Spaces:
Runtime error
Runtime error
Upload hybridnets/loss.py
Browse files- hybridnets/loss.py +599 -0
hybridnets/loss.py
ADDED
@@ -0,0 +1,599 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from torch.nn.modules.loss import _Loss
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from utils.utils import postprocess, display, BBoxTransform, ClipBoxes
|
8 |
+
from typing import Optional, List
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
BINARY_MODE: str = "binary"
|
12 |
+
MULTICLASS_MODE: str = "multiclass"
|
13 |
+
MULTILABEL_MODE: str = "multilabel"
|
14 |
+
|
15 |
+
def calc_iou(a, b):
|
16 |
+
# a(anchor) [boxes, (y1, x1, y2, x2)]
|
17 |
+
# b(gt, coco-style) [boxes, (x1, y1, x2, y2)]
|
18 |
+
|
19 |
+
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
|
20 |
+
iw = torch.min(torch.unsqueeze(a[:, 3], dim=1), b[:, 2]) - torch.max(torch.unsqueeze(a[:, 1], 1), b[:, 0])
|
21 |
+
ih = torch.min(torch.unsqueeze(a[:, 2], dim=1), b[:, 3]) - torch.max(torch.unsqueeze(a[:, 0], 1), b[:, 1])
|
22 |
+
iw = torch.clamp(iw, min=0)
|
23 |
+
ih = torch.clamp(ih, min=0)
|
24 |
+
ua = torch.unsqueeze((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), dim=1) + area - iw * ih
|
25 |
+
ua = torch.clamp(ua, min=1e-8)
|
26 |
+
intersection = iw * ih
|
27 |
+
IoU = intersection / ua
|
28 |
+
|
29 |
+
|
30 |
+
return IoU
|
31 |
+
|
32 |
+
|
33 |
+
class FocalLoss(nn.Module):
|
34 |
+
def __init__(self):
|
35 |
+
super(FocalLoss, self).__init__()
|
36 |
+
|
37 |
+
def forward(self, classifications, regressions, anchors, annotations, **kwargs):
|
38 |
+
alpha = 0.25
|
39 |
+
gamma = 2.0
|
40 |
+
batch_size = classifications.shape[0]
|
41 |
+
classification_losses = []
|
42 |
+
regression_losses = []
|
43 |
+
|
44 |
+
anchor = anchors[0, :, :] # assuming all image sizes are the same, which it is
|
45 |
+
dtype = anchors.dtype
|
46 |
+
|
47 |
+
anchor_widths = anchor[:, 3] - anchor[:, 1]
|
48 |
+
anchor_heights = anchor[:, 2] - anchor[:, 0]
|
49 |
+
anchor_ctr_x = anchor[:, 1] + 0.5 * anchor_widths
|
50 |
+
anchor_ctr_y = anchor[:, 0] + 0.5 * anchor_heights
|
51 |
+
|
52 |
+
for j in range(batch_size):
|
53 |
+
|
54 |
+
classification = classifications[j, :, :]
|
55 |
+
regression = regressions[j, :, :]
|
56 |
+
|
57 |
+
bbox_annotation = annotations[j]
|
58 |
+
bbox_annotation = bbox_annotation[bbox_annotation[:, 4] != -1]
|
59 |
+
|
60 |
+
# print(bbox_annotation)
|
61 |
+
|
62 |
+
classification = torch.clamp(classification, 1e-4, 1.0 - 1e-4)
|
63 |
+
|
64 |
+
if bbox_annotation.shape[0] == 0:
|
65 |
+
if torch.cuda.is_available():
|
66 |
+
|
67 |
+
alpha_factor = torch.ones_like(classification) * alpha
|
68 |
+
alpha_factor = alpha_factor.cuda()
|
69 |
+
alpha_factor = 1. - alpha_factor
|
70 |
+
focal_weight = classification
|
71 |
+
focal_weight = alpha_factor * torch.pow(focal_weight, gamma)
|
72 |
+
|
73 |
+
bce = -(torch.log(1.0 - classification))
|
74 |
+
|
75 |
+
cls_loss = focal_weight * bce
|
76 |
+
|
77 |
+
regression_losses.append(torch.tensor(0).to(dtype).cuda())
|
78 |
+
classification_losses.append(cls_loss.sum())
|
79 |
+
else:
|
80 |
+
|
81 |
+
alpha_factor = torch.ones_like(classification) * alpha
|
82 |
+
alpha_factor = 1. - alpha_factor
