Awan.AI / awanai.py
jetlin101's picture
Upload folder using huggingface_hub
7e855bb verified
import os
import numpy as np
import gradio as gr
from glob import glob
from functools import partial
from dataclasses import dataclass
import torch
import torchvision
import torch.nn as nn
import lightning.pytorch as pl
import torchvision.transforms as TF
from torchmetrics import MeanMetric
from torchmetrics.classification import MultilabelF1Score
@dataclass
class DatasetConfig:
IMAGE_SIZE: tuple = (384, 384) # (W, H)
CHANNELS: int = 3
NUM_CLASSES: int = 10
MEAN: tuple = (0.485, 0.456, 0.406)
STD: tuple = (0.229, 0.224, 0.225)
@dataclass
class TrainingConfig:
METRIC_THRESH: float = 0.4
MODEL_NAME: str = "efficientnet_v2_s"
FREEZE_BACKBONE: bool = False
def get_model(model_name: str, num_classes: int, freeze_backbone: bool = True):
"""A helper function to load and prepare any classification model
available in Torchvision for transfer learning or fine-tuning."""
model = getattr(torchvision.models, model_name)(weights="DEFAULT")
if freeze_backbone:
# Set all layer to be non-trainable
for param in model.parameters():
param.requires_grad = False
model_childrens = [name for name, _ in model.named_children()]
try:
final_layer_in_features = getattr(model, f"{model_childrens[-1]}")[-1].in_features
except Exception as e:
final_layer_in_features = getattr(model, f"{model_childrens[-1]}").in_features
new_output_layer = nn.Linear(in_features=final_layer_in_features, out_features=num_classes)
try:
getattr(model, f"{model_childrens[-1]}")[-1] = new_output_layer
except:
setattr(model, model_childrens[-1], new_output_layer)
return model
class ProteinModel(pl.LightningModule):
def __init__(
self,
model_name: str,
num_classes: int = 10,
freeze_backbone: bool = False,
init_lr: float = 0.001,
optimizer_name: str = "Adam",
weight_decay: float = 1e-4,
use_scheduler: bool = False,
f1_metric_threshold: float = 0.4,
):
super().__init__()
# Save the arguments as hyperparameters.
self.save_hyperparameters()
# Loading model using the function defined above.
self.model = get_model(
model_name=self.hparams.model_name,
num_classes=self.hparams.num_classes,
freeze_backbone=self.hparams.freeze_backbone,
)
# Intialize loss class.
self.loss_fn = nn.BCEWithLogitsLoss()
# Initializing the required metric objects.
self.mean_train_loss = MeanMetric()
self.mean_train_f1 = MultilabelF1Score(num_labels=self.hparams.num_classes, average="macro", threshold=self.hparams.f1_metric_threshold)
self.mean_valid_loss = MeanMetric()
self.mean_valid_f1 = MultilabelF1Score(num_labels=self.hparams.num_classes, average="macro", threshold=self.hparams.f1_metric_threshold)
def forward(self, x):
return self.model(x)
def training_step(self, batch, *args, **kwargs):
data, target = batch
logits = self(data)
loss = self.loss_fn(logits, target)
self.mean_train_loss(loss, weight=data.shape[0])
self.mean_train_f1(logits, target)
self.log("train/batch_loss", self.mean_train_loss, prog_bar=True)
self.log("train/batch_f1", self.mean_train_f1, prog_bar=True)
return loss
def on_train_epoch_end(self):
# Computing and logging the training mean loss & mean f1.
self.log("train/loss", self.mean_train_loss, prog_bar=True)
self.log("train/f1", self.mean_train_f1, prog_bar=True)
self.log("step", self.current_epoch)
def validation_step(self, batch, *args, **kwargs):
data, target = batch # Unpacking validation dataloader tuple
logits = self(data)
loss = self.loss_fn(logits, target)
self.mean_valid_loss.update(loss, weight=data.shape[0])
self.mean_valid_f1.update(logits, target)
def on_validation_epoch_end(self):
# Computing and logging the validation mean loss & mean f1.
self.log("valid/loss", self.mean_valid_loss, prog_bar=True)
self.log("valid/f1", self.mean_valid_f1, prog_bar=True)
self.log("step", self.current_epoch)
def configure_optimizers(self):
optimizer = getattr(torch.optim, self.hparams.optimizer_name)(
filter(lambda p: p.requires_grad, self.model.parameters()),
lr=self.hparams.init_lr,
weight_decay=self.hparams.weight_decay,
)
if self.hparams.use_scheduler:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
self.trainer.max_epochs // 2,
],
gamma=0.1,
)
# The lr_scheduler_config is a dictionary that contains the scheduler
# and its associated configuration.
lr_scheduler_config = {
"scheduler": lr_scheduler,
"interval": "epoch",
"name": "multi_step_lr",
}
return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config}
else:
return optimizer
@torch.inference_mode()
def predict(input_image, threshold=0.4, model=None, preprocess_fn=None, device="cpu", idx2labels=None):
input_tensor = preprocess_fn(input_image)
input_tensor = input_tensor.unsqueeze(0).to(device)
# Generate predictions
output = model(input_tensor).cpu()
probabilities = torch.sigmoid(output)[0].numpy().tolist()
output_probs = dict()
predicted_classes = []
for idx, prob in enumerate(probabilities):
output_probs[idx2labels[idx]] = prob
if prob >= threshold:
predicted_classes.append(idx2labels[idx])
predicted_classes = "\n".join(predicted_classes)
return predicted_classes, output_probs
if __name__ == "__main__":
labels = {
0: "Mitochondria",
1: "Nuclear bodies",
2: "Nucleoli",
3: "Golgi apparatus",
4: "Nucleoplasm",
5: "Nucleoli fibrillar center",
6: "Cytosol",
7: "Plasma membrane",
8: "Centrosome",
9: "Nuclear speckles",
}
DEVICE = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
CKPT_PATH = os.path.join(os.getcwd(), r"ckpt_022-vloss_0.1756_vf1_0.7919.ckpt")
model = ProteinModel.load_from_checkpoint(CKPT_PATH)
model.to(DEVICE)
model.eval()
_ = model(torch.randn(1, DatasetConfig.CHANNELS, *DatasetConfig.IMAGE_SIZE[::-1], device=DEVICE))
preprocess = TF.Compose(
[
TF.Resize(size=DatasetConfig.IMAGE_SIZE[::-1]),
TF.ToTensor(),
TF.Normalize(DatasetConfig.MEAN, DatasetConfig.STD, inplace=True),
]
)
images_dir = glob(os.path.join(os.getcwd(), "samples") + os.sep + "*.png")
examples = [[i, TrainingConfig.METRIC_THRESH] for i in np.random.choice(images_dir, size=10, replace=False)]
# print(examples)
with gr.Interface(
fn=partial(predict, model=model, preprocess_fn=preprocess, device=DEVICE, idx2labels=labels),
inputs=[
gr.Image(type="pil", label="Image"),
gr.Slider(0.0, 1.0, value=0.4, label="Threshold", info="Select the cut-off threshold for a node to be considered as a valid output."),
],
outputs=[
gr.Textbox(label="Labels Present"),
gr.Label(label="Probabilities", show_label=False),
],
examples=examples,
cache_examples=False,
allow_flagging="never",
title="Awan AI Medical Image Classification",
theme=gr.themes.Soft(primary_hue="sky", secondary_hue="pink"),
) as iface:
additional_inputs=[gr.Model3D(label="3D Model", value="./HackMercedIXRunThrough.glb", clear_color=[0.4, 0.2, 0.7, 1.0])]
iface.launch(share=True)