File size: 23,333 Bytes
c432040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import torch
import torch.nn as nn
import cv2
import numpy as np
from torch.nn.modules.loss import _Loss
import torch.nn.functional as F
from utils.utils import postprocess, display, BBoxTransform, ClipBoxes
from typing import Optional, List
from functools import partial

BINARY_MODE: str = "binary"
MULTICLASS_MODE: str = "multiclass"
MULTILABEL_MODE: str = "multilabel"

def calc_iou(a, b):
    # a(anchor) [boxes, (y1, x1, y2, x2)]
    # b(gt, coco-style) [boxes, (x1, y1, x2, y2)]

    area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
    iw = torch.min(torch.unsqueeze(a[:, 3], dim=1), b[:, 2]) - torch.max(torch.unsqueeze(a[:, 1], 1), b[:, 0])
    ih = torch.min(torch.unsqueeze(a[:, 2], dim=1), b[:, 3]) - torch.max(torch.unsqueeze(a[:, 0], 1), b[:, 1])
    iw = torch.clamp(iw, min=0)
    ih = torch.clamp(ih, min=0)
    ua = torch.unsqueeze((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), dim=1) + area - iw * ih
    ua = torch.clamp(ua, min=1e-8)
    intersection = iw * ih
    IoU = intersection / ua
   

    return IoU


class FocalLoss(nn.Module):
    def __init__(self):
        super(FocalLoss, self).__init__()

    def forward(self, classifications, regressions, anchors, annotations, **kwargs):
        alpha = 0.25
        gamma = 2.0
        batch_size = classifications.shape[0]
        classification_losses = []
        regression_losses = []

        anchor = anchors[0, :, :]  # assuming all image sizes are the same, which it is
        dtype = anchors.dtype

        anchor_widths = anchor[:, 3] - anchor[:, 1]
        anchor_heights = anchor[:, 2] - anchor[:, 0]
        anchor_ctr_x = anchor[:, 1] + 0.5 * anchor_widths
        anchor_ctr_y = anchor[:, 0] + 0.5 * anchor_heights

        for j in range(batch_size):

            classification = classifications[j, :, :]
            regression = regressions[j, :, :]

            bbox_annotation = annotations[j]
            bbox_annotation = bbox_annotation[bbox_annotation[:, 4] != -1]

            # print(bbox_annotation)

            classification = torch.clamp(classification, 1e-4, 1.0 - 1e-4)

            if bbox_annotation.shape[0] == 0:
                if torch.cuda.is_available():

                    alpha_factor = torch.ones_like(classification) * alpha
                    alpha_factor = alpha_factor.cuda()
                    alpha_factor = 1. - alpha_factor
                    focal_weight = classification
                    focal_weight = alpha_factor * torch.pow(focal_weight, gamma)

                    bce = -(torch.log(1.0 - classification))

                    cls_loss = focal_weight * bce

                    regression_losses.append(torch.tensor(0).to(dtype).cuda())
                    classification_losses.append(cls_loss.sum())
                else:

                    alpha_factor = torch.ones_like(classification) * alpha
                    alpha_factor = 1. - alpha_factor
                    focal_weight = classification
                    focal_weight = alpha_factor * torch.pow(focal_weight, gamma)

                    bce = -(torch.log(1.0 - classification))

                    cls_loss = focal_weight * bce

                    regression_losses.append(torch.tensor(0).to(dtype))
                    classification_losses.append(cls_loss.sum())

                continue

            IoU = calc_iou(anchor[:, :], bbox_annotation[:, :4])
            
            IoU_max, IoU_argmax = torch.max(IoU, dim=1)
           

            # compute the loss for classification
            #targets = torch.ones_like(classification) * -1
            targets = torch.zeros_like(classification)
            
            if torch.cuda.is_available():
                targets = targets.cuda()
            
            assigned_annotations = bbox_annotation[IoU_argmax, :]
            
            positive_indices = torch.full_like(IoU_max,False,dtype=torch.bool) #torch.ge(IoU_max, 0.2) 
                        
            tensorA = (assigned_annotations[:, 2] - assigned_annotations[:, 0]) * (assigned_annotations[:, 3] - assigned_annotations[:, 1]) > 10 * 10
#             for idx,iou in enumerate(IoU_max):
#                 if tensorA[idx]: # Set iou threshold = 0.5
#                     if iou >= 0.5:
#                         positive_indices[idx] = True
# #                         targets[idx,:] = True
# #                     else:
# #                         positive_indices[idx] = False
#                 else:
#                     if iou >= 0.15:
#                         positive_indices[idx] = True
# #                     else:
# #                         positive_indices[idx] = False              
                                