|
83 |
+
focal_weight = classification
|
84 |
+
focal_weight = alpha_factor * torch.pow(focal_weight, gamma)
|
85 |
+
|
86 |
+
bce = -(torch.log(1.0 - classification))
|
87 |
+
|
88 |
+
cls_loss = focal_weight * bce
|
89 |
+
|
90 |
+
regression_losses.append(torch.tensor(0).to(dtype))
|
91 |
+
classification_losses.append(cls_loss.sum())
|
92 |
+
|
93 |
+
continue
|
94 |
+
|
95 |
+
IoU = calc_iou(anchor[:, :], bbox_annotation[:, :4])
|
96 |
+
|
97 |
+
IoU_max, IoU_argmax = torch.max(IoU, dim=1)
|
98 |
+
|
99 |
+
|
100 |
+
# compute the loss for classification
|
101 |
+
#targets = torch.ones_like(classification) * -1
|
102 |
+
targets = torch.zeros_like(classification)
|
103 |
+
|
104 |
+
if torch.cuda.is_available():
|
105 |
+
targets = targets.cuda()
|
106 |
+
|
107 |
+
assigned_annotations = bbox_annotation[IoU_argmax, :]
|
108 |
+
|
109 |
+
positive_indices = torch.full_like(IoU_max,False,dtype=torch.bool) #torch.ge(IoU_max, 0.2)
|
110 |
+
|
111 |
+
tensorA = (assigned_annotations[:, 2] - assigned_annotations[:, 0]) * (assigned_annotations[:, 3] - assigned_annotations[:, 1]) > 10 * 10
|
112 |
+
# for idx,iou in enumerate(IoU_max):
|
113 |
+
# if tensorA[idx]: # Set iou threshold = 0.5
|
114 |
+
# if iou >= 0.5:
|
115 |
+
# positive_indices[idx] = True
|
116 |
+
# # targets[idx,:] = True
|
117 |
+
# # else:
|
118 |
+
# # positive_indices[idx] = False
|
119 |
+
# else:
|
120 |
+
# if iou >= 0.15:
|
121 |
+
# positive_indices[idx] = True
|
122 |
+
# # else:
|
123 |
+
# # positive_indices[idx] = False
|
124 |
+
|
125 |
+
# # targets[torch.lt(IoU_max, 0.4), :] = 0
|
126 |
+
|
127 |
+
|
128 |
+
positive_indices[torch.logical_or(torch.logical_and(tensorA,IoU_max >= 0.5),torch.logical_and(~tensorA,IoU_max >= 0.15))] = True
|
129 |
+
|
130 |
+
num_positive_anchors = positive_indices.sum()
|
131 |
+
|
132 |
+
# for box in assigned_annotations[positive_indices, :]:
|
133 |
+
# xmin,ymin,xmax,ymax, cls = box
|
134 |
+
# print("WIDTH HEIGHT:", (xmax-xmin),"\t", (ymax-ymin))
|
135 |
+
# for box in bbox_annotation:
|
136 |
+
# xmin,ymin,xmax,ymax, cls = box
|
137 |
+
# print("111 WIDTH HEIGHT:", (xmax-xmin),"\t", (ymax-ymin))
|
138 |
+
|
139 |
+
|
140 |
+
# targets[positive_indices, :] = 0
|
141 |
+
targets[positive_indices, assigned_annotations[positive_indices, 4].long()] = 1
|
142 |
+
|
143 |
+
alpha_factor = torch.ones_like(targets) * alpha
|
144 |
+
if torch.cuda.is_available():
|
145 |
+
alpha_factor = alpha_factor.cuda()
|
146 |
+
|
147 |
+
alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, 1. - alpha_factor)
|
148 |
+
focal_weight = torch.where(torch.eq(targets, 1.), 1. - classification, classification)
|
149 |
+
focal_weight = alpha_factor * torch.pow(focal_weight, gamma)
|
150 |
+
|
151 |
+
bce = -(targets * torch.log(classification) + (1.0 - targets) * torch.log(1.0 - classification))
|
152 |
+
|
153 |
+
cls_loss = focal_weight * bce
|
154 |
+
|
155 |
+
zeros = torch.zeros_like(cls_loss)
|
156 |
+
if torch.cuda.is_available():
|
157 |
+
zeros = zeros.cuda()
|
158 |
+
cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, zeros)
|
159 |
+
|
160 |
+
classification_losses.append(cls_loss.sum() / torch.clamp(num_positive_anchors.to(dtype), min=1.0))
