Spaces:
jfforero
/
Runtime error

jfforero commited on
Commit
f679e15
·
verified ·
1 Parent(s): 3768d0e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -39
app.py CHANGED
@@ -65,41 +65,11 @@ def transcribe(audio, state=""):
65
 
66
  # Create a combined function that calls both models
67
  def get_predictions(audio_input):
68
- # Perform transcription to get the text
69
- transcribed_text = transcribe(audio_input)
70
-
71
- # Define the API key for DeepAI Text to Image API
72
- api_key = 'dee3e3f2-d5cf-474c-8072-bd6bea47e865'
73
-
74
- # Generate the image with the transcribed text using DeepAI Text to Image API
75
- image = generate_image(api_key, transcribed_text)
76
-
77
- # Get emotion prediction from audio
78
  emotion_prediction = predict_emotion_from_audio(audio_input)
 
 
79
 
80
- return [emotion_prediction, transcribed_text, image]
81
-
82
- # Define a function to generate an image using DeepAI Text to Image API
83
- def generate_image(api_key, text):
84
- url = "https://api.deepai.org/api/text2img"
85
- headers = {'api-key': api_key}
86
- response = requests.post(
87
- url,
88
- data={
89
- 'text': text,
90
- },
91
- headers=headers
92
- )
93
- response_data = response.json()
94
- if 'output_url' in response_data:
95
- image_url = response_data['output_url']
96
- image_response = requests.get(image_url)
97
- image = Image.open(BytesIO(image_response.content))
98
- return image
99
- else:
100
- return None
101
-
102
- # Create the Gradio interface for acoustic and semantic predictions
103
  with gr.Blocks() as interface:
104
  gr.Markdown("Emotional Machines test: Load or Record an audio file to speech emotion analysis")
105
  with gr.Tabs():
@@ -107,13 +77,9 @@ with gr.Blocks() as interface:
107
  with gr.Row():
108
  input_audio = gr.Audio(label="Input Audio", type="filepath")
109
  submit_button = gr.Button("Submit")
110
- output_labels = [gr.Label(num_top_classes=8), gr.Label(num_top_classes=4), gr.Image(type='pil')]
111
 
112
- # Set the function to be called when the button is clicked for acoustic and semantic predictions
113
  submit_button.click(get_predictions, inputs=input_audio, outputs=output_labels)
114
 
115
- # Display transcribed text as a label
116
- transcribed_text_label = gr.Label(label="Transcribed Text")
117
-
118
- # Launch the Gradio interface
119
  interface.launch()
 
65
 
66
  # Create a combined function that calls both models
67
  def get_predictions(audio_input):
 
 
 
 
 
 
 
 
 
 
68
  emotion_prediction = predict_emotion_from_audio(audio_input)
69
+ transcribe_prediction = transcribe(audio_input)
70
+ return [emotion_prediction, transcribe_prediction]
71
 
72
+ # Create the Gradio interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  with gr.Blocks() as interface:
74
  gr.Markdown("Emotional Machines test: Load or Record an audio file to speech emotion analysis")
75
  with gr.Tabs():
 
77
  with gr.Row():
78
  input_audio = gr.Audio(label="Input Audio", type="filepath")
79
  submit_button = gr.Button("Submit")
80
+ output_labels = [gr.Label(num_top_classes=8), gr.Label(num_top_classes=4)]
81
 
82
+ # Set the function to be called when the button is clicked
83
  submit_button.click(get_predictions, inputs=input_audio, outputs=output_labels)
84
 
 
 
 
 
85
  interface.launch()