playing around with gradio
Browse files
app.py
CHANGED
@@ -1,16 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
|
4 |
-
def
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
demo = gr.Blocks()
|
8 |
|
9 |
with demo:
|
10 |
with gr.Tabs():
|
11 |
-
with gr.TabItem("
|
12 |
gr.Button("New Lion")
|
13 |
-
with gr.TabItem("
|
|
|
|
|
14 |
gr.Button("New Tiger")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
demo.launch()
|
|
|
1 |
+
import matplotlib
|
2 |
+
matplotlib.use('Agg')
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
import gradio as gr
|
7 |
|
8 |
|
9 |
+
def sales_projections(employee_data):
|
10 |
+
sales_data = employee_data.iloc[:, 1:4].astype("int").to_numpy()
|
11 |
+
regression_values = np.apply_along_axis(
|
12 |
+
lambda row: np.array(np.poly1d(np.polyfit([0, 1, 2], row, 2))), 0, sales_data
|
13 |
+
)
|
14 |
+
projected_months = np.repeat(
|
15 |
+
np.expand_dims(np.arange(3, 12), 0), len(sales_data), axis=0
|
16 |
+
)
|
17 |
+
projected_values = np.array(
|
18 |
+
[
|
19 |
+
month * month * regression[0] + month * regression[1] + regression[2]
|
20 |
+
for month, regression in zip(projected_months, regression_values)
|
21 |
+
]
|
22 |
+
)
|
23 |
+
plt.plot(projected_values.T)
|
24 |
+
plt.legend(employee_data["Name"])
|
25 |
+
return employee_data, plt.gcf(), regression_values
|
26 |
|
27 |
demo = gr.Blocks()
|
28 |
|
29 |
with demo:
|
30 |
with gr.Tabs():
|
31 |
+
with gr.TabItem("Greedy Search"):
|
32 |
gr.Button("New Lion")
|
33 |
+
with gr.TabItem("Sample"):
|
34 |
+
gr.Button("New Tiger")
|
35 |
+
with gr.TabItem("Beam Search"):
|
36 |
gr.Button("New Tiger")
|
37 |
+
with gr.TabItem("Benchmark Information"):
|
38 |
+
gr.Interface(
|
39 |
+
sales_projections,
|
40 |
+
gr.Dataframe(
|
41 |
+
headers=["Name", "Jan Sales", "Feb Sales", "Mar Sales"],
|
42 |
+
value=[["Jon", 12, 14, 18], ["Alice", 14, 17, 2], ["Sana", 8, 9.5, 12]],
|
43 |
+
),
|
44 |
+
["dataframe", "plot", "numpy"],
|
45 |
+
description="Enter sales figures for employees to predict sales trajectory over year.",
|
46 |
+
)
|
47 |
|
48 |
demo.launch()
|