|
161 |
+
|
162 |
+
if positive_indices.sum() > 0:
|
163 |
+
assigned_annotations = assigned_annotations[positive_indices, :]
|
164 |
+
|
165 |
+
anchor_widths_pi = anchor_widths[positive_indices]
|
166 |
+
anchor_heights_pi = anchor_heights[positive_indices]
|
167 |
+
anchor_ctr_x_pi = anchor_ctr_x[positive_indices]
|
168 |
+
anchor_ctr_y_pi = anchor_ctr_y[positive_indices]
|
169 |
+
|
170 |
+
gt_widths = assigned_annotations[:, 2] - assigned_annotations[:, 0]
|
171 |
+
gt_heights = assigned_annotations[:, 3] - assigned_annotations[:, 1]
|
172 |
+
gt_ctr_x = assigned_annotations[:, 0] + 0.5 * gt_widths
|
173 |
+
gt_ctr_y = assigned_annotations[:, 1] + 0.5 * gt_heights
|
174 |
+
|
175 |
+
gt_widths = torch.clamp(gt_widths, min=1)
|
176 |
+
gt_heights = torch.clamp(gt_heights, min=1)
|
177 |
+
|
178 |
+
targets_dx = (gt_ctr_x - anchor_ctr_x_pi) / anchor_widths_pi
|
179 |
+
targets_dy = (gt_ctr_y - anchor_ctr_y_pi) / anchor_heights_pi
|
180 |
+
targets_dw = torch.log(gt_widths / anchor_widths_pi)
|
181 |
+
targets_dh = torch.log(gt_heights / anchor_heights_pi)
|
182 |
+
|
183 |
+
targets = torch.stack((targets_dy, targets_dx, targets_dh, targets_dw))
|
184 |
+
targets = targets.t()
|
185 |
+
|
186 |
+
regression_diff = torch.abs(targets - regression[positive_indices, :])
|
187 |
+
|
188 |
+
regression_loss = torch.where(
|
189 |
+
torch.le(regression_diff, 1.0 / 9.0),
|
190 |
+
0.5 * 9.0 * torch.pow(regression_diff, 2),
|
191 |
+
regression_diff - 0.5 / 9.0
|
192 |
+
)
|
193 |
+
regression_losses.append(regression_loss.mean())
|
194 |
+
else:
|
195 |
+
if torch.cuda.is_available():
|
196 |
+
regression_losses.append(torch.tensor(0).to(dtype).cuda())
|
197 |
+
else:
|
198 |
+
regression_losses.append(torch.tensor(0).to(dtype))
|
199 |
+
|
200 |
+
# debug
|
201 |
+
imgs = kwargs.get('imgs', None)
|
202 |
+
if imgs is not None:
|
203 |
+
regressBoxes = BBoxTransform()
|
204 |
+
clipBoxes = ClipBoxes()
|
205 |
+
obj_list = kwargs.get('obj_list', None)
|
206 |
+
out = postprocess(imgs.detach(),
|
207 |
+
torch.stack([anchors[0]] * imgs.shape[0], 0).detach(), regressions.detach(), classifications.detach(),
|
208 |
+
regressBoxes, clipBoxes,
|
209 |
+
0.25, 0.3)
|
210 |
+
imgs = imgs.permute(0, 2, 3, 1).cpu().numpy()
|
211 |
+
imgs = ((imgs * [0.229, 0.224, 0.225] + [0.485, 0.456, 0.406]) * 255).astype(np.uint8)
|
212 |
+
imgs = [cv2.cvtColor(img, cv2.COLOR_RGB2BGR) for img in imgs]
|
213 |
+
display(out, imgs, obj_list, imshow=False, imwrite=True)
|
214 |
+
|
215 |
+
return torch.stack(classification_losses).mean(dim=0, keepdim=True), \
|
216 |
+
torch.stack(regression_losses).mean(dim=0, keepdim=True) * 50 # https://github.com/google/automl/blob/6fdd1de778408625c1faf368a327fe36ecd41bf7/efficientdet/hparams_config.py#L233
|
217 |
+
|
218 |
+
|
219 |
+
def focal_loss_with_logits(
|
220 |
+
output: torch.Tensor,
|
221 |
+
target: torch.Tensor,
|
222 |
+
gamma: float = 2.0,
|
223 |
+
alpha: Optional[float] = 0.25,
|
224 |
+
reduction: str = "mean",
|
225 |
+
normalized: bool = False,
|
226 |
+
reduced_threshold: Optional[float] = None,
|
227 |
+
eps: float = 1e-6,
|
228 |
+
) -> torch.Tensor:
|
229 |
+
"""Compute binary focal loss between target and output logits.
