File size: 8,001 Bytes
7e855bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

import os
import numpy as np
import gradio as gr
from glob import glob
from functools import partial
from dataclasses import dataclass

import torch
import torchvision
import torch.nn as nn
import lightning.pytorch as pl
import torchvision.transforms as TF

from torchmetrics import MeanMetric
from torchmetrics.classification import MultilabelF1Score


@dataclass
class DatasetConfig:
    IMAGE_SIZE: tuple = (384, 384)  # (W, H)
    CHANNELS: int = 3
    NUM_CLASSES: int = 10
    MEAN: tuple = (0.485, 0.456, 0.406)
    STD: tuple = (0.229, 0.224, 0.225)


@dataclass
class TrainingConfig:
    METRIC_THRESH: float = 0.4
    MODEL_NAME: str = "efficientnet_v2_s"
    FREEZE_BACKBONE: bool = False


def get_model(model_name: str, num_classes: int, freeze_backbone: bool = True):
    """A helper function to load and prepare any classification model
    available in Torchvision for transfer learning or fine-tuning."""

    model = getattr(torchvision.models, model_name)(weights="DEFAULT")

    if freeze_backbone:
        # Set all layer to be non-trainable
        for param in model.parameters():
            param.requires_grad = False

    model_childrens = [name for name, _ in model.named_children()]

    try:
        final_layer_in_features = getattr(model, f"{model_childrens[-1]}")[-1].in_features
    except Exception as e:
        final_layer_in_features = getattr(model, f"{model_childrens[-1]}").in_features

    new_output_layer = nn.Linear(in_features=final_layer_in_features, out_features=num_classes)

    try:
        getattr(model, f"{model_childrens[-1]}")[-1] = new_output_layer
    except:
        setattr(model, model_childrens[-1], new_output_layer)

    return model


class ProteinModel(pl.LightningModule):
    def __init__(
        self,
        model_name: str,
        num_classes: int = 10,
        freeze_backbone: bool = False,
        init_lr: float = 0.001,
        optimizer_name: str = "Adam",
        weight_decay: float = 1e-4,
        use_scheduler: bool = False,
        f1_metric_threshold: float = 0.4,
    ):
        super().__init__()

        # Save the arguments as hyperparameters.
        self.save_hyperparameters()

        # Loading model using the function defined above.
        self.model = get_model(
            model_name=self.hparams.model_name,
            num_classes=self.hparams.num_classes,
            freeze_backbone=self.hparams.freeze_backbone,
        )

        # Intialize loss class.
        self.loss_fn = nn.BCEWithLogitsLoss()

        # Initializing the required metric objects.
        self.mean_train_loss = MeanMetric()
        self.mean_train_f1 = MultilabelF1Score(num_labels=self.hparams.num_classes, average="macro", threshold=self.hparams.f1_metric_threshold)
        self.mean_valid_loss = MeanMetric()
        self.mean_valid_f1 = MultilabelF1Score(num_labels=self.hparams.num_classes, average="macro", threshold=self.hparams.f1_metric_threshold)

    def forward(self, x):
        return self.model(x)

    def training_step(self, batch, *args, **kwargs):
        data, target = batch
        logits = self(data)
        loss = self.loss_fn(logits, target)

        self.mean_train_loss(loss, weight=data.shape[0])
        self.mean_train_f1(logits, target)

        self.log("train/batch_loss", self.mean_train_loss, prog_bar=True)
        self.log("train/batch_f1", self.mean_train_f1, prog_bar=True)
        return loss

    def on_train_epoch_end(self):
        # Computing and logging the training mean loss & mean f1.
        self.log("train/loss", self.mean_train_loss, prog_bar=True)
        self.log("train/f1", self.mean_train_f1, prog_bar=True)
        self.log("step", self.current_epoch)

    def validation_step(self, batch, *args, **kwargs):
        data, target = batch  # Unpacking validation dataloader tuple
        logits = self(data)
        loss = self.loss_fn(logits, target)

        self.mean_valid_loss.update(loss, weight=data.shape[0])
        self.mean_valid_f1.update(logits, target)

