Spaces:
Runtime error
A newer version of the Gradio SDK is available:
5.5.0
title: ECE
datasets:
- null
tags:
- evaluate
- metric
description: binned estimator of expected calibration error
sdk: gradio
sdk_version: 3.0.2
app_file: app.py
pinned: false
Metric Card for ECE
Metric Description
Expected Calibration Error ECE is a popular metric to evaluate top-1 prediction miscalibration. It measures the L^p norm difference between a model’s posterior and the true likelihood of being correct.
It is generally implemented as a binned estimator that discretizes predicted probabilities into ranges of possible values (bins) for which conditional expectation can be estimated.
How to Use
>>> metric = evaluate.load("jordyvl/ece")
>>> results = metric.compute(references=[0, 1, 2], predictions=[[0.6, 0.2, 0.2], [0, 0.95, 0.05], [0.7, 0.1 ,0.2]])
>>> print(results)
{'ECE': 0.1333333333333334}
For valid model comparisons, ensure to use the same keyword arguments.
Inputs
Output Values
As a metric of calibration error, it holds that the lower, the better calibrated a model is. Depending on the L^p norm, ECE will either take value between 0 and 1 (p=2) or between 0 and \infty_+. The module returns dictionary with a key value pair, e.g., {"ECE": 0.64}.
Examples
N = 10 # N evaluation instances {(x_i,y_i)}_{i=1}^N
K = 5 # K class problem
def random_mc_instance(concentration=1, onehot=False):
reference = np.argmax(
np.random.dirichlet(([concentration for _ in range(K)])), -1
) # class targets
prediction = np.random.dirichlet(([concentration for _ in range(K)])) # probabilities
if onehot:
reference = np.eye(K)[np.argmax(reference, -1)]
return reference, prediction
references, predictions = list(zip(*[random_mc_instance() for i in range(N)]))
references = np.array(references, dtype=np.int64)
predictions = np.array(predictions, dtype=np.float32)
res = ECE()._compute(predictions, references) # {'ECE': float}
Limitations and Bias
See [3],[4] and [5].
Citation
[1] Naeini, M.P., Cooper, G. and Hauskrecht, M., 2015, February. Obtaining well calibrated probabilities using bayesian binning. In Twenty-Ninth AAAI Conference on Artificial Intelligence.
[2] Guo, C., Pleiss, G., Sun, Y. and Weinberger, K.Q., 2017, July. On calibration of modern neural networks. In International Conference on Machine Learning (pp. 1321-1330). PMLR.
[3] Nixon, J., Dusenberry, M.W., Zhang, L., Jerfel, G. and Tran, D., 2019, June. Measuring Calibration in Deep Learning. In CVPR Workshops (Vol. 2, No. 7).
[4] Kumar, A., Liang, P.S. and Ma, T., 2019. Verified uncertainty calibration. Advances in Neural Information Processing Systems, 32.
[5] Vaicenavicius, J., Widmann, D., Andersson, C., Lindsten, F., Roll, J. and Schön, T., 2019, April. Evaluating model calibration in classification. In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 3459-3467). PMLR.
[6] Allen-Zhu, Z., Li, Y. and Liang, Y., 2019. Learning and generalization in overparameterized neural networks, going beyond two layers. Advances in neural information processing systems, 32.