|
230 |
+
See :class:`~pytorch_toolbelt.losses.FocalLoss` for details.
|
231 |
+
Args:
|
232 |
+
output: Tensor of arbitrary shape (predictions of the model)
|
233 |
+
target: Tensor of the same shape as input
|
234 |
+
gamma: Focal loss power factor
|
235 |
+
alpha: Weight factor to balance positive and negative samples. Alpha must be in [0...1] range,
|
236 |
+
high values will give more weight to positive class.
|
237 |
+
reduction (string, optional): Specifies the reduction to apply to the output:
|
238 |
+
'none' | 'mean' | 'sum' | 'batchwise_mean'. 'none': no reduction will be applied,
|
239 |
+
'mean': the sum of the output will be divided by the number of
|
240 |
+
elements in the output, 'sum': the output will be summed. Note: :attr:`size_average`
|
241 |
+
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
242 |
+
specifying either of those two args will override :attr:`reduction`.
|
243 |
+
'batchwise_mean' computes mean loss per sample in batch. Default: 'mean'
|
244 |
+
normalized (bool): Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf).
|
245 |
+
reduced_threshold (float, optional): Compute reduced focal loss (https://arxiv.org/abs/1903.01347).
|
246 |
+
References:
|
247 |
+
https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/loss/losses.py
|
248 |
+
"""
|
249 |
+
target = target.type(output.type())
|
250 |
+
# print(output.size(), target.size())
|
251 |
+
|
252 |
+
logpt = F.binary_cross_entropy_with_logits(output, target, reduction="none")
|
253 |
+
pt = torch.exp(-logpt)
|
254 |
+
|
255 |
+
# compute the loss
|
256 |
+
if reduced_threshold is None:
|
257 |
+
focal_term = (1.0 - pt).pow(gamma)
|
258 |
+
else:
|
259 |
+
focal_term = ((1.0 - pt) / reduced_threshold).pow(gamma)
|
260 |
+
focal_term[pt < reduced_threshold] = 1
|
261 |
+
|
262 |
+
loss = focal_term * logpt
|
263 |
+
|
264 |
+
if alpha is not None:
|
265 |
+
loss *= alpha * target + (1 - alpha) * (1 - target)
|
266 |
+
|
267 |
+
if normalized:
|
268 |
+
norm_factor = focal_term.sum().clamp_min(eps)
|
269 |
+
loss /= norm_factor
|
270 |
+
|
271 |
+
if reduction == "mean":
|
272 |
+
loss = loss.mean()
|
273 |
+
if reduction == "sum":
|
274 |
+
loss = loss.sum()
|
275 |
+
if reduction == "batchwise_mean":
|
276 |
+
loss = loss.sum(0)
|
277 |
+
|
278 |
+
return loss
|
279 |
+
|
280 |
+
|
281 |
+
class FocalLossSeg(_Loss):
|
282 |
+
def __init__(
|
283 |
+
self,
|
284 |
+
mode: str,
|
285 |
+
alpha: Optional[float] = None,
|
286 |
+
gamma: Optional[float] = 2.0,
|
287 |
+
ignore_index: Optional[int] = None,
|
288 |
+
reduction: Optional[str] = "mean",
|
289 |
+
normalized: bool = False,
|
290 |
+
reduced_threshold: Optional[float] = None,
|
291 |
+
):
|
292 |
+
"""Compute Focal loss
|
293 |
+
|
294 |
+
Args:
|
295 |
+
mode: Loss mode 'binary', 'multiclass' or 'multilabel'
|
296 |
+
alpha: Prior probability of having positive value in target.
