Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import librosa
|
|
|
4 |
import requests
|
5 |
from io import BytesIO
|
6 |
from PIL import Image
|
7 |
import os
|
8 |
from tensorflow.keras.models import load_model
|
9 |
-
from faster_whisper import WhisperModel
|
10 |
|
11 |
# Load the emotion prediction model
|
12 |
def load_emotion_model(model_path):
|
@@ -17,14 +17,25 @@ def load_emotion_model(model_path):
|
|
17 |
print("Error loading emotion prediction model:", e)
|
18 |
return None
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
model_size = "small"
|
21 |
-
# Run on CPU with INT8 compute
|
22 |
-
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
emotion_model = load_emotion_model(model_path)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# Function to extract MFCC features from audio
|
29 |
def extract_mfcc(wav_file_name):
|
30 |
try:
|
@@ -44,7 +55,7 @@ def predict_emotion_from_audio(wav_filepath):
|
|
44 |
test_point = extract_mfcc(wav_filepath)
|
45 |
if test_point is not None:
|
46 |
test_point = np.reshape(test_point, newshape=(1, 40, 1))
|
47 |
-
predictions =
|
48 |
predicted_emotion_label = np.argmax(predictions[0]) + 1
|
49 |
return emotions[predicted_emotion_label]
|
50 |
else:
|
@@ -55,43 +66,47 @@ def predict_emotion_from_audio(wav_filepath):
|
|
55 |
|
56 |
api_key = os.getenv("DeepAI_api_key")
|
57 |
|
|
|
58 |
# Predict emotion from audio
|
59 |
def get_predictions(audio_input):
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
except Exception as e:
|
66 |
-
print("Error processing audio:", e)
|
67 |
-
return None, None
|
68 |
|
69 |
# Define a function to generate an image using DeepAI Text to Image API
|
70 |
def generate_image(api_key, text):
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
except Exception as e:
|
88 |
-
print("Error generating image:", e)
|
89 |
return None
|
90 |
-
|
|
|
91 |
# Create the Gradio interface
|
92 |
-
with gr.
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import librosa
|
4 |
+
import time
|
5 |
import requests
|
6 |
from io import BytesIO
|
7 |
from PIL import Image
|
8 |
import os
|
9 |
from tensorflow.keras.models import load_model
|
|
|
10 |
|
11 |
# Load the emotion prediction model
|
12 |
def load_emotion_model(model_path):
|
|
|
17 |
print("Error loading emotion prediction model:", e)
|
18 |
return None
|
19 |
|
20 |
+
model_path = 'mymodel_SER_LSTM_RAVDESS.h5'
|
21 |
+
model = load_emotion_model(model_path)
|
22 |
+
|
23 |
+
#####
|
24 |
+
|
25 |
+
from faster_whisper import WhisperModel
|
26 |
+
|
27 |
+
|
28 |
model_size = "small"
|
|
|
|
|
29 |
|
30 |
+
# Run on GPU with FP16
|
31 |
+
model2 = WhisperModel(model_size, device="cpu", compute_type="int8")
|
|
|
32 |
|
33 |
+
def transcribe(audio):
|
34 |
+
segments, _ = model2.transcribe(audio, beam_size=5)
|
35 |
+
return "".join([segment.text for segment in segments])
|
36 |
+
|
37 |
+
#########
|
38 |
+
|
39 |
# Function to extract MFCC features from audio
|
40 |
def extract_mfcc(wav_file_name):
|
41 |
try:
|
|
|
55 |
test_point = extract_mfcc(wav_filepath)
|
56 |
if test_point is not None:
|
57 |
test_point = np.reshape(test_point, newshape=(1, 40, 1))
|
58 |
+
predictions = model.predict(test_point)
|
59 |
predicted_emotion_label = np.argmax(predictions[0]) + 1
|
60 |
return emotions[predicted_emotion_label]
|
61 |
else:
|
|
|
66 |
|
67 |
api_key = os.getenv("DeepAI_api_key")
|
68 |
|
69 |
+
|
70 |
# Predict emotion from audio
|
71 |
def get_predictions(audio_input):
|
72 |
+
emotion_prediction = predict_emotion_from_audio(audio_input)
|
73 |
+
# Generate image here or call a separate function
|
74 |
+
image = generate_image(api_key, emotion_prediction)
|
75 |
+
return emotion_prediction, image
|
76 |
+
|
|
|
|
|
|
|
77 |
|
78 |
# Define a function to generate an image using DeepAI Text to Image API
|
79 |
def generate_image(api_key, text):
|
80 |
+
url = "https://api.deepai.org/api/text2img"
|
81 |
+
headers = {'api-key': api_key}
|
82 |
+
response = requests.post(
|
83 |
+
url,
|
84 |
+
data={
|
85 |
+
'text': text,
|
86 |
+
},
|
87 |
+
headers=headers
|
88 |
+
)
|
89 |
+
response_data = response.json()
|
90 |
+
if 'output_url' in response_data:
|
91 |
+
image_url = response_data['output_url']
|
92 |
+
image_response = requests.get(image_url)
|
93 |
+
image = Image.open(BytesIO(image_response.content))
|
94 |
+
return image
|
95 |
+
else:
|
|
|
|
|
96 |
return None
|
97 |
+
####
|
98 |
+
|
99 |
# Create the Gradio interface
|
100 |
+
with gr.Blocks() as interface:
|
101 |
+
gr.Markdown("Emotional Machines test: Load or Record an audio file to speech emotion analysis")
|
102 |
+
with gr.Tabs():
|
103 |
+
with gr.Tab("Acoustic and Semantic Predictions"):
|
104 |
+
with gr.Row():
|
105 |
+
input_audio = gr.Audio(label="Input Audio", type="filepath")
|
106 |
+
submit_button = gr.Button("Submit")
|
107 |
+
output_label = [gr.Label("Prediction"), gr.Image(type='pil')] # Use a single Label instead of a list
|
108 |
+
|
109 |
+
# Set the function to be called when the button is clicked
|
110 |
+
submit_button.click(get_predictions, inputs=input_audio, outputs=output_label)
|
111 |
+
|
112 |
+
interface.launch()
|