File size: 10,885 Bytes
1dd0620
 
 
734ca59
28dd0d5
976eb10
1dd0620
2723972
 
976eb10
 
2723972
0dfa35f
7e13cda
0dfa35f
241d9b0
 
 
0dfa35f
 
241d9b0
 
 
0dfa35f
 
241d9b0
 
 
0dfa35f
 
da756b5
 
 
0dfa35f
 
2723972
 
 
0dfa35f
 
da756b5
 
 
0dfa35f
 
da756b5
 
 
0dfa35f
 
da756b5
 
 
0dfa35f
 
7e13cda
0dfa35f
b00cba3
 
 
0dfa35f
 
b00cba3
 
 
0dfa35f
 
b00cba3
 
 
0dfa35f
 
b00cba3
 
 
0dfa35f
 
b00cba3
 
 
0dfa35f
 
b00cba3
 
 
0dfa35f
 
b00cba3
 
 
0dfa35f
 
b00cba3
 
 
0dfa35f
 
 
 
980632f
 
 
0dfa35f
 
980632f
 
 
0dfa35f
 
980632f
 
 
0dfa35f
 
980632f
 
 
0dfa35f
 
980632f
 
 
0dfa35f
 
980632f
 
 
0dfa35f
 
980632f
 
 
0dfa35f
 
980632f
 
 
0dfa35f
 
 
f1b3224
1ccbed1
0dfa35f
 
b1484a9
2723972
c8c8758
2723972
b1484a9
c8c8758
2723972
 
918037c
 
 
 
 
c8c8758
f423b53
2723972
 
b00cba3
241d9b0
792fc21
 
58dc00d
 
 
792fc21
1ccbed1
f1b3224
7aef7b8
 
 
 
979192e
 
74e572f
52ed45c
c8c8758
52ed45c
 
74e572f
979192e
 
7aef7b8
7e13cda
 
52ed45c
3f8b242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e13cda
3f8b242
 
 
 
 
b1484a9
6f5c011
7e13cda
 
d4c88e9
 
52ed45c
 
 
 
 
 
 
 
 
 
 
 
d4c88e9
 
7e13cda
d4c88e9
 
 
 
 
 
52ed45c
 
 
 
 
 
 
d4c88e9
 
 
 
 
 
 
 
 
 
 
 
52ed45c
 
 
 
 
 
 
 
d4c88e9
c8e9390
 
28dd0d5
7c04b7a
9a8c083
 
c8c8758
9a8c083
 
7fa6af3
 
241d9b0
7fa6af3
9a8c083
28dd0d5
7aef7b8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import matplotlib
matplotlib.use('Agg')