# #             targets[torch.lt(IoU_max, 0.4), :] = 0

            
            positive_indices[torch.logical_or(torch.logical_and(tensorA,IoU_max >= 0.5),torch.logical_and(~tensorA,IoU_max >= 0.15))] = True

            num_positive_anchors = positive_indices.sum()
            
#             for box in assigned_annotations[positive_indices, :]:
#                 xmin,ymin,xmax,ymax, cls = box
#                 print("WIDTH HEIGHT:", (xmax-xmin),"\t", (ymax-ymin))
#             for box in bbox_annotation:
#                 xmin,ymin,xmax,ymax, cls = box
#                 print("111 WIDTH HEIGHT:", (xmax-xmin),"\t", (ymax-ymin))
            

#             targets[positive_indices, :] = 0
            targets[positive_indices, assigned_annotations[positive_indices, 4].long()] = 1
    
            alpha_factor = torch.ones_like(targets) * alpha
            if torch.cuda.is_available():
                alpha_factor = alpha_factor.cuda()

            alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, 1. - alpha_factor)
            focal_weight = torch.where(torch.eq(targets, 1.), 1. - classification, classification)
            focal_weight = alpha_factor * torch.pow(focal_weight, gamma)

            bce = -(targets * torch.log(classification) + (1.0 - targets) * torch.log(1.0 - classification))

            cls_loss = focal_weight * bce

            zeros = torch.zeros_like(cls_loss)
            if torch.cuda.is_available():
                zeros = zeros.cuda()
            cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, zeros)

            classification_losses.append(cls_loss.sum() / torch.clamp(num_positive_anchors.to(dtype), min=1.0))

            if positive_indices.sum() > 0:
                assigned_annotations = assigned_annotations[positive_indices, :]

                anchor_widths_pi = anchor_widths[positive_indices]
                anchor_heights_pi = anchor_heights[positive_indices]
                anchor_ctr_x_pi = anchor_ctr_x[positive_indices]
                anchor_ctr_y_pi = anchor_ctr_y[positive_indices]

                gt_widths = assigned_annotations[:, 2] - assigned_annotations[:, 0]
                gt_heights = assigned_annotations[:, 3] - assigned_annotations[:, 1]
                gt_ctr_x = assigned_annotations[:, 0] + 0.5 * gt_widths
                gt_ctr_y = assigned_annotations[:, 1] + 0.5 * gt_heights

                gt_widths = torch.clamp(gt_widths, min=1)
                gt_heights = torch.clamp(gt_heights, min=1)

                targets_dx = (gt_ctr_x - anchor_ctr_x_pi) / anchor_widths_pi
                targets_dy = (gt_ctr_y - anchor_ctr_y_pi) / anchor_heights_pi
                targets_dw = torch.log(gt_widths / anchor_widths_pi)
                targets_dh = torch.log(gt_heights / anchor_heights_pi)

                targets = torch.stack((targets_dy, targets_dx, targets_dh, targets_dw))
                targets = targets.t()

                regression_diff = torch.abs(targets - regression[positive_indices, :])

                regression_loss = torch.where(
                    torch.le(regression_diff, 1.0 / 9.0),
                    0.5 * 9.0 * torch.pow(regression_diff, 2),
                    regression_diff - 0.5 / 9.0
                )
                regression_losses.append(regression_loss.mean())
            else:
                if torch.cuda.is_available():
                    regression_losses.append(torch.tensor(0).to(dtype).cuda())
                else:
                    regression_losses.append(torch.tensor(0).to(dtype))

        # debug
        imgs = kwargs.get('imgs', None)
        if imgs is not None:
            regressBoxes = BBoxTransform()
            clipBoxes = ClipBoxes()
            obj_list = kwargs.get('obj_list', None)
            out = postprocess(imgs.detach(),
                              torch.stack([anchors[0]] * imgs.shape[0], 0).detach(), regressions.detach(), classifications.detach(),
                              regressBoxes, clipBoxes,
                              0.25, 0.3)
            imgs = imgs.permute(0, 2, 3, 1).cpu().numpy()
            imgs = ((imgs * [0.229, 0.224, 0.225] + [0.485, 0.456, 0.406]) * 255).astype(np.uint8)
            imgs = [cv2.cvtColor(img, cv2.COLOR_RGB2BGR) for img in imgs]
            display(out, imgs, obj_list, imshow=False, imwrite=True)

