
# Filter anchors with -1 label from loss computation | |
if self.ignore_index is not None: | |
not_ignored = y_true != self.ignore_index | |
for cls in range(num_classes): | |
# cls_y_true = (y_true == cls).long() | |
cls_y_true = y_true[:, cls, ...] | |
cls_y_pred = y_pred[:, cls, ...] | |
if self.ignore_index is not None: | |
cls_y_true = cls_y_true[not_ignored] | |
cls_y_pred = cls_y_pred[not_ignored] | |
loss += self.focal_loss_fn(cls_y_pred, cls_y_true) | |
return loss | |
def to_tensor(x, dtype=None) -> torch.Tensor: | |
if isinstance(x, torch.Tensor): | |
if dtype is not None: | |
x = x.type(dtype) | |
return x | |
if isinstance(x, np.ndarray): | |
x = torch.from_numpy(x) | |
if dtype is not None: | |
x = x.type(dtype) | |
return x | |
if isinstance(x, (list, tuple)): | |
x = np.array(x) | |
x = torch.from_numpy(x) | |
if dtype is not None: | |
x = x.type(dtype) | |
return x | |
def soft_dice_score( | |
output: torch.Tensor, | |
target: torch.Tensor, | |
smooth: float = 0.0, | |
eps: float = 1e-7, | |
dims=None, | |
) -> torch.Tensor: | |
assert output.size() == target.size() | |
if dims is not None: | |
intersection = torch.sum(output * target, dim=dims) | |
cardinality = torch.sum(output + target, dim=dims) | |
else: | |
intersection = torch.sum(output * target) | |
cardinality = torch.sum(output + target) | |
dice_score = (2.0 * intersection + smooth) / (cardinality + smooth).clamp_min(eps) | |
return dice_score | |
class DiceLoss(_Loss): | |
def __init__( | |
self, | |
mode: str, | |
classes: Optional[List[int]] = None, | |
log_loss: bool = False, | |
from_logits: bool = True, | |
smooth: float = 0.0, | |
ignore_index: Optional[int] = None, | |
eps: float = 1e-7, | |
): | |
"""Dice loss for image segmentation task. | |
It supports binary, multiclass and multilabel cases | |
Args: | |
mode: Loss mode 'binary', 'multiclass' or 'multilabel' | |
classes: List of classes that contribute in loss computation. By default, all channels are included. | |
log_loss: If True, loss computed as `- log(dice_coeff)`, otherwise `1 - dice_coeff` | |
from_logits: If True, assumes input is raw logits | |
smooth: Smoothness constant for dice coefficient (a) | |
ignore_index: Label that indicates ignored pixels (does not contribute to loss) | |
eps: A small epsilon for numerical stability to avoid zero division error | |
(denominator will be always greater or equal to eps) | |
Shape | |
- **y_pred** - torch.Tensor of shape (N, C, H, W) | |
- **y_true** - torch.Tensor of shape (N, H, W) or (N, C, H, W) | |
Reference | |
https://github.com/BloodAxe/pytorch-toolbelt | |
""" | |
assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE} | |
super(DiceLoss, self).__init__() | |
self.mode = mode | |
if classes is not None: | |
assert mode != BINARY_MODE, "Masking classes is not supported with mode=binary" | |
classes = to_tensor(classes, dtype=torch.long) | |
self.classes = classes | |
self.from_logits = from_logits | |
self.smooth = smooth | |
self.eps = eps | |
self.log_loss = log_loss | |
self.ignore_index = ignore_index | |
def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: | |
assert y_true.size(0) == y_pred.size(0) | |
if self.from_logits: | |
# Apply activations to get [0..1] class probabilities | |
# Using Log-Exp as this gives more numerically stable result and does not cause vanishing gradient on | |
# extreme values 0 and 1 | |
# print(y_pred) | |
if self.mode == MULTICLASS_MODE: | |
y_pred = y_pred.log_softmax(dim=1).exp() | |
else: | |
y_pred = F.logsigmoid(y_pred).exp() | |
# print("AFTER: ", y_pred) | |
bs = y_true.size(0) | |
num_classes = y_pred.size(1) | |
dims = (0, 2) | |
if self.mode == BINARY_MODE: | |
y_true = y_true.view(bs, 1, -1) | |
y_pred = y_pred.view(bs, 1, -1) | |
if self.ignore_index is not None: | |
mask = y_true != self.ignore_index | |
y_pred = y_pred * mask | |
y_true = y_true * mask | |
if self.mode == MULTICLASS_MODE: | |
y_true = y_true.view(bs, num_classes, -1) | |
y_pred = y_pred.view(bs, num_classes, -1) | |