    def on_validation_epoch_end(self):
        # Computing and logging the validation mean loss & mean f1.
        self.log("valid/loss", self.mean_valid_loss, prog_bar=True)
        self.log("valid/f1", self.mean_valid_f1, prog_bar=True)
        self.log("step", self.current_epoch)

    def configure_optimizers(self):
        optimizer = getattr(torch.optim, self.hparams.optimizer_name)(
            filter(lambda p: p.requires_grad, self.model.parameters()),
            lr=self.hparams.init_lr,
            weight_decay=self.hparams.weight_decay,
        )

        if self.hparams.use_scheduler:
            lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
                optimizer,
                milestones=[
                    self.trainer.max_epochs // 2,
                ],
                gamma=0.1,
            )

            # The lr_scheduler_config is a dictionary that contains the scheduler
            # and its associated configuration.
            lr_scheduler_config = {
                "scheduler": lr_scheduler,
                "interval": "epoch",
                "name": "multi_step_lr",
            }
            return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config}

        else:
            return optimizer


@torch.inference_mode()
def predict(input_image, threshold=0.4, model=None, preprocess_fn=None, device="cpu", idx2labels=None):
    input_tensor = preprocess_fn(input_image)
    input_tensor = input_tensor.unsqueeze(0).to(device)

    # Generate predictions
    output = model(input_tensor).cpu()

    probabilities = torch.sigmoid(output)[0].numpy().tolist()

    output_probs = dict()
    predicted_classes = []

    for idx, prob in enumerate(probabilities):
        output_probs[idx2labels[idx]] = prob
        if prob >= threshold:
            predicted_classes.append(idx2labels[idx])

    predicted_classes = "\n".join(predicted_classes)
    return predicted_classes, output_probs


if __name__ == "__main__":
    labels = {
        0: "Mitochondria",
        1: "Nuclear bodies",
        2: "Nucleoli",
        3: "Golgi apparatus",
        4: "Nucleoplasm",
        5: "Nucleoli fibrillar center",
        6: "Cytosol",
        7: "Plasma membrane",
        8: "Centrosome",
        9: "Nuclear speckles",
    }

    DEVICE = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
    CKPT_PATH = os.path.join(os.getcwd(), r"ckpt_022-vloss_0.1756_vf1_0.7919.ckpt")
    model = ProteinModel.load_from_checkpoint(CKPT_PATH)
    model.to(DEVICE)
    model.eval()
    _ = model(torch.randn(1, DatasetConfig.CHANNELS, *DatasetConfig.IMAGE_SIZE[::-1], device=DEVICE))

    preprocess = TF.Compose(
        [
            TF.Resize(size=DatasetConfig.IMAGE_SIZE[::-1]),
            TF.ToTensor(),
            TF.Normalize(DatasetConfig.MEAN, DatasetConfig.STD, inplace=True),
        ]
    )

    images_dir = glob(os.path.join(os.getcwd(), "samples") + os.sep + "*.png")
    examples = [[i, TrainingConfig.METRIC_THRESH] for i in np.random.choice(images_dir, size=10, replace=False)]
    # print(examples)
    
    
    with gr.Interface(
        fn=partial(predict, model=model, preprocess_fn=preprocess, device=DEVICE, idx2labels=labels),
        inputs=[
            gr.Image(type="pil", label="Image"),
            gr.Slider(0.0, 1.0, value=0.4, label="Threshold", info="Select the cut-off threshold for a node to be considered as a valid output."),
        ],
        outputs=[
            gr.Textbox(label="Labels Present"),
            gr.Label(label="Probabilities", show_label=False),
        ],
       
        examples=examples,
        cache_examples=False,
        allow_flagging="never",
        title="Awan AI Medical Image Classification",
        theme=gr.themes.Soft(primary_hue="sky", secondary_hue="pink"),
    ) as iface:
        additional_inputs=[gr.Model3D(label="3D Model", value="./HackMercedIXRunThrough.glb", clear_color=[0.4, 0.2, 0.7, 1.0])]
        iface.launch(share=True)