        return torch.stack(classification_losses).mean(dim=0, keepdim=True), \
               torch.stack(regression_losses).mean(dim=0, keepdim=True) * 50  # https://github.com/google/automl/blob/6fdd1de778408625c1faf368a327fe36ecd41bf7/efficientdet/hparams_config.py#L233


def focal_loss_with_logits(
    output: torch.Tensor,
    target: torch.Tensor,
    gamma: float = 2.0,
    alpha: Optional[float] = 0.25,
    reduction: str = "mean",
    normalized: bool = False,
    reduced_threshold: Optional[float] = None,
    eps: float = 1e-6,
) -> torch.Tensor:
    """Compute binary focal loss between target and output logits.
    See :class:`~pytorch_toolbelt.losses.FocalLoss` for details.
    Args:
        output: Tensor of arbitrary shape (predictions of the model)
        target: Tensor of the same shape as input
        gamma: Focal loss power factor
        alpha: Weight factor to balance positive and negative samples. Alpha must be in [0...1] range,
            high values will give more weight to positive class.
        reduction (string, optional): Specifies the reduction to apply to the output:
            'none' | 'mean' | 'sum' | 'batchwise_mean'. 'none': no reduction will be applied,
            'mean': the sum of the output will be divided by the number of
            elements in the output, 'sum': the output will be summed. Note: :attr:`size_average`
            and :attr:`reduce` are in the process of being deprecated, and in the meantime,
            specifying either of those two args will override :attr:`reduction`.
            'batchwise_mean' computes mean loss per sample in batch. Default: 'mean'
        normalized (bool): Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf).
        reduced_threshold (float, optional): Compute reduced focal loss (https://arxiv.org/abs/1903.01347).
    References:
        https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/loss/losses.py
    """
    target = target.type(output.type())
    # print(output.size(), target.size())

    logpt = F.binary_cross_entropy_with_logits(output, target, reduction="none")
    pt = torch.exp(-logpt)

    # compute the loss
    if reduced_threshold is None:
        focal_term = (1.0 - pt).pow(gamma)
    else:
        focal_term = ((1.0 - pt) / reduced_threshold).pow(gamma)
        focal_term[pt < reduced_threshold] = 1

    loss = focal_term * logpt

    if alpha is not None:
        loss *= alpha * target + (1 - alpha) * (1 - target)

    if normalized:
        norm_factor = focal_term.sum().clamp_min(eps)
        loss /= norm_factor

    if reduction == "mean":
        loss = loss.mean()
    if reduction == "sum":
        loss = loss.sum()
    if reduction == "batchwise_mean":
        loss = loss.sum(0)

    return loss


class FocalLossSeg(_Loss):
    def __init__(
        self,
        mode: str,
        alpha: Optional[float] = None,
        gamma: Optional[float] = 2.0,
        ignore_index: Optional[int] = None,
        reduction: Optional[str] = "mean",
        normalized: bool = False,
        reduced_threshold: Optional[float] = None,
    ):
        """Compute Focal loss

        Args:
            mode: Loss mode 'binary', 'multiclass' or 'multilabel'
            alpha: Prior probability of having positive value in target.
            gamma: Power factor for dampening weight (focal strength).
            ignore_index: If not None, targets may contain values to be ignored.
                Target values equal to ignore_index will be ignored from loss computation.
            normalized: Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf).
            reduced_threshold: Switch to reduced focal loss. Note, when using this mode you
                should use `reduction="sum"`.

        Shape
             - **y_pred** - torch.Tensor of shape (N, C, H, W)
             - **y_true** - torch.Tensor of shape (N, H, W) or (N, C, H, W)

        Reference
            https://github.com/BloodAxe/pytorch-toolbelt

        """
        assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE}
        super().__init__()

        self.mode = mode
        self.ignore_index = ignore_index
        self.focal_loss_fn = partial(
            focal_loss_with_logits,
            alpha=alpha,
            gamma=gamma,
            reduced_threshold=reduced_threshold,
            reduction=reduction,
            normalized=normalized,
        )

    def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor:

        if self.mode in {BINARY_MODE, MULTILABEL_MODE}:
            y_true = y_true.view(-1)
            y_pred = y_pred.view(-1)

            if self.ignore_index is not None:
                # Filter predictions with ignore label from loss computation
                not_ignored = y_true != self.ignore_index
                y_pred = y_pred[not_ignored]
                y_true = y_true[not_ignored]

            loss = self.focal_loss_fn(y_pred, y_true)

        elif self.mode == MULTICLASS_MODE:
            num_classes = y_pred.size(1)
            loss = 0