|
297 |
+
gamma: Power factor for dampening weight (focal strength).
|
298 |
+
ignore_index: If not None, targets may contain values to be ignored.
|
299 |
+
Target values equal to ignore_index will be ignored from loss computation.
|
300 |
+
normalized: Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf).
|
301 |
+
reduced_threshold: Switch to reduced focal loss. Note, when using this mode you
|
302 |
+
should use `reduction="sum"`.
|
303 |
+
|
304 |
+
Shape
|
305 |
+
- **y_pred** - torch.Tensor of shape (N, C, H, W)
|
306 |
+
- **y_true** - torch.Tensor of shape (N, H, W) or (N, C, H, W)
|
307 |
+
|
308 |
+
Reference
|
309 |
+
https://github.com/BloodAxe/pytorch-toolbelt
|
310 |
+
|
311 |
+
"""
|
312 |
+
assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE}
|
313 |
+
super().__init__()
|
314 |
+
|
315 |
+
self.mode = mode
|
316 |
+
self.ignore_index = ignore_index
|
317 |
+
self.focal_loss_fn = partial(
|
318 |
+
focal_loss_with_logits,
|
319 |
+
alpha=alpha,
|
320 |
+
gamma=gamma,
|
321 |
+
reduced_threshold=reduced_threshold,
|
322 |
+
reduction=reduction,
|
323 |
+
normalized=normalized,
|
324 |
+
)
|
325 |
+
|
326 |
+
def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor:
|
327 |
+
|
328 |
+
if self.mode in {BINARY_MODE, MULTILABEL_MODE}:
|
329 |
+
y_true = y_true.view(-1)
|
330 |
+
y_pred = y_pred.view(-1)
|
331 |
+
|
332 |
+
if self.ignore_index is not None:
|
333 |
+
# Filter predictions with ignore label from loss computation
|
334 |
+
not_ignored = y_true != self.ignore_index
|
335 |
+
y_pred = y_pred[not_ignored]
|
336 |
+
y_true = y_true[not_ignored]
|
337 |
+
|
338 |
+
loss = self.focal_loss_fn(y_pred, y_true)
|
339 |
+
|
340 |
+
elif self.mode == MULTICLASS_MODE:
|
341 |
+
num_classes = y_pred.size(1)
|
342 |
+
loss = 0
|
343 |
+
|
344 |
+
# Filter anchors with -1 label from loss computation
|
345 |
+
if self.ignore_index is not None:
|
346 |
+
not_ignored = y_true != self.ignore_index
|
347 |
+
|
348 |
+
for cls in range(num_classes):
|
349 |
+
# cls_y_true = (y_true == cls).long()
|
350 |
+
|
351 |
+
cls_y_true = y_true[:, cls, ...]
|
352 |
+
cls_y_pred = y_pred[:, cls, ...]