import functools

import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd


# benchmark order: pytorch, tf eager, tf xla; units = ms
BENCHMARK_DATA = {
    "Greedy Decoding": {
        "DistilGPT2": {
            "T4": [336.22, 3976.23, 115.84],
            "3090": [158.38, 1835.82, 46.56],
            "A100": [371.49, 4073.84, 60.94],
        },
        "GPT2": {
            "T4": [607.31, 7140.23, 185.12],
            "3090": [297.03, 3308.31, 76.68],
            "A100": [691.75, 7323.60, 110.72],
        },
        "OPT-1.3B": {
            "T4": [1303.41, 15939.07, 1488.15],
            "3090": [428.33, 7259.43, 468.37],
            "A100": [1125.00, 16713.63, 384.52],
        },
        "GPTJ-6B": {
            "T4": [0, 0, 0],
            "3090": [0, 0, 0],
            "A100": [2664.28, 32783.09, 1440.06],
        },
        "T5 Small": {
            "T4": [99.88, 1527.73, 18.78],
            "3090": [55.09, 665.70, 9.25],
            "A100": [124.91, 1642.07, 13.72],
        },
        "T5 Base": {
            "T4": [416.56, 6095.05, 106.12],
            "3090": [223.00, 2503.28, 46.67],
            "A100": [550.76, 6504.11, 64.57],
        },
        "T5 Large": {
            "T4": [645.05, 9587.67, 225.17],
            "3090": [377.74, 4216.41, 97.92],
            "A100": [944.17, 10572.43, 116.52],
        },
        "T5 3B": {
            "T4": [1493.61, 13629.80, 1494.80],
            "3090": [694.75, 6316.79, 489.33],
            "A100": [1801.68, 16707.71, 411.93],
        },
    },
    "Sampling": {
        "DistilGPT2": {
            "T4": [617.40, 6078.81, 221.65],
            "3090": [310.37, 2843.73, 85.44],
            "A100": [729.05, 7140.05, 121.83],
        },
        "GPT2": {
            "T4": [1205.34, 12256.98, 378.69],
            "3090": [577.12, 5637.11, 160.02],
            "A100": [1377.68, 15605.72, 234.47],
        },
        "OPT-1.3B": {
            "T4": [2166.72, 19126.25, 2341.32],
            "3090": [706.50, 9616.97, 731.58],
            "A100": [2019.70, 28621.09, 690.36],
        },
        "GPTJ-6B": {
            "T4": [0, 0, 0],
            "3090": [0, 0, 0],
            "A100": [5150.35, 70554.07, 2744.49],
        },
        "T5 Small": {
            "T4": [235.93, 3599.47, 41.07],
            "3090": [100.41, 1093.33, 23.24],
            "A100": [267.42, 3366.73, 28.53],
        },
        "T5 Base": {
            "T4": [812.59, 7966.73, 196.85],
            "3090": [407.81, 4904.54, 97.56],
            "A100": [1033.05, 11521.97, 123.93],
        },
        "T5 Large": {
            "T4": [1114.22, 16433.31, 424.91],
            "3090": [647.61, 7184.71, 160.97],
            "A100": [1668.73, 19962.78, 200.75],
        },
        "T5 3B": {
            "T4": [2282.56, 20891.22, 2196.02],
            "3090": [1011.32, 9735.97, 734.40],
            "A100": [2769.64, 26440.65, 612.98],
        },
    },
    "Beam Search": {
        "DistilGPT2": {
            "T4": [2407.89, 19442.60, 3313.92],
            "3090": [998.52, 8286.03, 900.28],
            "A100": [2237.41, 21771.40, 760.47],
        },
        "GPT2": {
            "T4": [3767.43, 34813.93, 5559.42],
            "3090": [1633.04, 14606.93, 1533.55],
            "A100": [3705.43, 34586.23, 1295.87],
        },
        "OPT-1.3B": {
            "T4": [16649.82, 78500.33, 21894.31],
            "3090": [508518, 32822.81, 5762.46],
            "A100": [5967.32, 78334.56, 4096.38],
        },
        "GPTJ-6B": {
            "T4": [0, 0, 0],
            "3090": [0, 0, 0],
            "A100": [15119.10, 134000.40, 10214.17],
        },
        "T5 Small": {
            "T4": [283.64, 25089.12, 1391.66],
            "3090": [137.38, 10680.28, 486.96],
            "A100": [329.28, 24747.38, 513.99],
        },
        "T5 Base": {
            "T4": [1383.21, 44809.14, 3920.40],
            "3090": [723.11, 18657.48, 1258.60],
            "A100": [2360.85, 45085.07, 1107.58],
        },
        "T5 Large": {
            "T4": [1663.50, 81902.41, 9551.29],
            "3090": [922.53, 35524.30, 2838.86],
            "A100": [2168.22, 86890.00, 2373.04],
        },
        "T5 3B": {
            "T4": [0, 0, 0],
            "3090": [1521.05, 35337.30, 8282.09],
            "A100": [3162.54, 88453.65, 5585.20],
        },
    },
}
FIGURE_PATH = "plt.png"
FIG_DPI = 300


def get_plot(model_name, plot_eager, generate_type):
    df = pd.DataFrame(BENCHMARK_DATA[generate_type][model_name])
    df["framework"] = ["PyTorch", "TF (Eager Execution)", "TF (XLA)"]
    df = pd.melt(df, id_vars=["framework"], value_vars=["T4", "3090", "A100"])
    if plot_eager == "No":
        df = df[df["framework"] != "TF (Eager Execution)"]

    g = sns.catplot(
        data=df,
        kind="bar",
        x="variable",
        y="value",
        hue="framework",
        palette={"PyTorch": "blue", "TF (Eager Execution)": "orange", "TF (XLA)": "red"},
        alpha=.9,
    )
    g.despine(left=True)
    g.set_axis_labels("GPU", "Generation time (ms)")
    g.legend.set_title("Framework")

