joaogante HF staff commited on
Commit
d4c88e9
1 Parent(s): c4faff5

try different layout

Browse files
Files changed (1) hide show
  1. app.py +25 -25
app.py CHANGED
@@ -149,7 +149,6 @@ def get_plot(model_name, plot_eager, generate_type):
149
  if plot_eager == "No":
150
  df = df[df["framework"] != "TF (Eager Execition)"]
151
 
152
- plt.figure(figsize=(200 / FIG_DPI, 200 / FIG_DPI))
153
  g = sns.catplot(
154
  data=df,
155
  kind="bar",
@@ -205,34 +204,35 @@ with demo:
205
  interactive=True
206
  )
207
  plot_fn = functools.partial(get_plot, generate_type="Greedy Search")
208
- plot = gr.Image(value=plot_fn("T5 Small", "Yes"), shape=[1, 1]) # Show plot when the gradio app is initialized
209
  model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
210
  eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
211
  with gr.TabItem("Sample"):
212
- gr.Markdown(
213
- """
214
- ### Sample benchmark parameters
215
- - `max_new_tokens = 128`;
216
- - `temperature = 2.0`;
217
- - `top_k = 50`;
218
- - `pad_to_multiple_of = 64` for Tensorflow XLA models. Others do not pad (input prompts between 2 and 33 tokens).
219
- """
220
- )
221
- with gr.Row():
222
- model_selector = gr.Dropdown(
223
- choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"],
224
- value="T5 Small",
225
- label="Model",
226
- interactive=True,
227
- )
228
- eager_enabler = gr.Radio(
229
- ["Yes", "No"],
230
- value="Yes",
231
- label="Plot TF Eager Execution?",
232
- interactive=True
233
- )
234
  plot_fn = functools.partial(get_plot, generate_type="Sample")
235
- plot = gr.Image(value=plot_fn("T5 Small", "Yes")) # Show plot when the gradio app is initialized
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
  model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
237
  eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
238
  with gr.TabItem("Beam Search"):
 
149
  if plot_eager == "No":
150
  df = df[df["framework"] != "TF (Eager Execition)"]
151
 
 
152
  g = sns.catplot(
153
  data=df,
154
  kind="bar",
 
204
  interactive=True
205
  )
206
  plot_fn = functools.partial(get_plot, generate_type="Greedy Search")
207
+ plot = gr.Image(value=plot_fn("T5 Small", "Yes")) # Show plot when the gradio app is initialized
208
  model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
209
  eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
210
  with gr.TabItem("Sample"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211
  plot_fn = functools.partial(get_plot, generate_type="Sample")
212
+ with gr.Row():
213
+ with gr.Column():
214
+ gr.Markdown(
215
+ """
216
+ ### Sample benchmark parameters
217
+ - `max_new_tokens = 128`;
218
+ - `temperature = 2.0`;
219
+ - `top_k = 50`;
220
+ - `pad_to_multiple_of = 64` for Tensorflow XLA models. Others do not pad (input prompts between 2 and 33 tokens).
221
+ """
222
+ )
223
+ model_selector = gr.Dropdown(
224
+ choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"],
225
+ value="T5 Small",
226
+ label="Model",
227
+ interactive=True,
228
+ )
229
+ eager_enabler = gr.Radio(
230
+ ["Yes", "No"],
231
+ value="Yes",
232
+ label="Plot TF Eager Execution?",
233
+ interactive=True
234
+ )
235
+ plot = gr.Image(value=plot_fn("T5 Small", "Yes")) # Show plot when the gradio app is initialized
236
  model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
237
  eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
238
  with gr.TabItem("Beam Search"):