|
353 |
+
|
354 |
+
if self.ignore_index is not None:
|
355 |
+
cls_y_true = cls_y_true[not_ignored]
|
356 |
+
cls_y_pred = cls_y_pred[not_ignored]
|
357 |
+
|
358 |
+
loss += self.focal_loss_fn(cls_y_pred, cls_y_true)
|
359 |
+
|
360 |
+
return loss
|
361 |
+
|
362 |
+
def to_tensor(x, dtype=None) -> torch.Tensor:
|
363 |
+
if isinstance(x, torch.Tensor):
|
364 |
+
if dtype is not None:
|
365 |
+
x = x.type(dtype)
|
366 |
+
return x
|
367 |
+
if isinstance(x, np.ndarray):
|
368 |
+
x = torch.from_numpy(x)
|
369 |
+
if dtype is not None:
|
370 |
+
x = x.type(dtype)
|
371 |
+
return x
|
372 |
+
if isinstance(x, (list, tuple)):
|
373 |
+
x = np.array(x)
|
374 |
+
x = torch.from_numpy(x)
|
375 |
+
if dtype is not None:
|
376 |
+
x = x.type(dtype)
|
377 |
+
return x
|
378 |
+
|
379 |
+
|
380 |
+
def soft_dice_score(
|
381 |
+
output: torch.Tensor,
|
382 |
+
target: torch.Tensor,
|
383 |
+
smooth: float = 0.0,
|
384 |
+
eps: float = 1e-7,
|
385 |
+
dims=None,
|
386 |
+
) -> torch.Tensor:
|
387 |
+
assert output.size() == target.size()
|
388 |
+
if dims is not None:
|
389 |
+
intersection = torch.sum(output * target, dim=dims)
|
390 |
+
cardinality = torch.sum(output + target, dim=dims)
|
391 |
+
else:
|
392 |
+
intersection = torch.sum(output * target)
|
393 |
+
cardinality = torch.sum(output + target)
|
394 |
+
dice_score = (2.0 * intersection + smooth) / (cardinality + smooth).clamp_min(eps)
|
395 |
+
return dice_score
|
396 |
+
|
397 |
+
|
398 |
+
class DiceLoss(_Loss):
|
399 |
+
def __init__(
|
400 |
+
self,
|
401 |
+
mode: str,
|
402 |
+
classes: Optional[List[int]] = None,
|
403 |
+
log_loss: bool = False,
|
404 |
+
from_logits: bool = True,
|
405 |
+
smooth: float = 0.0,
|
406 |
+
ignore_index: Optional[int] = None,
|
407 |
+
eps: float = 1e-7,
|
408 |
+
):
|
409 |
+
"""Dice loss for image segmentation task.
|
410 |
+
It supports binary, multiclass and multilabel cases
|
411 |
+
|
412 |
+
Args:
|
413 |
+
mode: Loss mode 'binary', 'multiclass' or 'multilabel'
|
414 |
+
classes: List of classes that contribute in loss computation. By default, all channels are included.
|
415 |
+
log_loss: If True, loss computed as `- log(dice_coeff)`, otherwise `1 - dice_coeff`
|
416 |
+
from_logits: If True, assumes input is raw logits
|
417 |
+
smooth: Smoothness constant for dice coefficient (a)
|
418 |
+
ignore_index: Label that indicates ignored pixels (does not contribute to loss)
|
419 |
+
eps: A small epsilon for numerical stability to avoid zero division error
|
420 |
+
(denominator will be always greater or equal to eps)
|
421 |
+
|
422 |
+
Shape
|
423 |
+
- **y_pred** - torch.Tensor of shape (N, C, H, W)
|
424 |
+
- **y_true** - torch.Tensor of shape (N, H, W) or (N, C, H, W)
|
425 |
+
|
426 |
+
Reference
|
427 |
+
https://github.com/BloodAxe/pytorch-toolbelt
|
428 |
+
"""
|
429 |
+
assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE}
|
430 |
+
super(DiceLoss, self).__init__()
|
431 |
+
self.mode = mode
|
432 |
+
if classes is not None:
|
433 |
+
assert mode != BINARY_MODE, "Masking classes is not supported with mode=binary"
|
434 |
+
classes = to_tensor(classes, dtype=torch.long)
|
435 |
+
|
436 |
+
self.classes = classes