    # Add the number to the top of each bar
    ax = g.facet_axis(0, 0)
    for i in ax.containers:
        ax.bar_label(i,)

    plt.savefig(FIGURE_PATH, dpi=FIG_DPI)
    return FIGURE_PATH

demo = gr.Blocks()

with demo:
    gr.Markdown(
        """
        # TensorFlow XLA Text Generation Benchmark
        Instructions:
        1. Pick a tab for the type of generation (or for benchmark information);
        2. Select a model from the dropdown menu;
        3. Optionally omit results from TensorFlow Eager Execution, if you wish to better compare the performance of
        PyTorch to TensorFlow with XLA.
        """
    )
    with gr.Tabs():
        with gr.TabItem("Greedy Decoding"):
            plot_fn = functools.partial(get_plot, generate_type="Greedy Decoding")
            with gr.Row():
                with gr.Column():
                    model_selector = gr.Dropdown(
                        choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"],
                        value="T5 Small",
                        label="Model",
                        interactive=True,
                    )
                    eager_enabler = gr.Radio(
                        ["Yes", "No"],
                        value="Yes",
                        label="Plot TF Eager Execution?",
                        interactive=True
                    )
                    gr.Markdown(
                        """
                        ### Greedy Decoding benchmark parameters
                        - `max_new_tokens = 64`;
                        - `pad_to_multiple_of = 64` for Tensorflow XLA models. Others do not pad (input prompts between 2 and 33 tokens).
                        """
                    )
                plot = gr.Image(value=plot_fn("T5 Small", "Yes"))  # Show plot when the gradio app is initialized
            model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
            eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
        with gr.TabItem("Sampling"):
            plot_fn = functools.partial(get_plot, generate_type="Sampling")
            with gr.Row():
                with gr.Column():
                    model_selector = gr.Dropdown(
                        choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"],
                        value="T5 Small",
                        label="Model",
                        interactive=True,
                    )
                    eager_enabler = gr.Radio(
                        ["Yes", "No"],
                        value="Yes",
                        label="Plot TF Eager Execution?",
                        interactive=True
                    )
                    gr.Markdown(
                        """
                        ### Sampling benchmark parameters
                        - `max_new_tokens = 128`;
                        - `temperature = 2.0`;
                        - `top_k = 50`;
                        - `pad_to_multiple_of = 64` for Tensorflow XLA models. Others do not pad (input prompts between 2 and 33 tokens).
                        """
                    )
                plot = gr.Image(value=plot_fn("T5 Small", "Yes"))  # Show plot when the gradio app is initialized
            model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
            eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
        with gr.TabItem("Beam Search"):
            plot_fn = functools.partial(get_plot, generate_type="Beam Search")
            with gr.Row():
                with gr.Column():
                    model_selector = gr.Dropdown(
                        choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"],
                        value="T5 Small",
                        label="Model",
                        interactive=True,
                    )
                    eager_enabler = gr.Radio(
                        ["Yes", "No"],
                        value="Yes",
                        label="Plot TF Eager Execution?",
                        interactive=True
                    )
                    gr.Markdown(
                        """
                        ### Beam Search benchmark parameters
                        - `max_new_tokens = 256`;
                        - `num_beams = 16`;
                        - `pad_to_multiple_of = 64` for Tensorflow XLA models. Others do not pad (input prompts between 2 and 33 tokens).
                        """
                    )
                plot = gr.Image(value=plot_fn("T5 Small", "Yes"))  # Show plot when the gradio app is initialized
            model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
            eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
        with gr.TabItem("Benchmark Information"):
            gr.Dataframe(
                headers=["Parameter", "Value"],
                value=[
                    ["Transformers Version", "4.21"],
                    ["TensorFlow Version", "2.9.1"],
                    ["Pytorch Version", "1.11.0"],
                    ["OS", "22.04 LTS (3090) / Debian 10 (other GPUs)"],
                    ["CUDA", "11.6 (3090) / 11.3 (others GPUs)"],
                    ["Number of Runs", "100 (the first run was discarded to ignore compilation time)"],
                    ["Is there code to reproduce?", "Yes -- https://gist.github.com/gante/f0017e3f13ac11b0c02e4e4db351f52f"],
                ],
            )

demo.launch()