File size: 3,318 Bytes
1d6f96a d0263ad 3fdea53 37e33c3 3c19287 b3ece58 d97a50e 1d6f96a b3ece58 670552f f2b7d46 d97a50e fc15cbc f2b7d46 e2ed0ec d97a50e ac02da5 d97a50e f2b7d46 b3ece58 e2ed0ec 670552f e2ed0ec b3ece58 e2ed0ec b3ece58 e2ed0ec 670552f f2b7d46 670552f e2ed0ec 366a4b5 33519ac d97a50e 4e7f2d5 f2b7d46 d97a50e f2b7d46 836ccde 8f0b9db 2fb792e d97a50e 2fb792e 591dae5 8425dd7 2fb792e d0cc8ca f679e15 d97a50e 8ebdf87 2fb792e 47ef36a dc1b3f3 9524e11 8f0b9db d97a50e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import gradio as gr
import numpy as np
import librosa
import requests
from io import BytesIO
from PIL import Image
import os
from tensorflow.keras.models import load_model
from faster_whisper import WhisperModel
# Load the emotion prediction model
def load_emotion_model(model_path):
try:
model = load_model(model_path)
return model
except Exception as e:
print("Error loading emotion prediction model:", e)
return None
model_path = 'mymodel_SER_LSTM_RAVDESS.h5'
model = load_emotion_model(model_path)
# Initialize WhisperModel
model_size = "small"
model2 = WhisperModel(model_size, device="cpu", compute_type="int8")
# Function to transcribe audio
def transcribe(wav_filepath):
segments, _ = model2.transcribe(wav_filepath, beam_size=5)
return "".join([segment.text for segment in segments])
# Function to extract MFCC features from audio
def extract_mfcc(wav_file_name):
try:
y, sr = librosa.load(wav_file_name)
mfccs = np.mean(librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40).T, axis=0)
return mfccs
except Exception as e:
print("Error extracting MFCC features:", e)
return None
# Emotions dictionary
emotions = {1: 'neutral', 2: 'calm', 3: 'happy', 4: 'sad', 5: 'angry', 6: 'fearful', 7: 'disgust', 8: 'surprised'}
# Function to predict emotion from audio
def predict_emotion_from_audio(wav_filepath):
try:
test_point = extract_mfcc(wav_filepath)
if test_point is not None:
test_point = np.reshape(test_point, newshape=(1, 40, 1))
predictions = model.predict(test_point)
predicted_emotion_label = np.argmax(predictions[0]) + 1
return emotions[predicted_emotion_label]
else:
return "Error: Unable to extract features"
except Exception as e:
print("Error predicting emotion:", e)
return None
api_key = os.getenv("DeepAI_api_key")
# Function to generate an image using DeepAI Text to Image API
def generate_image(api_key, text):
url = "https://api.deepai.org/api/text2img"
headers = {'api-key': api_key}
response = requests.post(
url,
data={'text': text},
headers=headers
)
response_data = response.json()
if 'output_url' in response_data:
image_url = response_data['output_url']
image_response = requests.get(image_url)
image = Image.open(BytesIO(image_response.content))
return image
else:
return None
# Function to get predictions
def get_predictions(audio_input):
emotion_prediction = predict_emotion_from_audio(audio_input)
transcribed_text = transcribe(audio_input)
texto_imagen = emotion_prediction + transcribed_text
image = generate_image(api_key, texto_imagen)
return emotion_prediction, transcribed_text, image
# Create the Gradio interface
interface = gr.Interface(
fn=get_predictions,
inputs=gr.Audio(label="Input Audio", type="filepath"),
outputs=[
gr.Label("Acoustic Prediction", label="Acoustic Prediction"),
gr.Label("Transcribed Text", label="Transcribed Text"),
gr.Image(type='pil', label="Generated Image")
],
title="Affective Virtual Environments",
description="Create an AVE using your voice."
)
interface.launch() |