|
437 |
+
self.from_logits = from_logits
|
438 |
+
self.smooth = smooth
|
439 |
+
self.eps = eps
|
440 |
+
self.log_loss = log_loss
|
441 |
+
self.ignore_index = ignore_index
|
442 |
+
|
443 |
+
def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor:
|
444 |
+
|
445 |
+
assert y_true.size(0) == y_pred.size(0)
|
446 |
+
|
447 |
+
if self.from_logits:
|
448 |
+
# Apply activations to get [0..1] class probabilities
|
449 |
+
# Using Log-Exp as this gives more numerically stable result and does not cause vanishing gradient on
|
450 |
+
# extreme values 0 and 1
|
451 |
+
# print(y_pred)
|
452 |
+
|
453 |
+
if self.mode == MULTICLASS_MODE:
|
454 |
+
y_pred = y_pred.log_softmax(dim=1).exp()
|
455 |
+
else:
|
456 |
+
y_pred = F.logsigmoid(y_pred).exp()
|
457 |
+
|
458 |
+
# print("AFTER: ", y_pred)
|
459 |
+
|
460 |
+
bs = y_true.size(0)
|
461 |
+
num_classes = y_pred.size(1)
|
462 |
+
dims = (0, 2)
|
463 |
+
|
464 |
+
if self.mode == BINARY_MODE:
|
465 |
+
y_true = y_true.view(bs, 1, -1)
|
466 |
+
y_pred = y_pred.view(bs, 1, -1)
|
467 |
+
|
468 |
+
if self.ignore_index is not None:
|
469 |
+
mask = y_true != self.ignore_index
|
470 |
+
y_pred = y_pred * mask
|
471 |
+
y_true = y_true * mask
|
472 |
+
|
473 |
+
if self.mode == MULTICLASS_MODE:
|
474 |
+
|
475 |
+
y_true = y_true.view(bs, num_classes, -1)
|
476 |
+
y_pred = y_pred.view(bs, num_classes, -1)
|
477 |
+
|
478 |
+
# print("NUM CLASSES:", num_classes, y_true.size())
|
479 |
+
|
480 |
+
# if self.ignore_index is not None:
|
481 |
+
# mask = y_true != self.ignore_index
|
482 |
+
# y_pred = y_pred * mask.unsqueeze(1)
|
483 |
+
#
|
484 |
+
# y_true = F.one_hot((y_true * mask).to(torch.long), num_classes) # N,H*W -> N,H*W, C
|
485 |
+
# y_true = y_true.permute(0, 2, 1) * mask.unsqueeze(1) # H, C, H*W
|
486 |
+
# else:
|
487 |
+
# y_true = F.one_hot(y_true, num_classes) # N,H*W -> N,H*W, C
|
488 |
+
# y_true = y_true.permute(0, 2, 1) # N, C, H*W
|
489 |
+
#
|
490 |
+
# print("HERE", y_true.size())
|
491 |
+
# print(y_pred.size())
|
492 |
+
|
493 |
+
if self.mode == MULTILABEL_MODE:
|
494 |
+
y_true = y_true.view(bs, num_classes, -1)
|
495 |
+
y_pred = y_pred.view(bs, num_classes, -1)
|
496 |
+
|
497 |
+
if self.ignore_index is not None:
|
498 |
+
mask = y_true != self.ignore_index
|
499 |
+
y_pred = y_pred * mask
|
500 |
+
y_true = y_true * mask
|
501 |
+
|
502 |
+
scores = self.compute_score(y_pred, y_true.type_as(y_pred), smooth=self.smooth, eps=self.eps, dims=dims)
|
503 |
+
|
504 |
+
if self.log_loss:
|
505 |
+
loss = -torch.log(scores.clamp_min(self.eps))
|
506 |
+
else:
|
507 |
+
loss = 1.0 - scores
|
508 |
+
|
509 |
+
# Dice loss is undefined for non-empty classes
|
510 |
+
# So we zero contribution of channel that does not have true pixels
|
511 |
+
# NOTE: A better workaround would be to use loss term `mean(y_pred)`
|
512 |
+
# for this case, however it will be a modified jaccard loss
|
513 |
+
|
514 |
+
mask = y_true.sum(dims) > 0
|
515 |
+
loss *= mask.to(loss.dtype)
|
516 |
+
|
517 |
+
if self.classes is not None:
|
518 |
+
loss = loss[self.classes]
|
519 |
+
|
520 |
+
return self.aggregate_loss(loss)
|
521 |
+
|
522 |
+
def aggregate_loss(self, loss):