            # Filter anchors with -1 label from loss computation
            if self.ignore_index is not None:
                not_ignored = y_true != self.ignore_index

            for cls in range(num_classes):
                # cls_y_true = (y_true == cls).long()

                cls_y_true = y_true[:, cls, ...]
                cls_y_pred = y_pred[:, cls, ...]

                if self.ignore_index is not None:
                    cls_y_true = cls_y_true[not_ignored]
                    cls_y_pred = cls_y_pred[not_ignored]

                loss += self.focal_loss_fn(cls_y_pred, cls_y_true)

        return loss

def to_tensor(x, dtype=None) -> torch.Tensor:
    if isinstance(x, torch.Tensor):
        if dtype is not None:
            x = x.type(dtype)
        return x
    if isinstance(x, np.ndarray):
        x = torch.from_numpy(x)
        if dtype is not None:
            x = x.type(dtype)
        return x
    if isinstance(x, (list, tuple)):
        x = np.array(x)
        x = torch.from_numpy(x)
        if dtype is not None:
            x = x.type(dtype)
        return x


def soft_dice_score(
    output: torch.Tensor,
    target: torch.Tensor,
    smooth: float = 0.0,
    eps: float = 1e-7,
    dims=None,
) -> torch.Tensor:
    assert output.size() == target.size()
    if dims is not None:
        intersection = torch.sum(output * target, dim=dims)
        cardinality = torch.sum(output + target, dim=dims)
    else:
        intersection = torch.sum(output * target)
        cardinality = torch.sum(output + target)
    dice_score = (2.0 * intersection + smooth) / (cardinality + smooth).clamp_min(eps)
    return dice_score


class DiceLoss(_Loss):
    def __init__(
        self,
        mode: str,
        classes: Optional[List[int]] = None,
        log_loss: bool = False,
        from_logits: bool = True,
        smooth: float = 0.0,
        ignore_index: Optional[int] = None,
        eps: float = 1e-7,
    ):
        """Dice loss for image segmentation task.
        It supports binary, multiclass and multilabel cases

        Args:
            mode: Loss mode 'binary', 'multiclass' or 'multilabel'
            classes:  List of classes that contribute in loss computation. By default, all channels are included.
            log_loss: If True, loss computed as `- log(dice_coeff)`, otherwise `1 - dice_coeff`
            from_logits: If True, assumes input is raw logits
            smooth: Smoothness constant for dice coefficient (a)
            ignore_index: Label that indicates ignored pixels (does not contribute to loss)
            eps: A small epsilon for numerical stability to avoid zero division error
                (denominator will be always greater or equal to eps)

        Shape
             - **y_pred** - torch.Tensor of shape (N, C, H, W)
             - **y_true** - torch.Tensor of shape (N, H, W) or (N, C, H, W)

        Reference
            https://github.com/BloodAxe/pytorch-toolbelt
        """
        assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE}
        super(DiceLoss, self).__init__()
        self.mode = mode
        if classes is not None:
            assert mode != BINARY_MODE, "Masking classes is not supported with mode=binary"
            classes = to_tensor(classes, dtype=torch.long)

        self.classes = classes
        self.from_logits = from_logits
        self.smooth = smooth
        self.eps = eps
        self.log_loss = log_loss
        self.ignore_index = ignore_index

    def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor:

        assert y_true.size(0) == y_pred.size(0)

        if self.from_logits:
            # Apply activations to get [0..1] class probabilities
            # Using Log-Exp as this gives more numerically stable result and does not cause vanishing gradient on
            # extreme values 0 and 1
            # print(y_pred)

            if self.mode == MULTICLASS_MODE:
                y_pred = y_pred.log_softmax(dim=1).exp()
            else:
                y_pred = F.logsigmoid(y_pred).exp()

            # print("AFTER: ", y_pred)

        bs = y_true.size(0)
        num_classes = y_pred.size(1)
        dims = (0, 2)

        if self.mode == BINARY_MODE:
            y_true = y_true.view(bs, 1, -1)
            y_pred = y_pred.view(bs, 1, -1)

            if self.ignore_index is not None:
                mask = y_true != self.ignore_index
                y_pred = y_pred * mask
                y_true = y_true * mask

        if self.mode == MULTICLASS_MODE:

            y_true = y_true.view(bs, num_classes, -1)
            y_pred = y_pred.view(bs, num_classes, -1)