# print("NUM CLASSES:", num_classes, y_true.size()) | |
# if self.ignore_index is not None: | |
# mask = y_true != self.ignore_index | |
# y_pred = y_pred * mask.unsqueeze(1) | |
# | |
# y_true = F.one_hot((y_true * mask).to(torch.long), num_classes) # N,H*W -> N,H*W, C | |
# y_true = y_true.permute(0, 2, 1) * mask.unsqueeze(1) # H, C, H*W | |
# else: | |
# y_true = F.one_hot(y_true, num_classes) # N,H*W -> N,H*W, C | |
# y_true = y_true.permute(0, 2, 1) # N, C, H*W | |
# | |
# print("HERE", y_true.size()) | |
# print(y_pred.size()) | |
if self.mode == MULTILABEL_MODE: | |
y_true = y_true.view(bs, num_classes, -1) | |
y_pred = y_pred.view(bs, num_classes, -1) | |
if self.ignore_index is not None: | |
mask = y_true != self.ignore_index | |
y_pred = y_pred * mask | |
y_true = y_true * mask | |
scores = self.compute_score(y_pred, y_true.type_as(y_pred), smooth=self.smooth, eps=self.eps, dims=dims) | |
if self.log_loss: | |
loss = -torch.log(scores.clamp_min(self.eps)) | |
else: | |
loss = 1.0 - scores | |
# Dice loss is undefined for non-empty classes | |
# So we zero contribution of channel that does not have true pixels | |
# NOTE: A better workaround would be to use loss term `mean(y_pred)` | |
# for this case, however it will be a modified jaccard loss | |
mask = y_true.sum(dims) > 0 | |
loss *= mask.to(loss.dtype) | |
if self.classes is not None: | |
loss = loss[self.classes] | |
return self.aggregate_loss(loss) | |
def aggregate_loss(self, loss): | |
return loss.mean() | |
def compute_score(self, output, target, smooth=0.0, eps=1e-7, dims=None) -> torch.Tensor: | |
return soft_dice_score(output, target, smooth, eps, dims) | |
def soft_tversky_score( | |
output: torch.Tensor, | |
target: torch.Tensor, | |
alpha: float, | |
beta: float, | |
smooth: float = 0.0, | |
eps: float = 1e-7, | |
dims=None, | |
) -> torch.Tensor: | |
assert output.size() == target.size() | |
if dims is not None: | |
intersection = torch.sum(output * target, dim=dims) # TP | |
fp = torch.sum(output * (1.0 - target), dim=dims) | |
fn = torch.sum((1 - output) * target, dim=dims) | |
else: | |
intersection = torch.sum(output * target) # TP | |
fp = torch.sum(output * (1.0 - target)) | |
fn = torch.sum((1 - output) * target) | |
tversky_score = (intersection + smooth) / (intersection + alpha * fp + beta * fn + smooth).clamp_min(eps) | |
return tversky_score | |
class TverskyLoss(DiceLoss): | |
"""Tversky loss for image segmentation task. | |
Where TP and FP is weighted by alpha and beta params. | |
With alpha == beta == 0.5, this loss becomes equal DiceLoss. | |
It supports binary, multiclass and multilabel cases | |
Args: | |
mode: Metric mode {'binary', 'multiclass', 'multilabel'} | |
classes: Optional list of classes that contribute in loss computation; | |
By default, all channels are included. | |
log_loss: If True, loss computed as ``-log(tversky)`` otherwise ``1 - tversky`` | |
from_logits: If True assumes input is raw logits | |
smooth: | |
ignore_index: Label that indicates ignored pixels (does not contribute to loss) | |
eps: Small epsilon for numerical stability | |
alpha: Weight constant that penalize model for FPs (False Positives) | |
beta: Weight constant that penalize model for FNs (False Positives) | |
gamma: Constant that squares the error function. Defaults to ``1.0`` | |
Return: | |
loss: torch.Tensor | |
""" | |
def __init__( | |
self, | |
mode: str, | |
classes: List[int] = None, | |
log_loss: bool = False, | |
from_logits: bool = True, | |
smooth: float = 0.0, | |
ignore_index: Optional[int] = None, | |
eps: float = 1e-7, | |
alpha: float = 0.5, | |
beta: float = 0.5, | |
gamma: float = 1.0 | |
): | |
assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE} | |
super().__init__(mode, classes, log_loss, from_logits, smooth, ignore_index, eps) | |
self.alpha = alpha | |
self.beta = beta | |
self.gamma = gamma | |
def aggregate_loss(self, loss): | |
return loss.mean() ** self.gamma | |
def compute_score(self, output, target, smooth=0.0, eps=1e-7, dims=None) -> torch.Tensor: | |
return soft_tversky_score(output, target, self.alpha, self.beta, smooth, eps, dims) |