|
523 |
+
return loss.mean()
|
524 |
+
|
525 |
+
def compute_score(self, output, target, smooth=0.0, eps=1e-7, dims=None) -> torch.Tensor:
|
526 |
+
return soft_dice_score(output, target, smooth, eps, dims)
|
527 |
+
|
528 |
+
def soft_tversky_score(
|
529 |
+
output: torch.Tensor,
|
530 |
+
target: torch.Tensor,
|
531 |
+
alpha: float,
|
532 |
+
beta: float,
|
533 |
+
smooth: float = 0.0,
|
534 |
+
eps: float = 1e-7,
|
535 |
+
dims=None,
|
536 |
+
) -> torch.Tensor:
|
537 |
+
assert output.size() == target.size()
|
538 |
+
if dims is not None:
|
539 |
+
intersection = torch.sum(output * target, dim=dims) # TP
|
540 |
+
fp = torch.sum(output * (1.0 - target), dim=dims)
|
541 |
+
fn = torch.sum((1 - output) * target, dim=dims)
|
542 |
+
else:
|
543 |
+
intersection = torch.sum(output * target) # TP
|
544 |
+
fp = torch.sum(output * (1.0 - target))
|
545 |
+
fn = torch.sum((1 - output) * target)
|
546 |
+
|
547 |
+
tversky_score = (intersection + smooth) / (intersection + alpha * fp + beta * fn + smooth).clamp_min(eps)
|
548 |
+
|
549 |
+
return tversky_score
|
550 |
+
|
551 |
+
class TverskyLoss(DiceLoss):
|
552 |
+
"""Tversky loss for image segmentation task.
|
553 |
+
Where TP and FP is weighted by alpha and beta params.
|
554 |
+
With alpha == beta == 0.5, this loss becomes equal DiceLoss.
|
555 |
+
It supports binary, multiclass and multilabel cases
|
556 |
+
|
557 |
+
Args:
|
558 |
+
mode: Metric mode {'binary', 'multiclass', 'multilabel'}
|
559 |
+
classes: Optional list of classes that contribute in loss computation;
|
560 |
+
By default, all channels are included.
|
561 |
+
log_loss: If True, loss computed as ``-log(tversky)`` otherwise ``1 - tversky``
|
562 |
+
from_logits: If True assumes input is raw logits
|
563 |
+
smooth:
|
564 |
+
ignore_index: Label that indicates ignored pixels (does not contribute to loss)
|
565 |
+
eps: Small epsilon for numerical stability
|
566 |
+
alpha: Weight constant that penalize model for FPs (False Positives)
|
567 |
+
beta: Weight constant that penalize model for FNs (False Positives)
|
568 |
+
gamma: Constant that squares the error function. Defaults to ``1.0``
|
569 |
+
|
570 |
+
Return:
|
571 |
+
loss: torch.Tensor
|
572 |
+
|
573 |
+
"""
|
574 |
+
|
575 |
+
def __init__(
|
576 |
+
self,
|
577 |
+
mode: str,
|
578 |
+
classes: List[int] = None,
|
579 |
+
log_loss: bool = False,
|
580 |
+
from_logits: bool = True,
|
581 |
+
smooth: float = 0.0,
|
582 |
+
ignore_index: Optional[int] = None,
|
583 |
+
eps: float = 1e-7,
|
584 |
+
alpha: float = 0.5,
|
585 |
+
beta: float = 0.5,
|
586 |
+
gamma: float = 1.0
|
587 |
+
):
|
588 |
+
|
589 |
+
assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE}
|
590 |
+
super().__init__(mode, classes, log_loss, from_logits, smooth, ignore_index, eps)
|
591 |
+
self.alpha = alpha
|
592 |
+
self.beta = beta
|
593 |
+
self.gamma = gamma
|
594 |
+
|
595 |
+
def aggregate_loss(self, loss):
|
596 |
+
return loss.mean() ** self.gamma
|
597 |
+
|
598 |
+
def compute_score(self, output, target, smooth=0.0, eps=1e-7, dims=None) -> torch.Tensor:
|
599 |
+
return soft_tversky_score(output, target, self.alpha, self.beta, smooth, eps, dims)
|