            # print("NUM CLASSES:", num_classes, y_true.size())

            # if self.ignore_index is not None:
            #     mask = y_true != self.ignore_index
            #     y_pred = y_pred * mask.unsqueeze(1)
            #
            #     y_true = F.one_hot((y_true * mask).to(torch.long), num_classes)  # N,H*W -> N,H*W, C
            #     y_true = y_true.permute(0, 2, 1) * mask.unsqueeze(1)  # H, C, H*W
            # else:
            #     y_true = F.one_hot(y_true, num_classes)  # N,H*W -> N,H*W, C
            #     y_true = y_true.permute(0, 2, 1)  # N, C, H*W
            #
            #     print("HERE", y_true.size())
            #     print(y_pred.size())

        if self.mode == MULTILABEL_MODE:
            y_true = y_true.view(bs, num_classes, -1)
            y_pred = y_pred.view(bs, num_classes, -1)

            if self.ignore_index is not None:
                mask = y_true != self.ignore_index
                y_pred = y_pred * mask
                y_true = y_true * mask

        scores = self.compute_score(y_pred, y_true.type_as(y_pred), smooth=self.smooth, eps=self.eps, dims=dims)

        if self.log_loss:
            loss = -torch.log(scores.clamp_min(self.eps))
        else:
            loss = 1.0 - scores

        # Dice loss is undefined for non-empty classes
        # So we zero contribution of channel that does not have true pixels
        # NOTE: A better workaround would be to use loss term `mean(y_pred)`
        # for this case, however it will be a modified jaccard loss

        mask = y_true.sum(dims) > 0
        loss *= mask.to(loss.dtype)

        if self.classes is not None:
            loss = loss[self.classes]

        return self.aggregate_loss(loss)

    def aggregate_loss(self, loss):
        return loss.mean()

    def compute_score(self, output, target, smooth=0.0, eps=1e-7, dims=None) -> torch.Tensor:
        return soft_dice_score(output, target, smooth, eps, dims)

def soft_tversky_score(
    output: torch.Tensor,
    target: torch.Tensor,
    alpha: float,
    beta: float,
    smooth: float = 0.0,
    eps: float = 1e-7,
    dims=None,
) -> torch.Tensor:
    assert output.size() == target.size()
    if dims is not None:
        intersection = torch.sum(output * target, dim=dims)  # TP
        fp = torch.sum(output * (1.0 - target), dim=dims)
        fn = torch.sum((1 - output) * target, dim=dims)
    else:
        intersection = torch.sum(output * target)  # TP
        fp = torch.sum(output * (1.0 - target))
        fn = torch.sum((1 - output) * target)

    tversky_score = (intersection + smooth) / (intersection + alpha * fp + beta * fn + smooth).clamp_min(eps)

    return tversky_score

class TverskyLoss(DiceLoss):
    """Tversky loss for image segmentation task.
    Where TP and FP is weighted by alpha and beta params.
    With alpha == beta == 0.5, this loss becomes equal DiceLoss.
    It supports binary, multiclass and multilabel cases

    Args:
        mode: Metric mode {'binary', 'multiclass', 'multilabel'}
        classes: Optional list of classes that contribute in loss computation;
        By default, all channels are included.
        log_loss: If True, loss computed as ``-log(tversky)`` otherwise ``1 - tversky``
        from_logits: If True assumes input is raw logits
        smooth:
        ignore_index: Label that indicates ignored pixels (does not contribute to loss)
        eps: Small epsilon for numerical stability
        alpha: Weight constant that penalize model for FPs (False Positives)
        beta: Weight constant that penalize model for FNs (False Positives)
        gamma: Constant that squares the error function. Defaults to ``1.0``

    Return:
        loss: torch.Tensor

    """

    def __init__(
        self,
        mode: str,
        classes: List[int] = None,
        log_loss: bool = False,
        from_logits: bool = True,
        smooth: float = 0.0,
        ignore_index: Optional[int] = None,
        eps: float = 1e-7,
        alpha: float = 0.5,
        beta: float = 0.5,
        gamma: float = 1.0
    ):

        assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE}
        super().__init__(mode, classes, log_loss, from_logits, smooth, ignore_index, eps)
        self.alpha = alpha
        self.beta = beta
        self.gamma = gamma

    def aggregate_loss(self, loss):
        return loss.mean() ** self.gamma

    def compute_score(self, output, target, smooth=0.0, eps=1e-7, dims=None) -> torch.Tensor:
        return soft_tversky_score(output, target, self.alpha, self.beta, smooth, eps, dims)